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Abstract 

The Riemann-Liouville operator for fractional differentiation is applied for a 

generalization of the Coulomb wave equation, named Fractional Coulomb equation. 

By means of the Fröbenius’ method, the regular solution of the latter is obtained in a 

power series form. It is shown that the same contains the respective solution of the 

classical Coulomb equation as a special case.  

 

 

1.  INTRODUCTION 

Fractional are called differential equations which involve the Riemann-Liouville 

fractional derivative 
xD0  of order  , where   is a positive real number [1,2]. They 

are an object of the Fractional Calculus, a branch of the mathematical analysis, 

dealing with differentiation and integration of an arbitrary order [1-4]. These 

equations turned out to be a suitable means for investigating various tasks of physics, 

electrochemistry and mathematics [1-7].  

In this study the notion Fractional Coulomb equation is advanced, as an equation 

of the aforesaid type that contains the derivative 2
0 xD  of order 2 , with 10   . It 

is considered as a fractional generalization of the Coulomb wave equation [8-11], 

correspondingly of the Kummer and Whittaker confluent hypergeometric ones [8-18]. 

The Fröbenius’ method [19] is applied to determine the fractional analog of the 

regular solution of the Coulomb wave equation. It is shown that the latter (resp. its 

solution) is recovered from the fractional one when 1 .  

An example for putting into practice of the special case of the solution of fractional 

equation – the one of the classical Coulomb equation, is the problem for propagation 

of normal nTE0  modes in the azimuthally magnetized circular ferrite waveguide [20]. 

mailto:jvr@abv.bg
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This structure is of particular interest in designing digital nonreciprocal phase shifters 

for electronically scanned antenna arrays, operating in the normal 01TE  mode [21-34].  

 

2.  KUMMER AND WHITTAKER CONFLUENT HYPERGEOMETRIC 

EQUATIONS 

The equation [8,9,11-16,18,19,21,24]: 

 0)(
2

2

 ay
dx

dy
xc

dx

yd
x  (1)  

is called confluent hypergeometric or Kummer equation. It possesses a regular and 

irregular singularities at 0x  and x , resp. By means of the power series method 

(the Fröbenius’ method), its two solutions in the neighbourhood of the first of these 

points [8,9,11-16,18,19]: 

 );,(1 xcay   (2) 

and 

 );2,1(1
2 xccaxy c    (3) 

can be found. );,( xca  is known as confluent hypergeometric or simply Kummer 

function. It is defined for all real or complex a , c  and x , except ,...2,1,0 c  

through the expression [8,9,11-16,18,19,21,24]: 

 
 

  !
);,(

0 



 

 x

c

a
xca 





  (4)  

in which )(a  denotes the Pochhammer symbol [8,9,11-16,18,19,21,24]: 

 )1)...(1(
)(

)(
)( 




 


 aaa

a

a
a  (5)  

with )(a  – the Euler gamma function [8,9,11-16,18,19]. );,( xca  is regular at zero, 

entire and single-valued (analytic in the whole x  – plane). Because it might be 

considered as a special case of the generalized hypergeometric function );;,(12 xcbaF , 

it is often written in the form );,(11 xcaF  [8]. Other notations used for it are ),,( xbaM  

and ),,( xF  , as well [9,19].  

Obviously, 2y  has sense, if ,...2,1,02  c , i.e., if ,...4,3,2c  For 1c , 1y  and 

2y  coincide. Thus, the solutions presented are linearly independent on condition that 

c  is different from a positive, negative integer or zero. When this parameter acquires 
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the values pointed out, the general integral of Eq. (1) instead by 1y  and 2y  could be 

constructed in terms of: i) 1y  and the Tricomi confluent hypergeometric function 

);,( xca , stipulating that ,...2,1,0 a ; ii) 1y  and );,( xcacex  , provided 

,...2,1,0  ac ; iii) 2y  and );,( xca , assuming that ,...3,2,1 ac ; iv) 2y  and 

);,( xcacex  , when ,...3,2,1a  and v) );,( xca  and );,( xcacex   for all ,a  

c  and ac  without any restrictions [8,9,13,15,16,18]. Besides, it should be noted 

that if 1 nc , ,...2,1,0n , the logarithmic representation of );,( xca  is employed 

[8,9]. Further, on the understanding that nc 1 , the formula [9]: 

 );1,();1,( xnnaxxna n   (6)  

reduces the debate to the previous case. 

Setting  xwxey cx 2/2/   in the Kummer equation yields [8,12,13,17,18]:  

 0
1

2
1

2

1

24

1
22

2

























 w

x

cc

x
a

c

dx

wd
. (7)  

With the help of the simple substitutions: 12  mc  and    ma 2/1 , the same 

is transformed into [8-13,17,18]:  

 04

1

4

1
2

2

2

2




















 w
x

m

xdx

wd 
, (8)  

termed Whittaker equation. Bearing in mind the above discussion, in view of the 

relation between Eqs. (1) and (8) it follows that, if m2  is not zero or an integer, as 

two linearly independent solutions of the latter at the point 0x , the functions:  

 










xmmexxM

x
m

m ;21,
2

1
)( 22

1

,   (9)  

and 

 











 xmmexxM
x

m

m ;21,
2

1
)( 22

1

,   (10)  

could be chosen [11-13,17,18]. When the opposite holds, the complete integral of the 

equation regarded, as a substitute of the pair )(, xM m  and )(, xM m , the next couples 

of functions are used: i) )(, xM m  and )(, xW m , provided   ,...5,3,12 m ; 

ii) )(, xM m  and )(, xW m  , when   ,...5,3,12 m ; iii) )(, xM m  and 

)(, xW m , if   ,...5,3,12 m ; iv) )(, xM m  and )(, xW m  , presuming that 
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  ,...5,3,12 m ; v) )(, xW m  and )(, xW m  , without any limitations for the 

numerical equivalents of  , m  (  m2 ) and x  [8,12,13,17,18]. In the lieu of 

)(, xW m  and )(, xW m  , the functions )(, xW m  and )(, xW m  , resp. can be 

employed, as well [18]. )(, xM m  and )(, xW m  are named Whittaker first and second 

function. They are multiple-valued in the complex x  – plane with the origin as a 

branch point. Their principle branch is determined by the condition   xarg  

[8,9,12,13]. )(, xW m  is connected with );,( xca  through the relation [8,18]:  

 










xmmexxW

x
m

m ;21,
2

1
)( 22

1

,  . (11)  

In case ,...2,1,02 m  )(, xW m  is taken in its logarithmic form. );,( xca  and 

)(, xM m  are finite at zero, while );,( xca  and )(, xW m  tend to infinity, if 0x  

[8,9,12,13].  

According to Whittaker and Watson [17], the greater symmetry of )(, xM m  and 

)(, xW m  is their main advantage. Really, the various partial integrals of Eq. (8) are 

obtained from each other just by changing the signs of parameters and variable. 

Further, the graphically presented results for )(, xM m  in case 1m  jk , 

5.0,3.0,1.0,0 k  and jzx  , z  – real, positive, have shown that )(Re , xM m  

)(Im , xM m  [21]. Simultaneously, though not possessing the property mentioned, 

);,( xca  and );,( xca  are also attractive in the applications, especially from a 

computation point of view, since the expressions, yielding them are much simpler and 

);,( xca  is single-valued.  

 

3.  COULOMB WAVE EQUATION 

The equation: 

 0
)1(2

1
22

2








 
 v

LL

d

vd






 (12)  

in which   and   are real, 0 ,    and L  is a non-negative integer 

( ,...2,1,0L ), is referred to as a Coulomb wave equation [8-10]. It has a regular 

singularity with indexes 1L  and L  at 0  and an irregular one at  . Its 

general solution is presented as a linear combination of the regular and irregular 

(logarithmic) Coulomb wave functions ),( LF  and ),( LG , resp. The first of them 

is given by the expression [9]: 
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   ,)(),( 1

L
L

LL CF    (13)  

where 

 
)22(

)1(2
)(

2/








L

jLe
C

L

L






 (14)  

and 

   





1

1,
Lq

LqL
qL A  . (15)  

For the coefficients L
qA  it holds: 

 11 
L
LA , (16)  

 
1

2



L

AL
L


, (17)  

 L
q

L
q

L
q AAALqLq 212)1)((    , )2(  Lq . (18)  

The series representation (13) provides a convenient way for numerical evaluation 

of ),( LF . Putting jx 2 , 22  Lc , jLa  1  or ,2 jx   , j  

,2/1 Lm  the Coulomb equation is reduced to the Kummer or Whittaker one. 

Accordingly, another option for computation of the solution considered of Eq. (12), is 

to apply its expansion in terms of the Kummer or Whittaker confluent hypergeometric 

function [10]: 

 )2;22,1()(),( 1   jLjLeCF jL
LL   , (19)  

 
 

 

 
 







jMe

L

jL
F

Lj

jLj

L 2
22

1

2

1
),(

2

1
,

1
2

1








 . (20)  

The relation (19) can be used as a definition of the regular Coulomb wave function in 

the sense of Thompson and Barnett [35], valid for all complex  ,   and L . In 

particular, it allows to determine the same, if   and   are real, 0 ,    

and 5.0L . The numerical analysis [22] has shown that for the values of 

parameters indicated ),( LF  can be reckoned in two ways: i) using the 

representation (13), though initially defined for ,...2,1,0L  and ii) employing Eq. 

(19). It turned out that the first approach is preferable, since: i) the power series 

operates with real quantities; ii) the variable   is twice smaller than the argument of 

Kummer function; iii) the power series (15) is more rapidly converging than the 

Kummer one, especially for large arguments [22]. Graphs, based on the numerical 
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analysis, illustrating the behaviour of ),( LF  for the case considered have been 

depicted in Ref. [22].  

The notions “Coulomb wave equation” and “Coulomb wave functions”, however, 

are not unique. The theory presented follows the approach of M. Abramowitz [9] and 

is based also on the well-known survey of the same by M.K. Kerimov [10]. In a 

comprehensive study of the problem [10] Curtis revealed that beside Eq. (12) and the 

functions ),( LF and ),( LG  there exist also other representations of the same. 

Such is the equation [10]: 

 0
)1(2

22

2







 
 Y

t

LL

t
b

dt

Yd
, (21)  

investigated by Miller, on condition that t  is real, positive, b  is real and L  equals 

zero or a positive integer who integrated it in terms of the functions: ),( tbPL  and 

),( tbQL  when 0b  and ),( tbUL  and ),( tbVL  when 0b . Instead of the second 

couple Jeffreys and Jeffreys introduced the one ),,( ZU   and ),,( ZV   [10]. 

Hartree considered the wave equation of the form [10]: 

 0
)1(

4

11
222

2







 
 P

LL

nd

Pd


 (22)  

and found its two solutions: )(LG  and )(LH .  

