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Abstract 
A reconstruction algorithm for three-dimensional (3-D) Electrical Impedance 

Tomography is developed based on the extension of the modified perturbation method. 
For this purpose the forward problem is solved by using the finite element method (FEM).   
Also, the partial derivatives of the surface voltages with respect to conductivity (Jacobian 
matrix) are given in closed form expressions.  The selection of driven electrode pairs and 
the data collection schemes are examined. The validity and the performance of the 
proposed algorithm is tested and some successfully reconstructed 3-D computer 
phantoms are presented. 
 

1. INTRODUCTION 

 The reconstruction of the conductivity (or resistivity) distribution of an object through 

low frequency electrical measurements is known as Electrical Impedance Tomography 

(EIT).  EIT is a new non-ionizing and non-invasive imaging technique with widespread 

applications especially in medicine, [1], and geophysical prospecting, e.g. [2, 3, 4].  The 

major differences in these two applications are related to the measurement or data 

collection system, while the same reconstruction algorithm can be employed in both 

cases.  Let us restrict ourselves in the medical applications which are of particular interest 

in general.  EIT imaging is established on the fact that biological tissues can be 

recognized from their conductivity (σ) and permittivity (ε).  Since, the tissue electrical 

properties vary according to the state of health as well as during physiological organs 

functioning, it is then evident that E.I.T. can be used for medical diagnosis and dynamic 

events monitoring purposes respectively. 

 In order to extract the necessary information about the conductivity distribution to be 

sought, arrays of electrodes are attached on the surface of the body under test.  A series of 

low frequency sinusoidal current patterns (usually between 10 and 100 kHz) are injected. 

Each pattern is applied through a different subset of "active" electrodes (usually just two) 

and the voltage developed on all the other electrodes-sensors is measured.  Frequencies 
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lower than 10 Hz are absolutely prohibited to avoid electrolysis effects at the 

electrode/tissue interface and ion migration (iontophoresis) effects.  In fact frequencies 

greater than 10 kHz are recommended in order to safely avoid interference from the 

internal bioelctric sources.  Also, the magnitude of the applied current density must be 

less than 10mA/cm2 for safety reasons, [5]. 

 The aim of EIT is to use the measured voltage data set to extract the object's 

conductivity distribution.  This is basically an inverse electromagnetic problem, which 

turns out to be a strongly non-linear one.  Even worst, this inverse problem is also an ill-

conditioned one in general.  The ill-conditioning is due to the basic fact that the electric 

current spreads out as we move away from the electrode, leading to curved current 

streamlines or curved equipotential lines, which are also more dense near the electrode 

than away from it. Moreover, the current streamlines (equipotential lines) depend on the 

conductivity distribution itself justifying the inverse problem  non-linearity.  The current 

spreading extends to the third dimension as well making the inverse problem a strictly 

three-dimensional (3-D) one.  In other words the electric current cannot be constrained to 

flow in a plane, even when coplanar active electrodes are employed. It is deeply spread 

above and below the active electrodes plane.  Also, the conductivity distributions of 

practical interest are mostly 3-D.  Even though, the majority of reconstruction algorithms 

used in EIT assumes a two-dimensional (2-D) domain and there was only a little effort 

toward the 3-D imaging, [5, 7-11].  This is logical and it was expected since an essential 

solution to the problem should be obtained first.  Moreover, there is some evidence, [12], 

that the employment of 3-D modelling and reconstruction will made calculations more 

compatible with measurements and reduce the ill-conditioning.  This is mainly due to the 

fact that measurements are carried out on a real 3-D object which is obviously better 

described by a 3-D computer model.  It is now well understood that EIT imaging must 

move-on toward 3-D and try to satisfactorily face the complexity involved in the 

corresponding reconstruction algorithms. 

 As explained above, EIT is a nonlinear and generally ill-posed 3-D inverse problem.  

Due to its non-linearity this problem cannot be solved in a single iteration.  An initial 

conductivity estimation (starting solution) is assumed and the problem is directly (or 

indirectly) linearized and solved about it to obtain an improved solution.  The procedure 

is iteratively repeated until a reasonable image is obtained.  During each iteration, the 

forward problem (Laplace equation) is solved on a computer model.  Using the FEM, the 
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object is discretized into homogeneous volume elements (voxels), namely a piecewise 

constant distribution.  At each solution, the voltage at the points corresponding to the 

measuring electrodes are calculated.  A vector of voltage differences between 

measurements and calculations is formed and used to update the conductivity.  The 

procedure stops when the mean square difference between calculations and measurements 

approaches the measurements error. 