Treating a more universal equation, similar to the Whittaker one and its solution, 

written in a general form, L.J. Slater reduced it in a special case to eq. (12) and 

presented the solutions of the latter as [8]: 

    jL
ejv 


1

1 2 F )2;22,1(  jLjL  , (23)  

 1v M  


j
Lj

2

2

1
, 

. (24)  

Here the symbols F and M are used to denote any general integral of the Kummer and 

Whittaker equation, resp. Usually however, she continued, as such are taken the 

following two Coulomb functions [8]:  

 
 

 


jM
L

A
F

Lj
L 2

22
),(

2

1
, 

 , (25)  

  
 

 


jM
L

C
jBWG

LjLj
L 2

22
2),(

2

1
,

2

1
,  

  (26)  
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where the constants A , B  and C  are determined through the relations [8]: 

    






 1

2

1

2

1
exp1

2

1
LjjLjCA  , (27)  

 







 jLjB 

2

1

2

1
exp  (28)  

in which 

     jLjLe j  11 .  (29)  

Here 0 , ,...2,1,0L . Buchholz represented Eqs. (25) and (26) through the 

introduced by him new function [12]: 

 M   xm,

 

 m

xM m

21

,




, (30)  

called after his name ( 2/1 Lm ). Accordingly, he wrote [12]: 

 AFL ),(  M  


j
Lj

2

2

1
, 

, (31)  

   AjBWG
Lj

L 





2),(

2

1
,

M  


j
Lj

2

2

1
, 

. (32)  

Considering the radial part of the Schrödinger equation for the electron in a central 

symmetric potential field, Morse and Feshbach have shown that it reduces to Eq. (1) 

with  /11La , 22  Lc  and sx  2 . They suggested the finite at 0s  

solution of the latter [14]: 

 
 





























sLL

L

es
sC

L

sL

L 2;22,
1

1

2

3
2

2
),(

12


 (33)  

in which   might be real or purely imaginary. When jK  ( K  is real) it holds [14]: 

 

   
  

  
jKs

L
L

ejKsL
K

j
LU

KjL

jKsL
K

j
LU

KjL
LjKssjKC



































2;22,1
/1

1

2;22,1
/1

1
12),(

2

1

 (34)  

where )2;22,/1(1 jKsLKjLU   and )2;22,/1(2 jKsLKjLU   are ex-

pressed by means of 1y  and 2y  [14]. In addition to );( sjKCL  the function [14]: 
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 


























jKsL
K

j
LG

L

ejKs
sjKD

L

jKsL

L 2;22,1

2

3
2

2
),(

12


, (35)  

with )2;22,/1( jKsLKjLG   – the Gordon one has been advanced [14]. 

);( sCL   ( );( sjKCL ) and );( sjKDL  are Coulomb wave functions in the Morse-

Feshbach form [14]. 

F.G. Tricomi termed in the same way the function [16]: 

 )2;22,1();,(   jLjLeLH j  . (36)  

An application of the first Kummer theorem [9] allows to establish that );,( LH  

coincides with its complex conjugate, i.e. it is real and for this reason it does not 

involve in explicit form the imaginary unit j .  

Similarly, rearranging the right-hand side of Eq. (23), it is postulated:  

  
 

)2;22,1(2,, 1
1

2

1

1  


jLjLeeLT jL
Lj

L  


  (37)  

Obviously, it holds: 

  
 

)()22(2
1

2

1

1 


L

Lj
L CLeA 


 , (38)  

 

 

 

 

   

 

 

 
 

 

 

 
 

 
 

 
 





























































































,,
22

2
22

,,
22

1

2

1

2
22

1

2

1

,,)(2

,,)(

,)(

2;22,1)(

),(

2

1
,

1
2

1
2

1
,

1
2

1

2

1

1

1

1

1

LT
L

A

jM
L

A

LTe
L

jL

jMe
L

jL

LTCe

LHC

C

jLjLeC

F

Lj

jLj

Lj

jLj

L

j
L

L
L

L
L

L

jL
L

L , (39)  

  

 

 
 

   





 
























jMe

jLjLe

Lj

L
Lj

L

j

L
22

2;22,1

,

2

1
,

1
1

2

1

1
, (40a) 
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  

 

 
 

   

 











 















,,

,,2

),()(

, 1
1

2

1

1

11

LH

LTe

FC

L
Lj

L

L
L

L

L , (40b)  

  

 

 

 
   

 

 











































),,(2

),(2

,2

2

)2,22,1(2

,,

1
1

2

1

1

1
1

2

1

1

11
2

1

1

2

1
,

1
1

2

1

1
























LHe

e

FCe

jM

jLjLee

LT

L
Lj

L

L
L

Lj
L

LL

Lj
L

Lj

jL
Lj

L

, (41)  

 

 

 

 

 

 

 
 







































































,
1

22
2

),,(

),(2

),,(2

)2;221,1(2

)2(

1
2

1

1
1

2

1

1

1
1

2

1

1

1
1

2

1

1

2

1
,

L

jLj

L
L

Lj
L

L
Lj

L

jL
Lj

L

Lj

Fe
jL

L

LT

e

LHe

jLjLee

jM , (42)  

  

 
 

   

 

 
 

   






























































,,2

),,(

),(

),()(

22

)2;22,1(

1
1

2

1

1

11

2

1
,

1
1

2

1

1

LTee

LHe

e

FeC

jMee

jLjL

jL
Lj

L

j

L
j

L
jL

L

Lj

jL
Lj

L

. (43)  

 ,,LH  is given by the set of formulae (40a,b), if in the latter this symbol and the 

one  ,L  are interchanged wherever they are met. Any of the functions 

  ,)2;22,1(2 11)2/1(1   jLLee jLLjL    ,22/1,  jM Lj   M  ,22/1,  jLj   

 ,,LT ,  ,LF ,  ,L , )2;22,1(  jLjLe j  ,  ,,LH  and 

),( sjKCL  could be called Coulomb wave function in the sense of Slater, 

Buchholz, Abramowitz, Tricomi, Morse-Feshbach, etc. The first four represent the 
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same function which differs from  ,LF  by the factor )22(/  LA  

(     )(2 1)2/1(1 
L

LjL Ce  ), resp. A  only. The next three are identical and are 

distinguished from  ,LF  with the multiple   )(1  L
L C . There are also simple 

links of a similar nature between the Miller function ),( xaPL , that of Hartree )(LG  

and the Abramowitz one  ,LF  [10]. The correlation between the latter and 

);( sjKCL , however, is more complicated.  

 

4.  FRACTIONAL CALCULUS 

The fractional Calculus (differentiation and integration of an arbitrary order) is 

nowadays one of the most intensively developing areas of the mathematical analysis. 

Its areas of putting into practice range from biology through physics and electro-

chemistry to economics, probability theory and statistics. The fractional derivatives 

provide an excellent instrument for the modeling of memory and hereditary properties 

of various materials and processes. Half-order derivatives and integrals prove to be 

more advantageous for the formulation of certain electrochemical problems than the 

classical methods [5]. The modeling of diffusion in a specific type of porous medium 

is one of the most significant applications of the fractional derivatives [2], [6]. 

Recently, fractional differentiation and integration operators are also used for 

extension of the temperature field problem in oil strata [7]. In the special treatises as 

[1], [3] and [4], the mathematical aspects and employments of the fractional calculus 

are extensively thrashed out. 

In view of the purpose of the study, in this paper the Riemann-Liouville fractional 

derivative of a function  xf  of order 0  is adopted, defined by [1]: 

  )()( )(
00 xfD

dx

d
xfD l

xl

l

x
    (44)  

where 0l  is a positive integer, ll  1  and 

 


 dfx
l

xfD
x

ll
x   




0

1)(
0 )()(

)(

1
)(  (45)  

is the Riemann-Liouville fractional integral of  xf  of order l . 

It is worthwhile to mention that in a contrast to the classical calculus, if 0 , 

0x  and 1 , then the fractional derivative of the power function x is given by [1]: 
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 









 xxDx

)1(

)1(
0 , (46)  

that in the particular case 0  and 10    implies: 

 
)1(

10








x
Dx . (47)  

 

5.  FRACTIONAL COULOMB EQUATION AND ITS REGULAR SOLUTION 

The fractional differential equation of the form 

 0)()()( 22
0

2   


 uhguD  (48)  

is considered in which  ,  , g  and h  are real, 0 , 10   , and 

2

0 D  is the 

Riemann-Liouville fractional derivative of order 2 . The reason to deal with it is that 

it appears as a fractional generalization of the Coulomb wave equation. Indeed, if it is 

set 1 , 2g  and  ,1 LLh  ...,2,1,0L , Eq. (48) reduces to the latter. 

Here the discussion is restricted to determining the fractional analog of the regular 

solution of Eq. (12). For this purpose, the Fröbenius’ method is applied to Eq. (48). 

Theorem 1: Let 10   , 0 , Rhg ,  and   is such that 1  and 

0
)1(

)1(





h




. Then the equation (48) is solvable and its solution has the form: 

 





1

),()(
p

p
pau  , (49)  

where the coefficients ),(  p  satisfy the recurrence relations 

 0),(
)1(

)12(
),( 12 


















 gaha  (50)  

and for 3p , 

 0),(),(
]1)2[(

)1(
),( 21 













 




 ppp agah

p

p
a . (51)  

Proof: Following the basic idea of the power series method, the solution of 

Eq. (48) is searched in the representation (49). Accordingly, inserting this expression 

in the equation mentioned and taking into account the definition (46), it is obtained: 
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0),(),(

),(
]1)2[(

)1(
),(

12
1

3
2

1





































p

p
p

p

p
p

p

p
p

p

p
p

ahag

a
p

p
a













. (52)  

Rearranging the terms in the above equality, permits to get: 

 

.0),(
)1(

)1(

),(),(
)1(

)12(
),(

),(),(),(
]1)2[(

)1(
),(

1

2
212

3
12













































































ah

hagaa

hagaa
p

p
a

p

p
pppp

 (53)  

Eq. (53) implies directly the truthfulness of the recurrence relations (50) and (51) 

and thus the statement is proved. 

Keeping to the Thompson and Barnett’s concept [35], developed by Georgiev and 

Georgieva [22], the above Theorem could be generalized. In particular it is seen 

directly that it holds for any real ,L  for example for 5.0L .  

 

6.  COULOMB WAVE EQUATION AND ITS REGULAR SOLUTION AS 

SPECIAL CASES OF THE FRACTIONAL ONES 

If 1 , 2g , L , ...,2,1,0L  and ,)1(  LLh  the fractional Coulomb 

wave equation is reduced to the classical one, i.e. the second is a partial case of the first. 

A similar interdependence should exist between their solutions. Really, introducing the 

above values of parameters  , g ,   and h  in the expressions (49)-(51) yields: 

 ,),1()(
1






p

Lp
p Lau   (54)  

   0),1(21
)1(

)3(
),1( 12 













LaLL

L

L
La  , (55)  

   0),1(),1(21
]1[(

)1(
),1( 21 













 LaLaLL

Lp

Lp
La ppp  , 3p . (56)  

Rewriting Eq. (54) in a new form and bearing in mind the properties of gamma 

function results in: 
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 





1

11 ),1()(
p

p
p

L Lau  , (57)  

 ),1(
1

),1( 12 La
L

La





, (58)  

    ),1(),1(2),1(12 21 LaLaLapLp ppp    , 3p . (59)  

Putting:  

   L
pLLp ACLa  ),1( , 1p  (60)  

in Eqs. (57)-(59) gives: 

   








1

11)(
p

pL
pL

L
L ACu  , (61)  

 L
L

L
L A

L
A 12

1






 (62)  

    L
pL

L
pL

L
pL AAApLp 21212    , 3p . (63)  

Assuming that  LC  and L
LA 1  are represented by formulae (14) and (15), resp., and 

setting Lqp  , it is readily seen that Eqs. (61), (62) and (63) coincide with Eqs. 

(13), (17) and (18), resp. in the case considered it holds: 

   ),(  LFu  .  (64)  

In view of what has been said at the end of the previous Section, the last relation is 

true for any real L , including for 5.0L . 

 

7.  CONCLUSION 

A definite fractional differential equation is considered and its regular partial 

integral is found, applying the power series method. It is demonstrated that under 

certain conditions the equation referred to and its solution reduce to the Coulomb 

wave equation and the regular Coulomb wave function ),( LF , resp. For this reason 

they could be termed as Fractional Coulomb equation and regular Fractional 

Coulomb function, resp. The results obtained allow the development of a new 

approach to the analysis of problems, attacked until now by the classical Coulomb or 

by the confluent hypergeometric functions, e.g. the one for normal nTE0  modes in the 

circular waveguide, entirely filled with azimuthally magnetized ferrite.  
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Abstract 
The electrodynamic theory of the square loop antenna is suggested. In an 

analytical form its radiation pattern is presented. The problem of electromagnetic 

compatibility of this antenna is studied. The numerical data are given, and the way of 

selection of the optimal regime of the antenna functioning is stated.  

 

1. INTRODUCTION 

The square loop antennas formed of thin conductors are widely used in antenna 

techniques, while their correct electrodynamic theory is still absent in the scientific 

literature. As a result, it is impossible to carry out the engineer calculations of their 

basic electrodynamic characteristics (radiation patterns, ordered action coefficients 

and others) as well, as the theoretical investigations of their electromagnetic 

compatibility. 

  

2. THE THEORY OF THE SQUARE LOOP ANTENNA 

2. 1. Description of the antenna and setting of the problem  

In figure 1 the square loop antenna presents itself in the rectangular coordinate 

system (XYZ). Here AB and DC are the horizontal conductors of the loop, while AD 

and BC – the vertical ones. DC conductor is cut in the center and in K and L points of 

the slit the harmonic e. m. force of the constant amplitude is applied, creating the 

alternating current of constant amplitude  0I  in the loop. The action of this current 

tends to appearance of electromagnetic waves, penetrating in outer space. 

mailto:ketinooo@hotmail.com
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The aim of the paper is determination of the structure of the electromagnetic field 

in arbitrary point of observation M, arranged in the far zone of the antenna, i.e. 

reception of the quantitative relations, making possible to calculate the components of 

electric and magnetic vectors HE


, . 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. The structure of the electromagnetic field of the antenna 

The problem being set up may be solved step by step. First of all let us calculate 

the value  zE  of the vertical component of the electric field created by the vertical 

conductors AD and BC in the point of observation M. Taking into account that, in AD 

and BC conductors the currents are directed oppositely, for the quantitative expression 

of zE  component yields (figure 2): 

                                          













 

 b ikrb ikr

z dz
r

e
dz

r

e
PE

0 20 1

''
21

,                                      (1) 

where 
0

0
2

0
4

rk
IP   V/m, 


2k ,   being the wavelength in vacuum, 0r  the 

radius of the conductor,   the circular frequency of the field, 9
0 10

36

1 


  F/m. 

In the far zone 

 cos'sincos1 zaRr  ,    cos'sincos2 zaRr  , 

(R – the distance from the origin to M point) 

Z 
α 

A B 

C D 

b 

0 K L 

X 

I0 

I0 

I0 

I0 

Figure 1. Orientation of the loop in  

                XYZ coordinate system 
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Inserting them into (1) and carrying out the integration procedure, we get: 

                    
 






cos

cossin
sincossin0 bREEz  , 
















ba
,              (2) 

where  
R

e
PRE

ikR

0  is the amplitude of the electric field.  

Further it becomes necessary utilization of the meridian component E  of the 

electric field strength (figure 2), which is the projection of zE


 vector on the KK′ 

tangent to the meridian passing through M point; thus,  sinzEE  ,   being the 

meridian angle of M point. Taking (2) into account, we get: 

                                   
 





 sin

cos

cossin
sincossin0 bREE  .                      (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The azimuth component  H  of the magnetic vector may now be calculated from 

the first or the second Maxwell’s equations in the spherical coordinate system. 

Now let us calculate the value  xE  of the azimuth component of the electric field 

created by the horizontal conductors AB and DC of the loop in the same point of 

observation M. For this purpose let us turn to the figure 3 and take into account that, 

in the far zone the horizontal component of the electric field strength should be given 

as follows: 

Z 

X 

0 

b 

D 

A B 

C α 

x 

y 
φ 

θ 

I0 I0 

• M 

Ez 
θ Eθ 

M′ M′′ 

z′′ z′ 
R 

z 

r1 

r2 

Figure 2. For the solution of (2) formula. 
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ikrikr
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IE


,                                    (4) 

while in the far zone 

                          cossincos'1 bxRr  ,    sincos'~
2 xRr  .                     (5) 

Inserting (5) into (4) and calculating the received integral yields: 

                             
 






cossin

cossinsin
cossincos

0
i

x aeREE  .                           (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The azimuth component of the field E  may be calculated from the expression 

 sinxEE  , or 

                      
 







 sin
cossin

cossinsin
cossincos

0
iaeREE  .                        (7) 

The radiation pattern of the loop may be calculated now from the following 

formula: 

                             22

||
2 ,,,   FFqF ,    

a
bq                                 (8) 

                           
 





 sin

cos

cossin
cossinsin,|| F ,                                  (9) 
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Figure 3. For the solution of (7) formula. 

The darkening presents the plane, parallel to the equatorial plane. 
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                           
 





 sin

cossin

cossinsin
cossin, F .                               (10) 

Taking (9) and (10) into account, (8) presents the distribution of the electro-

magnetic field, radiated in outer space by the loop according to   and   angles. 

The analysis of (8) formula is given below, that will make possible to determine 

the basic electromagnetic properties of the square loop antenna. 

 

2.3. Special cases 

1) Consider the situation of presence of the point of observation in the main 

meridian plane  0 , then from (8) follows: 

              
 





 sin

cos

cossin
sinsin0,)0,( || qFqF  ,     00,  F .            (11) 

It is seen here that, when 0 , then   00,0|| F  and, thus, in the vertical direction 

the antenna does not radiate, while, if 
2

  , corresponding to the horizontal 

direction, then we get: 

                                                


 aF sinsin0,
2||  .                                       (12) 

And now everything depends on the relation between the width a  of the loop and 

the wavelength  . If na    ,3,2,1n , then   00,
2|| F , i.e. when the width of 

the loop equals to the integral number of wavelengths, then it does not radiate in 

horizontal direction, while, if   
2

12  na , i.e. the width equals to the odd number 

of wavelengths – the radiation in this direction is maximal   10,
2|| F . 

2) Assume now the point of observation be in the main equatorial plane, i.e. 

2
  , then 

    cossin,
2|| F ,     0,

2
 F    













a
. 

It is clear that, in directions, where  
a

n
n

 arccos ,  ,3,2,1n , 1
a

n , the 

loop does not radiate, while in directions, where   
a

mm 2
12arccos   , 

 ,2,1,0m , the radiation is maximal. 
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3) When 
2

  , i.e. the point of observation is located in the plane, normal to the 

plane of the loop itself, then   0
2

,]] F  and     cossin
2

, F . Then it 

follows from it that, at  
b

n arccos||    ,3,2,1n  angles the radiation is absent, 

while at   
b

m
2

12arccos||
  it is maximal. 

4) If the parameter 1q   1
a

b  the square loop antenna transforms into the 

hinge (figure 4). 

In the main equatorial plane  
2

   we have   0,
2

 F , while  

    cossin,
2|| qF  , 

and for the normalized characteristic 

we get                             

 
 

 


 cossin2||


q

F
FNor ,            














a
.                (13) 

In the case, when the width of the 

loop a  equals to half of   

wavelength, (13) transforms into 

        







 


 cos

2
sinNorF .         (14) 

    In figure 5 the radiation pattern of 

the hinge is built up (firm line), at  

α 

Figure 4. The hinge antenna. 

   0        30       60        90       120       150  180 

1,0 

 

0,8 

 

0,6 

 

0,4 

 

0,2 

F┴ 

φ 

Figure 5. 

60
0
 90

0
 

30
0
 

120
0
 

150
0
 

180
0
 

210
0
 

240
0
 

270
0
 

300
0
 

330
0
 

0
0
 0.4 

0.8 

Figure 6. 



JAE, VOL. 14, NO.1, 2012                                                                   JOURNAL OF APPLIED ELECTROMAGNETISM 

 

 23 

2
a  (taken from [1]), but it is unknown there, whether it is theoretical or 

experimental curve. As to the dotted line, it is constructed due to our theoretical 

expression (14). As it is seen there, these two curves, within the graphical error, are in 

good coincidence.  

In figure 6 the same pattern, according to (14) formula, is presented in the polar 

coordinate system. 

2.4. Electromagnetic compatibility (EMC) of the antenna 

In this sectiont we consider the problem of estimation of the electromagnetic 

compatibility (EMC) of the square loop antenna, applying for this purpose so called 

compatibility function [2], given as follows: 

                                                 


 dFC  ,, ,                                               (15) 

  ,,F  being the radiation pattern of the antenna,   the area of the side radia-

tion, while   the unit less, arbitrary, geometric characteristic of the antenna relative 

to the wavelength. It is known that, the side lobs of the radiation pattern resist the 

normal functioning of neighbor antennas. 

The physical meaning of  C  function consists in following: it is the integral 

modulus of the amplitude of the side radiation. Obviously, if n   ,3,2,1n  are the 

roots of  C  function, then in the radiation pattern of the antenna the side lobs 

should not exist at all, or their amplitude level should be as low, as possible 

In the main equatorial plane  
2

   the expression (15) transforms into 

                                         

2

1

,,
2





 dFCC ,                                          (16) 

while in the main vertical (meridian) plane  0  it becomes 

                                

     
2

1

,0,||





 dFCC .                                              

(17) 

In these expressions  21,  and  21,  

intervals present the compatibility areas, where 

the side lobs are arranged. 
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    Hence, at investigation of the electromagnetic compatibility of any antenna the 

decisive importance is awarded to the statement of the structure of compatibility 

functions as well, as to the determination of the values of their roots. 

    In our particular case  C  function is determined from the following relation: 

                   

2

1

cossin





 dC .           (18) 

One may easily convince in that, in given case the side lobs appear in the radiation 

pattern only when the parameter    exceeds   

   . 

    In figure 7 (a, b, c, d) the graphs of the 

compatibility function are presented in the upper 

semi-plane, within the following compatibility 

areas: 

   00
12 030  a ,  00 2040 b , 

 00 3060 c ,  00 6090 d . 