 Let us now briefly describe some of the existing 3-D EIT reconstruction algorithms in 

order to point out the necessity for further investigation.  Wexler et al [3, 7] developed 

their algorithm, called "double constrained" method, for both 2-D and 3-D imaging.  It's 

main advantage is the stability and the disadvantage is the slow rate of convergence.  

Kotre [8], proposed a 3-D reconstruction algorithm based on a sensitivity matrix (change 

of a voltage difference with respect to a change of an element's conductivity).  The 

calculation of this matrix seems to be very time consuming, especially if  it is to be 

calculated for each conductivity profile in a possible iterative approach.  Liu et al [9], 

employed the Newton Raphson technique [6] for a 3-D model of 3x4x4 voxels and they 

suggested that the diagonal placement of active electrodes better discriminates 

conductivity variations while coplanar electrodes performed better when the target 

conductivity was of a 2-D nature.  Newton-Raphson involves multiple matrix inversion 

and suffers from matrix ill-conditioning.  The purpose here is the development of a fast 

iterative 3-D reconstruction algorithm avoiding matrix inversions and the related ill-

conditioning. 

 Working toward the above purpose, we have extended the 2-D Modified Perturbation 

Method (MPM), [12], for a 3-D reconstruction.  The first attempts to reconstruct 3-D 

computer phantoms were presented in [10] but various difficulties were faced when the 

target conductivity profile was inhomogeneous in all three-dimensions.  These problems 

were latter clarified and inhomogeneous 3-D computer phantoms were successfully 

reconstructed, especially by the proper selection of projection angles (active electrode 

pair positioning). A presentation of this work is to be tried herein.   

 Since, the inverse problem involves multiple solutions of the forward problem, let us 

first describe the FEM solution employed for this purpose. 

 

2. THE FORWARD PROBLEM - FEM SOLUTION 
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 The forward problem involves the injection of a sinusoidal current pattern with the aid 

of a number of electrodes and the calculation of the potential distribution over the object 

volume.  The problem is generally governed by Maxwell equations restricted to the low 

frequency (f<100KHz) case where a "quasi-static" condition is valid.  This is reasonable, 

since the wavelength (λ) at these frequencies is quite larger than the object dimensions.  

Thus the propagation effects can be neglected, but even more the field intensities (or the 

potential) can be considered to vary synchronously with time over the whole object.  

Keeping in mind that the conductivity distributions of practical interest are 

inhomogeneous, the forward problem is reduced to the generalized Laplace or Poisson 

equation.  Furthermore, the materials to be studied, like the biological tissues, exhibit high 

dielectric constants.  This in general can be accounted by introducing the complex 

dielectric constant, as εr
*= ε0εr[1-j(σ/ωε0εr)]= ε0εr (1-jtanδ), were tanδ is the loss tangent. 

This will result in a complex voltage distribution V , where the real part (Vr)  is "in-

phase" with the excitation current and depends on the conductivity, while its imaginary 

part (Vi)  is "out-of-phase" and depends on the permittivity distribution.  These two 

voltage components are measured separately (by synchronous demodulation) and can be 

used for the reconstruction of the conductivity and permittivity distributions 

correspondingly.  The forward problem equations can be written as : 
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where S is a closed surface bounding the volume Vδ of the object.  The current (J ) and 

charge (ρ) densities represent the internal sources, which are set to zero since they do not 

exist in the EIT case.  In the general FEM solutions, the object can be considered to be 

described by diagonal anisotropic tensors ó =(σx, σy, σz),  å =(εx, εy, εz) defined by the 

conductivities and permittivities along the x, y, z axes.  In this case EIT algorithms should 

be used for three times more unknowns.  When the internal sources vanish (J=0, ρ=0), 

Eqs.(1) and (2) become exactly similar, each one involving a pair of variables ( ó , Vr) and 
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( å , Vi).  It is then expected that the same algorithm developed for the reconstruction of 

conductivity (σ) from the "in-phase" voltage distribution (Vr), can be used to reconstruct 

permittivity (ε) from the "out-of-phase" voltage distribution (Vi).  In the present case, we 

restrict ourselves to the isotropic (σx=σy=σz=σ) homogeneous case and to the "in-phase" 

voltage distribution (symbolized just as V from now on), namely only the conductivity 

distribution will be sought.  