 First three roots of the compatibility function presented in figure 7a are 

29.21  , 57.62  , 86.93  , . In the 

first case, when  1 , the pattern has no 

side lobs. The corresponding pattern is pre-

sented in figure 8 (the pattern is built only in 

the upper semi-plane). The patterns, corres-

ponding to 57.62   and 86.93   roots 

(figure 9(a,b)) within the compatibility area 

 00 030 a  (darkening sections), include 

the side lobs of very small energetic level, so 

that within the signed sector the EMC of the 

antenna is rather high.  

    First two roots of the compatibility function 

presented in figure 7b are 64.31  , 

29.72  . In this case the compatibility area is Figure 7d. 

Figure 7c. 

Figure 7a. 

Figure 7b. 

C(γ) 

γ 

γ 

C(γ) 

C(γ) 
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 00 2040 b  (the compatibility areas in figure 10(a,b) are darkening as well), but 

now, different from the previous case, the patterns in these sectors have no side lobs 

at all, and the EMC of the antenna is 100%. 

In the case of figure 7c, the roots of the compatibility function equal 48.41  , 

94.82  , while the compatibility area is presented by  00 3060 c , in the first 

case the compatibility sector (darkening) occupies the insignificant part of the sector 

(figure 11a), that does not cause the decrement in EMC, while for the pattern with 

94.82   its wide area is covered by the significant level of side radiation – the EMC 

of the antenna will be rather low (figure 11b). 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                          (b)  

Figure 9. 

 

Figure 8. 
Figure 8. 

Figure 8. 
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Investigations show that, at high n   ,3,2,1n , in radiation patterns increases 

the number of side lobs, arranged very tight to each other. Due to it, the attempts of 

the choosing the compatibility areas become useless. To such situation corresponds, 

for example, the pattern given in figure 12 (  00 6090 d , where two side lobs of 

high level are located. 

 

 

 

(a)                                                                             (b) 

Figure 10. 

 

 

 

 (a)                                                                                  (b) 

Figure 11. 
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Figure 12. 

 

 

 

 

3. CONCLUSION 

In presented paper the electrodynamic theory of the square loop antenna formed of 

thin conductors is developed. The method for the estimation of the EMC of the square 

loop antenna is suggested. This method provides the optimal (needed) regime of 

functioning of the square loop antenna. 
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National Science Foundation (Grant №1, 1/51). Any idea in this publication is 

possessed by the authors and may not present the opinion of Shota Rustaveli National 

Science Foundation itself. 
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IN TRIBUTE TO PROF. GEORGI MANEV (1884–1965) 

 
Abstract 

     We demonstrate here the existence of a local Darboux chart for the Manev model such that 

its dynamics becomes locally equivalent to Kepler model. This explains lot of similarities 

between these two models and especially why they share common invariants and symmetry 

algebras. We also discuss the role of a certain discrete symmetry appearing in the case of a 

bounded motion.  

Keywords: Hamiltonian dynamics, superintegrability, symmetry algebras, Kepler problem  

 
1. INTRODUCTION  

Since time immemorial the circular motion was the archetype motion of the heavenly bodies, 

and circle was assumed to be embodiment of perfection. Since Kepler and Newton elliptical 

trajectories became the new archetype of the (bounded) planetary motion and the circular 

orbit is nowadays viewed upon rather as a degenerate ellipse than as an embodiment of 

perfection. The advent of Einstein's theory did not produce a new archetype of heavenly 

motions, apart from the exceptional case of a collapse into the (still hypothetical) black holes. 

Nevertheless, among the variety of relativistic effects the perihelion shift of inner planets is 

definitely the best recognizable effect in the Solar system. Maybe it is time to accept a new 

archetype of heavenly motions: precessing ellipse (or more generally, precessing conics). If 

precessing conics give us ‘the typical’ motion of planets it is tempting to ask which central 

force field produces them. Surprisingly or not, the answer [2] is: the Manev model. 

Prof. Georgi Manev was born on 27 January 1884 in Veliko Turnovo. After graduating 

form Sofia University he worked as a teacher in Physics and Mathematics (mostly in his 

hometown, but also in Razgrad). He returned from the fronts of the two Balkan Wars 
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and the First World War decorated with a medal for courage and promoted to officer. 

After one year specialisation in Toulouse he started reading a 4-semester course on 

Theoretical Physics in Sofia University. Later on he became the first Holder of the 

Chair on Theoretical Physics and authored three University textbooks on Theoretical 

Physics. He served two terms as a Dean of the Physics Faculty, became Rector of the 

Sofia University and a Minister of Education in 1938. He is best known for his series of 

scientific papers on what is known now as Manev's model which attracted renewed 

attention in the last two decades and made him the best cited Holder of the Chair of 

Theoretical Physics in Sofia University. 

In the last two decades Manev model had enjoyed an increased interest either as a very 

suitable approximation to Einstein's relativistic dynamics from astronomers' point of view or 

as a toy model for applying different techniques of the modern dynamics (see e.g. [4, 6, 8, 20, 

21]). Prof. Manev was not the first one to study this model but he was the first to deduce it 

from ‘first principles’, namely as a consequence of Max Planck's (more general) action-

reaction principle and for this reason his name is attached to the model. It is remarkable that 

such a simple model is capable to describe both the perihelion advance of the inner planets 

and the Moon's perigee motion. It was also argued in [8] that it is the natural classical analog 

of the Schwarzschild problem in a certain approximative regime. 

By Manev model [19] we mean here the dynamics given by the Hamiltonian:  

  (1) 

where ;  and  are assumed to be arbitrary real constants whose 

positive values correspond to attractive forces. Due to rotational invariance each component 

of the angular momentum is an obvious first integral and so, like the Kepler problem (and any 

central potential), the Manev model is integrable. 

The motion is confined on a plane which we assume to be  and correspondingly 

the angular momentum  is in the -direction. From now on we shall 

concentrate on this dynamics on the phase space  

which is separable in radial coordinates  and  as it is governed by:  

  (2) 
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Qualitatively, its ‘radial dynamics’ behave like radial motion of Kepler dynamics with angular 

momentum squared ; while the case  corresponds to overall centripetal 

effect. On the other hand, the angular equation of motion  is still governed by the 

‘authentic’ angular momentum  (and  is as just described). Consequently, the remarkable 

properties of Kepler dynamics that all negative energy orbits are closed and the frequencies of 

radial and angular motions coincide (for any initial conditions) are no more true. Thus we 

may have not only purely classical perihelion shifts but also if  we may have 

collapsing trajectories which are spirals; while in the Kepler dynamics the only allowed fall 

down is along straight lines. (Spiraling here has nothing to do with non-conservative forces 

but follows from the fact that in the Manev model collapse is possible for non-vanishing 

angular momentum as well.) For this reason the set of initial data leading to collision has a 

positive measure and this may offer an explanation why collisions in the Solar system are 

estimated to happen more often than Newton's theory predicts [7]. 

Easily one may get the suspicion that Manev problem actually offers a larger natural 

family of models with common properties among which Kepler model is a kind of degenerate 

case (just like the circle is a degenerate case among the conics). There are several types of 

arguments supporting this view.  

    • First, as we already said, it is a sensible generalization of Newton's gravitation 

law.  

    • Second, there are stability arguments as Kepler-type motion is generally not 

preserved by small perturbations and any sort of ‘real world’ interactions like Solar pressure, 

drag etc would destroy ‘fixed ellipse’ motion; while in the Manev model we have persistent 

KAM tori and cylinders for a large class of even non Hamiltonian perturbations [14].  

    • Third, Kepler problem is famous as one of archetypes of superintegrable systems 

– kind of property which is also assumed to be easily destroyed by small perturbations. 

Superintegrability is a kind of global property of a dynamical system which is not about the 

individual trajectories, but rather about how they are stacked together. It is defined by the 

presence of  smooth and functionally independent constants of motion where  is greater 

than the number of degrees of freedom . Recently we reported [12] that Manev model also 

has an additional independent globally defined constant of motion, albeit not for all initial 

data.  

    • Fourth, even if one may expect that superintegrability could be connected with 

some hidden symmetry algebra, the actual finding of such a connection is not a trivial task. 
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(For example, we have the list of natural mechanical superintegrable models with integrals 

quadratic in momenta in [10] but still very little is known about their symmetry algebras, see 

e.g. [11].) In our case we were able to find that the symmetry algebras of the Kepler's model 

are present in the Manev's model as well.  

    • Fifth, Kepler and Manev problems share a separate common  algebra 

associated with the radial motion only and among the possible realizations of this algebra the 

Manev model forms a class of its own [3, 5].  

We shall not dwell more on the equations of motion of the Manev model and the 

properties of their solutions as this is well known and more or less trivial stuff. In what 

follows we shall be rather concerned with the global and invariance features of the model.  

 

2. REMINDER ON THE KEPLER PROBLEM INVARIANTS AND SYMMETRY 

ALGEBRAS  

In the case of Kepler problem, the Hamiltonian is  

  (3) 

and we have more first integrals due to:  

  (4) 

being the Laplace-Runge-Lenz vector whose components are not independent as  

  

Together with the Hamiltonian and angular momentum they close on an algebra with respect 

to the Poisson brackets and after redefining  

  

on each  level set we get:  

  (5) 

with Casimir invariant  

  (6) 
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which makes obvious the fact that we have an  algebra for negative energies and 

 for positive ones. (In the case of the 3-dimensional Kepler problem the components 

of the angular momentum give us another copy of , so the combined symmetry algebra 

is  or  depending on the sign of .) Actually, the first use of these first 

integrals (even before they were combined into a vector) was made by J. Hermann (= J. 

Ermanno) [9] in 1710 in the disguise of ‘Ermanno-Bernoulli' constants:  

  (7) 

satisfying:  

  (8) 

 

3. THE MANEV PROBLEM INVARIANTS AND SYMMETRY ALGEBRAS  

Despite the fact that Manev's model has been known for so long, its additional invariants has 

not been found till very recently. It has been reported by us [12] (and independently, later on 

in [17]) the invariance of the expression:  

  (9) 

where  

  (10) 

and  and  are not independent as  

  (11) 

As  and  are not independent it would be better to distinguish  from 

 where the former depends only on  and the latter 

presenting a ‘truly new’ invariant expression. The existence of such an invariant which is 

specific for the Manev's model could be of help for some future analyses of astronomical data 

aiming at finding how well the motion of a heavenly body is described by the Manev's 

dynamical law. It may be computationally advantageous not to try to find the value of  for 

which we find the best fit between the observed motion and the one predicted by the Manev's 
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equations of motion but to try to find the value of  for which  

  (12) 

would be (closest to a) constant along the trajectory. 

Obviously in the Kepler case  equals one and (up to a multiplication by i ) we 

recover the ‘Ermanno-Bernoulli’ constants. The consequences of existence of the invariant 

expression (9) are to be analysed separately for the cases of compact and noncompact motion. 

 

 

4. BOUNDED MOTION CASE  

Trajectories always lie on the joint level sets of  and  which in the case when 

 and  are 2-dimensional tori. The real valued  is equal to the ratio of 

frequencies of the radial and angular oscillations. Trajectories fill densely these tori when  is 

irrational, and hence there are no new (continuous functions on the phase space being) 

constants of motion in this situation. 

In order to have closed trajectories and globally defined constants of motion we have 

to require that  should be rational i.e.  

  (13) 

with  and  coprime integers. Thus we have conditional constants of motion corresponding 

to (9) which exist only for disjoint but infinite set of values , otherwise we would have 

invariant submanifolds of co-dimension two but not genuine constants of motion. 

Let's remark that for any generic central potential we could have disjoint set of initial 

data corresponding to closed orbits but in our case all points on certain level sets of the 

angular momentum lie on closed orbits which are intersections with the level sets of the 

additional invariant. (To visualize the intersection of the different level sets we can fix the 

angular momentum  and use ,  and  as coordinates on this 3-dimensional level set. As 

both Hamiltonian and  level sets are represented as two-dimensional surfaces, their 

intersection gives the trajectories in the phase space.) 

When  is rational each trajectory in the configuration space  looks like a 
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‘rosette’ with  petals and is invariant under rotations by angle . Trajectories in the phase 

space are invariant under the action of another cyclic group  generated by rotations by 

angle :  

  (14) 

(while leaving the other variables intact: , , ) and this is connected to 

the invarance of  (as well as ,  and ) under the action of . 

We shall now introduce another Darboux chart for our symplectic form (2) in the case 

when  by defining new local coordinates , and  

which are canonically conjugate as  

  (15) 

(As the mapping is not one-to-one we do not have symplectomorphism.) When written in the 

new coordinates Manev's Hamiltonian takes the form of Kepler's:  

  (16) 

and this makes its dynamics locally equivalent to Kepler's. This link between the two models 

gives us a direct method to demonstrate that Manev's model possess exactly the same 

symmetry algebra as Kepler's. The fact that symplectic structure is the same in both charts 

thus means that for every pair of phase space functions we will have: 

  (17) 

and hence from any (Poisson brackets) algebra of the Kepler model we can immediately 

produce identical algebra of the Manev problem by just taking the same functions depending 

now on the variables  and . This observation may be viewed as a minor extension of the 

following: 

Newton's Revolving Orbits Theorem
1
. Let  be an orbit generated by any central force 

. Then the revolving orbit  is generated by a central force  that 

                                                 
1
 Comments on the original Newton's wording may be found in [18] and a standard exposition 

of this matter in [22]. 
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differs from  by an inverse-cube force, and conversely. In particular, if  and  are the 

angular momenta corresponding to  and , respectively, then  

  

In our notations  and , and we may state that: all Poisson 

brackets (and hence algebras) for the prime-system are identical to the ones of the original 

system provided we replace the arguments of the phase space functions  and  with  

and . 

Applying this to Kepler's invariants and defining:  

  (18) 

we obtain  or  algebra:  

  (19) 

with Casimir invariant:  

  (20) 

and so, the space of first integrals for fixed value of the Hamiltonian is a sphere or 

hyperboloid (which degenerate to a point or cone if ) i.e. exactly the same as in the 

Kepler model. 

It may seem puzzling that  is not even an angular type of coordinate (i.e. a coordinate 

 which does not exist globally but ‘ ’ is still well defined closed 1-form). In our case 

even  is not well defined globally due to the second term, but 

 still makes sense. On the other hand  (together with ) are the natural coordinates 

for our configuration space factored by the action of : .  is the 

canonically conjugate of  and so  are the natural coordinates for our reduced 

phase space . 

Thus we have common invariants and symmetry algebras on both  and . This 

bears some resemblance to the situation with the anisotropic two-dimensional harmonic 



JAE, VOL. 14, NO.1, 2012                                                                                      JOURNAL OF APPLIED ELECTROMAGNETISM 

 

 37 

oscillator having rational proportion between the frequences [1]. There we also have a 

discrete group acting on the phase space, common invariants and symmetry algebras on both 

the phase space and the reduced one, and equations of motion for the natural coordinates of 

the reduced phase space having the form of the equations for isotropic harmonic oscillator. 

What is different is that frequence ratio is not fixed for all initial data (except ) but 

changes from one -level set to another. 

 

5.  UNBOUNDED MOTION CASES  

Here the additional invariants are always globally defined. For completeness we shall list 

them below together with their corresponding symmetry algebras. 

    1. When  and  the additional invariants are having the form and 

symmetry algebras just described. 

 

    2. When  we have the first integral:  

  (21) 

satisfying , . 

 

    3. When  we may denote  with  real and  

  (22) 

will be first integrals for any . In this case (which has no direct analogue in the Kepler 

mechanics) we can again introduce new Darboux chart denoting  and 

. When written in the new coordinates Manev's Hamiltonian takes the form:  

  (23) 

and we can define:  

  (24) 

to obtain  algebra:  
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  (25) 

for both choices of the sign of . Its Casimir invariant is:  

  (26) 

and thus the space of invariants is 1- or 2-sheet hyperboloid. 

 

6. CONCLUSIONS 

We have demonstrated the existence of a local Darboux chart for the Manev model such that 

its dynamics becomes locally equivalent to the Kepler model when . This explains 

why we observe so many similarities between these two models and especially why they have 

common symmetry algebras. The existence of such local chart is connected with the presence 

of a certain discrete symmetry in the case of a bounded motion and the factoring out its action 

on the phase space.  

To summarise, Manev model is still an active field of research with new developments 

coming up. And it is still more popular abroad than in Bulgaria … 
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Abstract 

In this paper, the design of non-uniform circular antenna arrays of isotropic radiators with 

optimum side lobe level reduction is investigated. Two global evolutionary optimization methods 

(namely; the biogeography based optimization and the self-adaptive differential evolution) are 

used to determine an optimum set of weights and positions that provide a radiation pattern with 

optimum side lobe level reduction with the constraint of a fixed major lobe beamwidth. The results 

obtained from these two evolutionary are compared with those obtained using the Matlab function 

Fmincon which uses a sequential quadratic programming (SQP) method. The comparison shows 

that the design of non-uniform circular antenna arrays using SQP method provides a side lobe 

level reduction that is comparable to that obtained using global stochastic optimization methods.  

 

 

Keywords: Antenna arrays, Circular arrays, Optimization methods, Biogeography based 

optimization. 

 

 

1. INTRODUCTION  

 

Among the different types of antenna arrays, recently, circular antenna arrays have become more 

popular in mobile and wireless communications [1-4]. In contrast to linear antenna arrays, the 

radiation pattern of circular arrays inherently covers the entire space; the main lobe could be 

oriented in any desired direction. For the design of circular arrays, one has to adequately choose 

the number of antennas in the array, their positions along the circle, the circle’s radius, and the 

feeding currents (amplitudes and phases) of the antenna elements. In general, the circular array 

optimization problem is more complicated than the linear array optimization. To provide a very 

directive pattern, it is necessary that the fields from the array elements add constructively in some 

desired directions and add destructively in other directions. This is important to reduce interference 

from the side lobes of the antenna. Thus, the design of circular antenna arrays with minimum side 

lobes levels has been a subject of very much interest in the literature. To accomplish this, different 

well-known global evolutionary optimization techniques; particle swarm optimization (PSO), 

genetic algorithm (GA), invasive weed optimization (IWO), and differential evolution (DE); have 

been used in the synthesis of non-uniform circular antenna arrays [5-10]. 

mailto:nihad@just.edu.jo
mailto:elengashraf@yahoo.com
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In this paper, two different global optimization methods, the biogeography based optimization 

(BBO) and the self-adaptive differential evolution (SADE), are used to determine an optimum set 

of weights and antenna element separations for non-uniform circular antenna arrays that provide a 

radiation pattern with minimum side lobe level for a fixed major lobe beamwidth. Moreover, the 

Matlab function Fmincon, which is based on the sequential quadratic programming (SQP) method, 

is used to perform the same design. It is shown that the results obtained using the SQP method are 

comparable to (and sometimes better than) those obtained using the BBO and SADE. 

 

Biogeography-based optimization (BBO) is a new method to solve optimization problems [11-13]. 

BBO is based on the science of biogeography which is the nature’s way of species distribution. It 

is modeled after the immigration and emigration of species between islands in search of more 

friendly habitats. A habitat is any island (area) that is geographically isolated from other islands. 

Islands that are well suited as residences for biological species are said to have a high habitat 

suitability index. The variables that characterize habitability are called suitability index variables, 

which are considered as the independent variables of the habitat. The habitat suitability index can 

be calculated using these variables. BBO has already proven itself as a valuable optimization 

technique compared to other already developed techniques [11-13].  

 

Recently, the BBO has been successfully applied in optimal power flow problems [14-16]. In the 

electromagnetics area, BBO has been applied to the optimal design of Yagi-Uda antenna [17], the 

calculation of the resonant frequencies of rectangular and circular microstrip patch antennas [18, 

19], and linear antenna array synthesis [20]. Here, the BBO is applied to design non-uniform 

circular antenna arrays with minimum side lobe levels. Moreover, the differential evolution (DE) 

with competitive control-parameter setting technique (debr18.m) [21] is used to perform the 

optimization for the same design problems. This is a self-adaptive DE (SADE) in which the setting 

of the control parameters is made adaptive through the implementation of a competition into the 

DE algorithm. Very recently an application of the BBO for the design of non-uniform circular 

arrays appeared in [22], in which the BBO results were compared to GA [7] and PSO [8] results. 

In that Reference [22], BBO was successful in obtaining circular arrays with lower side lobe levels 

(SLL) and narrower beam widths than the circular arrays obtained using the GA and the PSO 

methods. However, this was performed for sizes (circumferences) of the designed arrays larger (by 

a factor of 1.5-2) than the PSO and GA designed ones. In this paper, the BBO designed circular 
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arrays have almost the same size (and thus the same major lobe beamwidth) as the PSO and GA 

designed ones. 

 

The objectives of this paper are twofold: first; it is shown that the newly proposed BBO method 

gives results that are as good as other evolutionary well-developed techniques. Second, it is shown 

that the results of the SQP method are also comparable to those obtained using global optimization 

methods; which indicates that global optimization methods are not really needed in this class of 

problems [23]. This paper is divided as follows: in section 2, the geometry and the array factor for 

the non-uniform circular antenna array are presented. In section 3, the fitness (or cost) function is 

given. In section 4, the BBO algorithm is briefly described; the reader can consult the references 

cited above for the full details of the BBO algorithm, and [24] to obtain the basic BBO Matlab 

codes.  Finally, several design examples are presented in section 5. 

 

2. GEOMETRY AND ARRAY FACTOR  

 

 

Figure 1 shows the geometry of a circular antenna array (CAA) with N isotropic antenna elements 

placed non-uniformly on a ring (of radius a) lying in the x-y plane. Since isotropic elements are 

assumed, the radiation pattern of this array can be described by its array factor. In the x-y plane, the 

array factor for this CAA is given as follows [1]: 

 

 

 

(1) 

 

where 

 

(2) 

 

 

 

(3) 

 

 

(4) 
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In the above equations, In and n represent the excitation amplitude and phase of the n
th

 element. 