 The Finite Element Method (FEM) is widely used for the solution of partial differential 

equations like (1) or (2) and especially within inverse problems, because FEM is more 

compatible with them.  The volume is divided into small homogeneous elements (voxels) 

with conductivity σj (piecewise constant distribution).  The voltage distribution is also 

discretized and is to be calculated at certain points called "nodes" which usually coincide 

with the element vertices.  These elements as well as their nodes are uniquely numbered 

for the whole solution domain and this is defined as "global element/node numbering".  

The excitation current is introduced through the Neumann boundary conditions, as :
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where ∂V/∂n is the potential derivative normal to the surface.  Eq.(2) is also subjected to a 
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With the aid of the variational technique, Eq.(2) along with the above boundary 

conditions is reduced to the minimization of the following functional : 
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S is a closed surface bounding the solution volume V which is actually reduced to the 

surface of the current carrying electrodes.  In order for F(V) to be minimized, its partial 

derivatives with respect to the nodal voltages (Vi) should be set to zero : 

 
∂
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where Np is the number of nodes. 
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Instead of integrating (5) over the whole domain, it can be integrated over each element 

separately.  For this purpose an arbitrary interpolation function Ve(x, y), usually of a 

polynomial form, is assumed for the potential. Its number of unknowns must be equal to 

the element's degrees of freedom, which in this case is the same as the number of nodes.  

Eight nodes parallelepiped elements (Fig.1) and a trillinear interpolation functions is 

considered as : 
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Figure 1.  An eight node parallelepiped element with its local coordinates. 

 

This can be simply done by applying equation (7) on each node of the element with the 

"local" coordinates appearing in Fig.1.  This can be done for just one element, because all 

elements of the solution domain are similar.  Solving the resulting system of the eight 

equations and substituting into Eq.(7) one gets : 
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where : Δ=abc the volume of the element and a, b, c  its dimensions and  

 f1=(a-x)(b-y)(c-z),   f2=x(b-y)(c-z),   f3=xy(c-z),    f4=(a-x)y(c-z), 

 f5=(a-x)(b-y)z,        f6=x(b-y)z,         f7=xyz,          f8=(a-x)yz. 

The interpolation function Ve is introduced in Eqs.(6) and (5) in turn and the 

differentiations and integrations involved therein are analytically carried out.  Any 

excitation current injected through the nodes of the element are introduced through the 

second term of Eq.(5).  If there is not any injected current at some node then this term is 
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just set to zero.  This process results in a system relating the element nodal voltages 

(vector [V]e) with the nodal excitation currents vector [I]e through the element admittance 

matrix [Y]e, as : 

 [Y]e [V] e = [I] e  (9) 

For the parallelepiped element the element admittance matrix can be expressed as : 
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where   G1 = 4D + 4E + 4F,  G2 =-4D + 2E + 2F, G3 =-2D - 2E +  F, 

 G4 = 2D - 4E + 2F, G5 =  2D + 2E - 4F,  G6 =-2D +  E - 2F, 

 G7 =- D -   E  -   F, G8 =   D  - 2E - 2F, 

 D = b2c2,     E = a2c2,     F = a2b2

In system (9) each equation represents one node of the element, but in the whole solution 

domain each node may belong to more elements, from one to at max eight as shown in 

Fig.2b.  Thus, there may be up to eight equations for the same node.  These can be added 

together to give a unique equation for each node which contains all the contributions to 

this node.  This procedure is known as "master matrix assembly" and leads to a system of 

equations for all the nodal voltages and currents of the solution domains as : 

 [Y] [V] = [I]  (11)  

where [Y] is the admittance matrix of the structure. 

 
a                                                                         b 
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Figure 2.  Neighboring elements and nodes of an arbitrary ith node, a) The 27 neighboring nodes and their 

local numbering and b) The 8 neighboring elements and their local numbering. 
 