Moreover, dn represents the arc separation (in terms of wavelength) between element n and 

element n –1 (d1 being the arc distance between the first (n=1) and last (n=N) elements), n  is the 

angular position of the n
th

 element in the x-y plane, 
 
is the azimuth angle measured from the 

positive x-axis, and 0  is the direction of the main beam. In our design problems, 0 is chosen to 

be 0, i. e., the peak of the main beam is directed along the positive x axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geometry of a non-uniform circular antenna array with N isotropic antennas. 

 

 

 

3. FITNESS FUNCTION  

 

In antenna array problems, there are many parameters that can be used to evaluate the fitness (or 

cost) function such as gain, side lobe level, radiation pattern, and size. Here, the goal is to design a 

CAA with minimum side lobes levels for a specific first null beamwidth (FNBW). Thus, the 

following fitness function is used: 

 

 

 

d2 

d3 

dn 

d1 
I1 

I2 

IN 

dN 

In-1 

In 

IN-1 

I3 

x 

y 

… 

1 



JAE, VOL. 14, NO.1, 2012                                                                                                JOURNAL OF APPLIED ELECTROMAGNETISM    

 

 46 

    2

2

2

11 nunu AFAFF  

2

max2211 ||/)( AFFWFWFitness 

     2

2

2

12 , msms AFAFMaxF 

 

  (5) 

 

 

 

(6) 

 

 

(7) 

 

 

where 

nu is the angle at a null. Here, the array factor is minimized at the two angles 
1nu and 

2nu  

defining the major lobe, i.e., the first null beam width (FNBW) = 2nu 1nu  = 2 
2nu  

ms1and ms2  are the angles where the maximum side lobe level is attained during the optimization 

process in the lower band (from -180
o
 to 

1nu ) and the upper band (from 
2nu  to 180

o
), 

respectively. An increment of 1
o
 is used in the optimization process. Thus, the function F2 

minimizes the maximum side lobe level around the major lobe.  

 

Moreover, AFmax is the maximum value of the array factor, i.e., its value at 0 . W1 and W2 are 

weighting factors; both are chosen here to be unity. Thus, the optimization problem is to search for 

the current amplitudes (In’s) and the arc distances between the elements (dn’s) that minimize the 

fitness function in equation (5). 

 

 

4. BIOGEOGRAPHY BASED OPTIMIZATION 

 

Biogeography-Based Optimization (BBO) is based on the science of biogeography which is the 

nature’s way of species distribution. It is modeled after the immigration and emigration of species 

between islands in search of more friendly habitats. A habitat is any island (area) that is 

geographically isolated from other islands.  
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Suppose that we are presented with a global optimization problem and some candidate solutions. 

The candidate solutions of a problem are represented by an array of integers as         

[                      ]. The variables in the array that characterize habitability are called 

suitability index variables (SIVs), which are considered as the independent variables of the habitat. 

 

The value of the fitness function in BBO is called habitat suitability index (HSI) which is found by 

evaluating the fitness function:                                    

 

                   (       )       (                      ) 

                                                                                                                                                (8) 

 

A good solution and a weak solution are similar to an island with a high habitat suitability index 

(HSI) and a low HSI, respectively. A good solution shows high resistance more than a weak 

solution to accept change. Weak solutions accept many features from good solutions which tend to 

share them with it. Shared features with low HSI do not mean that, they will disappear from high 

HSI; they remain and appear as new features in low HSI. This is similar to species migrating to a 

new habitat, while some species still remain in their original habitat. The BBO algorithm consists 

of three steps: creating a set of solutions to the problem, where they are randomly selected, and 

then applying migration and mutation steps to reach the optimal solution. 

In the migration step, equations (9) and (10) are used to evaluate the immigration rate () and the 

emigration rate (µ) of each solution, respectively, which are used to probabilistically share 

information between habitats with probability       (     known as the habitat modification 

probability). 
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The following flow chart summarizes the migration process: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mutation step tends to increase the diversity among the population and gives the solutions the 

chance to improve their selves to the best. Performing mutation on a solution is done by replacing 

it with a new solution that is randomly generated. The following flow chart summarizes the 

mutation process: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For 𝑖    to n  (where n is the number of islands) 

   Select 𝐻𝑖 with probability  ∝ 𝑖 

If 𝐻𝑖 is selected 

For 𝑗    to n 

   Select 𝐻𝑗 with probability  ∝ µ𝑗 

If 𝐻𝑗 is selected 

Randomly select an SIV σ from 𝐻𝑗 

Replace a random SIV in 𝐻𝑖 with σ 

End 

End 

End 

End 

For 𝑖    to n 

For 𝑗     o N (where N is the number of variables) 

   Use  𝑖 and µ𝑖 to compute the probability  𝑃𝑖 

   Select SIV 𝐻𝑖(𝑗) with probability  ∝ 𝑃𝑖 

      If 𝐻𝑖(𝑗)  is selected 

     Replace  𝐻𝑖(𝑗)  with a randomly generated SIV  

      End 

End 

End 
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5. RESULTS 

 
Several examples with different number of antenna elements (N=8, 10, 12) are optimized using the 

BBO, SADE, and SQP methods. The description of the implementation of Fmincon function can 

be found in the corresponding MATLAB help file. It should be noted that the SQP method is not a 

stochastic method. The results of the SQP method depend mainly on the initial estimate. In our 

design examples, we set the initial estimate to be a random vector using the rand function in 

Matlab. For comparison purposes, the same design examples presented in [7, 8] are used here. In 

[7], genetic algorithm was used for the design of CAAs, while the PSO was used in [8]. 

 

In the BBO implementation, for N=8 and N=10 cases, the following parameters are used: 

population size = 50, number of generations = 300, habitat modification probability = 1, mutation 

probability = 0.01 and elitism parameter = 2. The same parameters are used for N=12 case except 

for using a population size = 150 and number of generations = 500. The minimum and maximum 

allowable values for the variables (i.e., the weights and the inter-element arc distances) are set to 

0.1 and 1, respectively. The design examples are performed for a specific FNBW, which 

corresponds to a uniformly-fed circular array with a uniform /2 element-spacing and the same 

number of elements. BBO, SADE and SQP codes are run for 10 independent times. Tables 1-3 

show the best results obtained using BBO, SADE and SQP, respectively. “Best results” are defined 

as the ones that give the smallest value of the fitness function. For the BBO results in Table 1, the 

values of the fitness function were 0.0674, 0.0572, and 0.0405 for N=8, 10, and 12, respectively. 

On the other hand, for the SADE results in Table 2, the values of the fitness function were 0.0586, 

0.0503, and 0.0501 for N=8, 10, and 12, respectively. Finally, for the SQP results in Table 3, the 

values of the fitness function were 0.0547, 0.055, and 0.049 for N=8, 10, and 12, respectively. The 

current amplitudes for the array elements are normalized such that max(I)=1. As mentioned above, 

the same examples were considered in [7] and [8] using GA and PSO, respectively.  

 

 

 

 

 

 

 

 

 

 



JAE, VOL. 14, NO.1, 2012                                                                                                JOURNAL OF APPLIED ELECTROMAGNETISM    

 

 50 

Table 1. Examples of non-uniform circular antenna array optimized using BBO. 

 

N 2nu  

(deg) 

 

[dm1, dm2, dm3, …, dmN] in λ’s 

 

[I1, I2, I3, …, IN] 

 

8 34 

 

[0.3406, 0.7682, 0.2988, 0.5756, 0.6627, 0.8805, 0.6337, 0.4214]  ∑ = 4.5814 

 

[0.7637, 0.6075, 0.1090, 1.0000, 0.8722, 0.5396, 0.7177, 0.4858] 

 

10 27 

 

[0.387, 0.9088, 0.3232, 0.2549, 0.8932, 0.5083, 0.8781, 0.6733, 0.88, 0.3498]  ∑ = 6.0565 

 

[0.8848, 0.5265, 0.3690, 0.3744, 1.0000, 1.0000, 0.6374, 0.5803, 0.8792, 0.5606] 

 

12 23 

 

[0.4083, 0.6416, 0.7554, 0.7185, 0.6943, 0.3818, 0.3284, 0.8152, 0.9981, 0.3097, 0.7983, 0.3701]  ∑ = 7.2196 

 

[0.6567, 0.3879, 0.6960, 0.4596, 0.5627, 0.9600, 0.4168, 0.5890, 0.5368, 0.6230, 0.6910, 1.0000] 

 

 

 

 

Table 2. Examples of non-uniform circular antenna array optimized using SADE. 

 

N 2nu  

(deg) 

 

[dm1, dm2, dm3, …, dmN] in λ’s 

 

[I1, I2, I3, …, IN] 

 

8 34 

 

[0.3438, 0.6668, 0.2059, 0.7951, 0.6272, 0.8437, 0.8295, 0.3383]  ∑ = 4.6505 

 

[0.8749, 0.2302, 0.4633, 0.9542, 1.0000, 0.6442, 0.9099, 0.1844] 

 

10 27 

 

[0.2775, 0.9516, 0.5141, 0.9865, 0.6166, 0.9703, 0.2755, 0.2648, 0.8826, 0.3137]  ∑ = 6.0532 

 

[0.9333, 0.5834, 0.4528, 1.0000, 0.9620, 0.3544, 0.2959, 0.4202, 0.8792, 0.1412] 

 

12 23 

 

[0.4272, 0.6798, 0.6380, 0.6954, 0.9017, 0.5223, 0.7686, 0.6235, 0.2582, 0.5151, 0.8151, 0.3343]  ∑ = 7.1793 

 

[0.3617, 0.3740, 0.3498, 0.6514, 1.0000, 0.8604, 0.4864, 0.3960, 0.3696, 0.3390, 0.5058, 0.8387] 
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Table 3. Examples of non-uniform circular antenna array optimized using SQP. 

 

N 2nu  

(deg) 

 

[dm1, dm2, dm3, …, dmN] in λ’s 

 

[I1, I2, I3, …, IN] 

 

8 34 

 

[0.3192,  0.3867,  0.4809,  0.8277,  0.6450,  0.8066,  0.8573,  0.3287]  ∑ = 4.6521 
 

[0.8849,  0.1438,  0.5516,  1.0000,  0.9998,  0.6233,  0.9158,  0.1053] 

 

10 27 

 

[0.3311, 0.4761, 0.5888, 0.3355, 1.0000, 0.5818, 0.9346, 0.7570, 0.7405, 0.2865]  ∑ = 6.0320 
 

[0.9288, 0.1237, 0.3838, 0.5450, 1.0000, 0.8450, 0.7054, 0.4424, 0.8559,  0.1589] 

 

12 23 

 

[0.4177,  0.5963,  0.7442,  0.7173,  0.7994,  0.4433 , 0.8958 , 0.7129 , 0.7622 , 0.4557, 0.1607, 0.3786]  ∑ = 7.0840 
 

[0.4685, 0.4221, 0.6701, 0.3644, 0.6449,  0.8077,  0.4698,  0.4986,  0.5102,  0.1341,  0.2746,  1.0000] 

 

 

Figure 2 shows the array factor obtained using the results in Tables 1-3 for N = 8. The maximum 

side lobe level obtained using the BBO, SADE, and SQP are -12.18 dB, -12.7 dB, and -13.16 dB 

respectively. It should be noted that these values are better than those obtained using GA [7] and 

PSO [8]. Specifically, the maximum side lobe levels obtained using GA and PSO were -9.8 dB and 

-10.8 dB, respectively. It is worth mentioning that a uniform circular array with the same number 

of elements and /2 element-to-element spacing has a maximum side lobe level of -4.17 dB. 

 

Similarly, Figure 3 shows the array factor for N = 10 CAA. Again, SQP results are as good as 

those obtained using the global optimization BBO and SADE methods. Moreover, the results 

shown in Figure 3 are, in general, better than GA and PSO results presented in [7] and [8]. A 

uniform circular array with the same number of elements and /2 element-to-element spacing has a 

maximum side lobe level of -3.6 dB. Lastly, Figure 4 shows a comparison between the array 

factors obtained using the different optimization methods for N = 12.  

 

These figures clearly show the effectiveness of the newly-proposed BBO in solving circular 

antenna array problems. Moreover, they show that the Matlab function Fmincon which implements 

the SQP method is as powerful as the stochastic global optimization techniques in designing non-

uniform CAAs with optimum side lobe level.  
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It should be mentioned here that for the N=8 case, the PSO-optimized CAA had a circumference of 

4.4931; whilethat obtained using the GA had a circumference of 4.4094. The BBO, 

SADE and SQP-optimized CAAs, shown in Tables 1-3, have slightly larger circumference. 

Moreover, the circumferences of the PSO and GA-designed N=10 CAAs were 5.9029 and 

6.0886respectively, while the PSO and GA-designed N=12 CAAs had circumferences of 

7.1501and 7.77, respectively [7, 8]. The circumferences obtained in Tables 1-3, using BBO, 

SADE and SQP, are very close to these values.   

 

Figure 2. Radiation pattern for N=8 using the BBO, SADE and SQP results in Tables 1-3. 
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Figure 3. Radiation pattern for N=10 using the BBO, SADE and SQP results in Tables 1-3. 

 
Figure 4. Radiation pattern for N=12 using the BBO, SADE and SQP results in Tables 1-3. 
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As a last more challenging example, Figure 5 shows the array factor for an optimized CAA with 

N=20. Here, a population size = 150, and number of generations = 500 are used for the BBO 

design, while the other parameters are as those mentioned above. BBO, SADE and SQP optimized 

CAAs along with the array factor of a conventional CAA are shown in the figure. Each algorithm 

was run for 10 independent times, and the results with the smallest fitness function value are used 

to plot the array factor. The conventional array consists of 20 uniformly fed elements with /2 

element-to-element spacing. The maximum side lobe level for the conventional array is -6.08 dB, 

while the maximum SLL for the BBO and SADE optimized CAAs is -13.84 dB (an improvement 

of almost 7.7 dB). On the other hand, the maximum side lobe level obtained using the SQP method 

is -14.87 dB. Again, BBO, though still a new optimization algorithm, proves to be a powerful 

optimization technique compared to other already developed techniques, like the DE. Moreover, 

the SQP method gives slightly better maximum side lobe level compared to BBO and SADE. 

Table 4 shows the obtained weights and inter-element arc distances for the optimized N=20 CAAs. 

 

 

Table 4. Weights and spacings for the optimized N=20 CAA.  

 

 

 

[dm1, dm2, dm3, …, dmN] in λ’s 

 

[I1, I2, I3, …, IN] 

 

BBO 

 

[0.4196    0.4588    1.0000    0.4406    0.6314    0.3635    0.8939    0.3215    1.0000    0.4786    0.4856    0.5848   0.4761    

0.5695    0.8245    0.9013    0.7483    0.8833    0.4748    0.4417]  ∑ = 12.3979 

 

[0.8227    0.9057    0.3545    0.1653    0.7815    0.6918    0.6865    0.7171    1.0000    1.0000    0.9981    0.7308   1.0000    

0.6543    0.9493    0.1000    0.5944    0.6473    0.5730    1.0000] 

 

SADE 

 

[0.4825    0.1795    0.1793    0.6164    0.9753    0.3628    0.6046    0.9890    0.2913    0.9223    0.5750    0.7937  0.9161    

0.8519    0.9921    0.5791    0.2997    0.7233    0.5166    0.3347]  ∑ = 12.1851 
 

[0.9072    0.4465    0.1364    0.7688    0.6309    0.5683    0.5877    0.2080    0.3060    1.0000    0.9771    0.5235  0.7805    

0.3250    0.7083    0.6721    0.6070    0.8726    0.6762    0.8076] 

 

SQP 

 

[0.5682    0.6833    0.4381    0.4709    0.7318    0.8736    0.6329    0.2492    0.9944    0.6006    0.5653    1.0000  0.8636    

0.8893    0.3727    0.3865    0.4148    0.5996    0.5457    0.4453]  ∑ = 12.3259 

 

[0.8708    0.2126    0.6157    0.5070    0.2995    0.4988    0.3782    0.3621    0.8598    1.0000    0.6950    0.5762 0.7123    

0.3460    0.1815    0.6140    0.3407    0.3590    0.8188    0.9923] 

 

Conv. 

 

[0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5  0.5]  ∑ = 10 

 

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 
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Figure 5. Radiation pattern for N=20 using the results in Table 4 compared to conventional CAA. 

 

 

From the above Tables, it can be noticed that the optimized arrays always have an aperture (i.e., 

circumference) larger than that of a uniform array with half-wavelength spacing between the 

elements. Now, to make the comparison between a conventional uniform CAA and an optimized 

one more fair, one has to force the optimized array to have an aperture as close as possible to that 

of a uniform array. To accomplish this, in the BBO and SADE optimizations, the fitness function 

in equation (5) is modified as follows: 

 

 

  (10) 

 

where 

 

(11) 
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where the desired circumference is that of a uniform CAA, or any other desired circumference. It 

should be noted that the fitness function in equation (5) is still used with the Fmincon optimization 

since the Fmincon function implements a constrained version of the SQP. The constraint of having 

a specific aperture is enforced as a constraint in a separate m-file (the reader can consult the help 

file for Fmincon function). As an example, the N=20 CAA is again optimized with the fitness 

function (8), with a desired circumference of 10. The obtained results are shown in Table 5, while 

Figure 6 shows the corresponding array factor. The conventional uniform CAA has a maximum 

SLL of -6.08 dB, while the BBO, SADE and SQP optimized CAAs have maximum SLLs of -10.7 

dB, -11.3 dB, and -11.81 dB, respectively. The optimized CAAs have exactly the same aperture as 

the conventional CAA. As expected, forcing the aperture of the optimized CAA to be the same as 

that of a conventional CAA gives a maximum SLL less than the one obtained in Figure 5.   

 

Table 5. Weights and spacings for the optimized N=20 CAA using the fitness function (8).  

 

 

 

[dm1, dm2, dm3, …, dmN] in λ’s 

 

[I1, I2, I3, …, IN] 

 

BBO 

 

[0.3992    0.9735    0.2235    0.3108    1.0000    0.2110    0.4899    0.1000    0.3585    0.4811    0.2717    0.5740    0.7261    

1.0000    0.3988    0.2548    0.8606    0.5380    0.5212    0.3077]  ∑ = 10 

 

[0.5576    0.1000    0.9253    0.6877    1.0000    0.3850    0.1000    0.1000    0.3295    0.1000    1.0000    0.8999    0.5202    

0.6851    0.6877    1.0000    0.4435    0.2389    0.6996    1.0000] 

 

SADE 

 

[0.2188    0.2808    0.7180    0.3800    0.8207    0.2932    0.9706    0.6226    0.5565    0.1364    0.4640    0.5064   0.8742    

0.1964    0.8028    0.2789    0.4280    0.6616    0.4842    0.3062] ∑ = 10 

 

[0.7398    0.4071    0.3937    0.7197    1.0000    0.9281    0.7220    0.3150    0.8843    0.7853    0.5352    0.3133   0.6459    

0.9790    0.9843    0.7044    0.1857    0.3126    0.8326    0.6337] 

 

SQP 

 

[0.1817    0.1738    0.8299    0.7268    0.2955    0.8317    0.7392    0.8753    0.2633    0.1484    0.2256    0.9999  0.7963    

0.3393    0.3556    0.4066    0.9978    0.5057    0.2006    0.1070] ∑ = 10 

 

[0.1278    0.4208    0.1790    0.7576    1.0000    0.8536    0.3456    0.1000    0.9955    0.5949    0.3683   0.3726  0.5160    

0.9991    0.5923    0.6132    0.1000    0.3723    0.3600    0.7845] 
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Figure 6. Radiation pattern for N=20 using the results in Table 5 compared to conventional CAA. 

 

 
6. CONCLUSIONS 

 

 

In this paper, the newly proposed BBO method was used to adjust the positions and the excitations 

of the antenna elements in a circular array to obtain an optimum side lobe level. The obtained 

optimized array factor was compared to that obtained using other well-known optimization 

techniques (SADE, GA, and PSO). Array factor patterns obtained from BBO results are generally 

as good as those presented in the literature. Moreover, the Matlab function Fmincon, which uses 

the SQP method, has been used to design the same arrays and has shown to give results that are as 

good as, or even better than, those obtained using global stochastic optimization methods. This 

indicates that for the problem under consideration (i.e., the design of CAA with optimum side lobe 

level), stochastic global optimization methods are not really needed [23].  
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Abstract  

The present study provides a brief overview of the differential methods for contour 

image segmentation. The starting criteria are the precision in defining the contour of 

an object in the image and the noise resistance, determined by the ratio between the 

number of the wrongly detected contours and the number and size of the contour 

discontinuities. 

 

 

1. INTRODUCTION  

The main problem in the image processing is the choice of proper criteria, suitable 

for the assigned task. When analysing, segmenting and detecting objects in a given 

image, most information is obtained by their outlines, called contours and 

characterized by a sharp change in their intensity [1,2]. The transition to processing 

image contours reduces considerably the amount of  the information used.  

The contour segmentation methods are divided into two main groups: differential 

and correlation-extremal. This study focuses on some segmentation methods, 

belonging to the first group. The principle of the differential methods is first to 

highlight the sharp changes in the image through differentiation and then to detect the 

contour by a thresholding. The result is a binary image as big as the input one. It is re-

processed in order to get a pixel-thin contour. These methods are simple to use and 

very quick but they are not very noise-prooved.  
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2. CANNY EDGE DETECTION ALGORITHM  

One of the most popular differential methods for contour segmentation is the 

Canny´s [3]. The algorithm he suggested detects the points of sharp changes in the 

intensity of the image    , ,f r r x y  by calculating the vector module of the 

gradient ,
f f

f
x y

 
 

 

 
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 

 т.е. 

22

f f
f

x y
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  

 

  
   
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and its direction 

1
f f

arctg
y x


 


 

    
   

   
. It is well known that the gradient f  shows the direction of 

the maximal change of the function  f r . The point 
0

2r R  is determined as a point 

from the image edge  f r , if  f r  has a local maximum at 
0

r r , when 

 0 0
r r f r    for small enough values of  . This means that partial derivatives of 

 f r  have a local extremum at the point 
0

r , when r  changes in a one-dimensional 

area of 
0

r  towards the fastest variation of f at 
0

r . 

The main stages in Canny´s contour segmentation method are: 

 Smoothing the intensity values of the image, using a Gaussian filter in order 

to reduce the additive noise components;  

 Estimating the gradient of the filtered image in order to emphasize the image 

edges; 

 Thresholding the estimated image gradient in order to trace the real contour 

points. This includes non-maximum suppression of the intensity changes. The real 

contour points are detected by eliminating the ones that are not local maximum points 

of the gradient module. To do this the value of the intensity change in a contour edge 

is set to be zero, if it is not greater than the change of two of its neighbouring points in 

the direction of the image gradient; 

 Processing the image contour morphologically (a hysteresis method), at 

which two threshold values of the image intensity are set. Only the neighbouring 

points at which the intensity values are higher than the lower threshold, are connected 

to the points, having values greater than the higher threshold. 
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3. MULTISCALE EDGE DETECTION 

Irrespective of the application of the hysteresis method, the numerical 

differentiation leads to a reduction of the accuracy of detecting object contours in the 

image. The noise-resistance of Canny´s method also depends on the correlation 

between the threshold value and the line width of the smoothing filter. The multiscale 

methods of the wavelet analysis help to solve this problem. They process the image, 

using filters of different lengths. 

The logic of this approach is based on the fact that image processing often has a 

locally non-homogeneous texture. That is why the detection, for example, has to be 

done at different detailing levels, according to the assigned task. In some cases it is 

enough to use the outer contour only (the outline of the object), whereas in others ‒ its 

smaller details contain the information. Therefore, the analysed images have to 

undergo transformations that have good spatial and frequency localization.   

The multiscale version of the Canny´s detector is implemented by smoothing the 

image with the convolution kernel  x , most often dilated with the help of the 

dyadic line  2
k

k Z
 [4-6]. This kernel is computed with wavelets which are its partial 

derivatives:  
 1

,
,

x y
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change, according to the dyadic line  2 .k
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 Thus, the wavelet transform of the 

image  f x  can be written in the following way:  
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Therefore, the modulus of the gradient vector is proportional to the modulus of the 

wavelet transform       
1

2 2 21 2
, , 2 , , 2 , , 2

k k k
Mf x y W f x y W f x y   and it’s angle 

this transform in the  ,x y  plane is defined by the expression 
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Тhe point   2

0 0
,x y R  is called edge point in the image  ,f x y  at a scale 2k , if 

 , , 2
k

Mf x y  has a local maximum at the one    0 0
, ,x y x y , when  ,x y  changes 
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within a small one-dimensional area of the point  0 0
,x y , set by the gradient direction. 

It`s also called wavelet transform modulus maximum. This is well-known that 

analysing wavelet transform modulus maxima of  ,f x y  at fine scales leads to 

detecting all irregularities in the image.  

The image  ,f x y  is termed regular at the point  0 0
,x y  with an indicator 

 0,1  , if there is a constant 0K  , such that for every point   2
,x y R  the 

inequality      2 2 2

0 0 0 0
, ,f x y f x y K x x y y



      is true. 

When solving the contour segmentation problem, by means of the wavelet 

transformation, the possible points of this contour are the ones at which the image has 

a regularity indicator 1.   At the edge points of the image it is estimated with the 

help of the inequality    1
, , 2 2

kk
Mf x y const


  , by measuring the slope of 

 2
log , , 2

k
Mf x y  as a function of k . 

The multiscale edge detector defines them as a set of sudden image intensity 

change points. For contour segmentation these edges must specify closed curves, 

outlining approximately the boundaries of the respective areas. The presence of noise 

or light variations are the most often causes local detectors to make holes in the 

contours, whose filling requires additional processing or prior information on the 

image edges.  

Polyakova and Lyubchenko [7] suggest contour segmentation methods, based on 

stationary wavelet transform. In order to make the Canny´s method more noise-

prooved, that is in order to avoid wrongly detected contours, a nonlinear contrast 

method is used. It employs the coefficients of stationary wavelet transform. To this 

aim, image intesity values in rows and columns are interpolated with a certain 

function  f t . The regularity indicator   of the function  f t  is expressed by the 

coefficients of its discrete stationary wavelet transform 
jk

d , where j  is the 

decomposition level, аnd k – the position of the wavelet coefficient. In Ref. [4] we 

can see that, if the function  f t  is regular with an indicator   at the point t , then 

1

22 ,
j

jk
d O

 
 
 
 

 
 
 

where k  is the closest to the t  position of the wavelet coefficient. 

Nason and B. Silverman [8]  offer to define the singularity of function  f t  by the 
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sum   1 2

1

2
J

j

jk

j

t d
 



 : if  f t  is regular with an indicator 1   at point t , then 

 t   ; if  f t  is regular with an indicator 1   at point t , then  t   . 

Thus, the points at which   f t  is regular with an indicator 1  , are defined, 

calculating   t  and comparing the threshold value set priorly. The  function  t , 

as an entropic characteristic, combines the results of the processing of the image at 

different scales. The choice of the discrete stationary wavelet transform (DSWT) is 

determined by its invariance with respect to its translation and to the keeping the size 

of the input image after its transformation.  

The main stages of the contour segmentation method, described in Polyakova and 

Lyubchenko´s article [7], are: 

 Choosing of upper and lower threshold value, having in mind the selected 

parametres; 

 DSWT transforming every row of the image up to a certain level J  and at 

every point k  of this row the sum    2 1

1

2
J

j

jk

j

k d




  is counted which yields a matrix 

1R , having the same size as the input image; 

 DSWT transforming every column of the image up to a certain level J  and at 

every point k  of this column the sum    2 1

1

2
J

j

jk

j

k d




  is calculated which gives a 

matrix 2R , possessing the same size as the input image; 

 Calculating the matrix 1 2R R R  ; 

 Finding the local maxima of the gradient of the approximate matrix R  for 

each of the four directions (Fig. 1). For example, the point  ,x y is taken to be a local 

maximum one in direction 2, if         
2

, 1, 1 , 11
A

x y x y x yR R d R d R        

and         
2

, 1, 1 , 11 ,
B

x y x y x yR R d R d R       where  

   1

1 2
, ,x y x yd R R


  (Fig. 2) ;      

 Entering the local maxima found that surpass the low threshold constant in a 

weak contour set; 
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 Entering the local maxima found that surpass the upper threshold constant in a 

strong contour set; 

 Processing by means of the hysteresis method – the weak contours are added 

to the neighbouring strong ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          

4. CONTOUR SEGMENTATION, USING HYPERBOLIC WAVELET 

TRANSFORM  

A number of studies [9-13] shows the usefulness of Hilbert transformation  (it can 

be interpreted as a convolution of the signal with the hyperbola 
1

x
) and the 

hyperbolic wavelet transformation, based on it for effective highlighting of the image 

contours. The Hilbert transformation is more resistant to noise, than the 

differentiation, when highligthing the contours. Besides, in the Hilbert transformation 

space the ideal and the extended image edge have more similar shapes than in the 

original one.  

The hyperbolic wavelet transform combines the characteristics of both the Hilbert 

transformation and wavelet transform. It is defined by a convolution of the analysed 

signal  f t  and the double-parameter basic function  ,s b
t : 

   
1

, .
t b

HWT s b f t dt
ss












 
 
 

  

The basic function is obtained by the mother wavelet  0
t  as a result of scaling 

with a parameter s R


  and translating with a parameter  b R . 

In Ref. [14] Klich , Antoshchuk and Nikolenko obtained adaptive wavelet 

functions, based on the mother wavelet    0

1
t G t

t



 , where  G t  is an adapting 

(x,y) (x-1,y) (x+1,y)(x,y)

(x-1,y-1) (x+1,y-1)(x,y-1)

(x-1,y+1) (x+1,y+1)(x,y+1)

1

23

(4)

(3)(2)

4

(1)

B

A

B

A

 

2
( , )R x y  

1
( , )R x y  

Figure 2. Finding the local maximum  

 in direction 2 
Figure 1. Neighbourhood of the point (х,у) in 

the image with marked directions A and B 

 

 

 
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function which satisfies the conditions:          , 1 1G t G t G t t t       , where 

 1 t  is the Heaviside step function, and 0   is a scaling factor,   and   are certain 

positive parameters – (cf. Fig.3). 

The discrete hyperbolic wavelet transformation (HWT) of the line  n
f   is 

expressed by the formula:  
 1

0

, ,
N

n

n

n n t
HWT s n f

s









  


 
 
 

  where t  is the 

discretization step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Design on the basic function 

 

In Ref. [11]  Antoshchuk, Babilunga and Nikolenko focus on a differential contour 

segmentation method, using a hyperbolic wavelet transform twice. During the first 

stage contours are highlighted with the help of HWT  and during the second – the 

highlighted image is analysed using HWT in terms of local extrema, in order to detect 

the contour. The discrete variant of the algorithm for finding local extrema is 

      1 . 1x k x k HWT x k     and the problem is reduced to finding such a  x k , 

for which   1HWT x k   is almost equal to zero. This ensures the estimate 

   1x k x k    , where    is a given accuracy for finding the extremum. The 

coefficient   controls the similarity speed and the stability of the iteration process. 

Hence, the contour indication is the reversal of the sign of the double hyperbolic 

wavelet transform. The method algorithm is shown in  Fig. 4.  
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The HWT  scale and the minimal threshold constant of the image edge to be found 

are given in the prior information block. When changing the sign of the double- 

hyperbolic wavelet transform, a zero is input in the binary image. The efficiency and 

the advantages of the method are tested on 64 64 ‒ sized images, whose brightness 

varies within the 0 127  range and the signal/noise ratio is from 0 100 . 

 

 

Input Image

Prior Information
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Hyperbolic

Wavelet

Transform

Hyperbolic

Wavelet
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Binary
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Analyze
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Figure 4. Scheme of the double Hyperbolic Wavelet Transform 

  

5. CONCLUSION 

The abovesaid outlines the trend for the development of the contour segmentation 

methods in order to detect a more and more accurate localization of the singularities 

of the signals analysed. This is confirmed in Ref. [15] in which Polyakova and Krylov 

have presented a morphological method of contour image segmentation based on the 

so-called repagulum wavelet transform. It uses a family of functions localized at a 

single point and for this reason allows a much more accurate detection of the place of 

the object contour in the image. Unlike the standard wavelet transform, instead a 

scaling parameter, one that characterizes the function regularity is used. 

Consequently, the repagulum wavelet transform is a convolution of the analysed 

signal with functions of different regularity. Combining this transform with the 

mathematics morphology eables the authors to build a contour image segmentation 

method that guarantees a great accuracy in the contour detection and an adjustable 

object detailization in the image.    
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