 An important feature can be seen in Fig.2b where each node-i has only up to 27 

neighboring nodes including itself.  Also, the 8-elements around it can relate its nodal 

voltage only to these 27 nodal voltages.  This means that there are only up to 27 nonzero 

entries in each line (equation) of matrix [Y] in Eq.(11).  A very efficient master matrix 

assembly technique has been proposed by Kim [13] and employed herein, based on this 

observation.  The ordinary procedure, which is also the only one possible for arbitrary 

shaped elements, is to calculate the element matrix [Y]e and add its coefficients into the 

proper positions (denoted by the global node numbering) in the matrix [Y]. Scanning in 

this manner all the elements we result in the assembly of the matrix [Y].  For simple 

geometrical elements, like the parallelepipeds, it is easy to locate (mathematically) the 

global node numbers.  Equivalently, the global numbers of the 27 locally numbered nodes 

in Fig.2a are estimated by virtually putting it over the whole domain so that the ith node 

coincides with the desired global one.  Then, according to Kim [13], instead of scanning 

the elements we scan the nodes of the global domain for the master matrix assembly. So, 

the eight equations for the ith node are added together or their contributions to the 27 non-

zero coefficients are directly estimated.  In this manner, there is no need to store a 

Y(NpxNp) real matrix but only a Y(Npx27) real master matrix an a NEBOR (Npx26) 

integer matrix containing the global numbers of  the 26 neighbors of each ith node.  This 

storage results in a reduction of the order of  Np/40 (Np = total number of nodes) of the 

memory requirements, [13].  The resulting system of equations is solved by using the 

Gauss-Seidel iterative scheme modified by Kim [13] to include a relaxation factor k.  

Each nodal voltage is updated according to the following formulae : 
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l = NEBOR(j, i) = global number of the jth neighboring node to the ith node-line 

currently processed.  Yi1 is the coefficient of  Vi itself  and Vl
m the voltage of the lth 

node, some of which are updated at the current (n) and some in the previous (n-1) 

iteration.  The algorithm starts from an initial solution [V]o and all nodal voltages are 
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updated at each iteration.  This is iteratively repeated until the maximum voltage change, 

(error) at any node, between successive iterations becomes less than a prespecified error 

tolerance (e.g. 10-6).  The relaxation factor value is in general between 0 and 2.  For the 

solution of Laplace equation we found that the optimum value giving the fastest 

convergence is k=1.75.  It is also important to note that the boundary conditions imposed 

above do not include any rigid one, since the excitation current sources considered define 

only the derivative of the potential (∂V/∂n).  Thus, the resulting potential distribution is 

floating, because there are multiple solutions different only by an additive constant.  

Mathematically, this situation results in a non-full rank matrix Y (its rank is Np-1).  This 

problem can be solved by providing a reference node  for the potential distribution.  

Usually a zero potential is assumed for this node because it is virtually grounded.  For 

direct techniques all the coefficients of the corresponding line are set to zero except the 

diagonal one which can be set to one while the right hand side (current applied to this 

node) is also set to zero.  Moreover, the reference node in EIT should not be a peripheral 

one, because it may cause convergence problems. 

 There is some evidence, [14], that a direct technique like the LU decomposition should 

be used for the solution of  FEM systems within EIT.  This is because the system 

[Y][V]=[I] is solved for multiple injection current patterns [I] with the same matrix [Y].  

Thus the decomposition of matrix [Y] into an Upper and a Lower one (L, U) needs to be 

done only once within each iteration.  This is actually true for a small number of nodes, as 

for example in 2-D models.  But, it is questionable as the number of nodes is increased (as 

in 3-D models).  Moreover, it has been proved, [14], that the required CPU time is 

proportional to ∝Np3 for direct methods like Gauss elimination or LU decomposition and 

is reduced to ∝Np1.85 when sophisticated node numbering is employed (to reduce the 

band of the matrix [Y]) in conjunction with the best sparse matrix method.  While, it has 

been proved in our previous work [15] as well as by Jorgenson et al [16], that the CPU 

time requirements of the Gauss-Seidel technique is just linearly proportional to the 

number of nodes (∝N). Furthermore, in iterative techniques a voltage distribution 

obtained for a specific excitation current pattern (projection angle) is stored in memory 

and it is then used as an initial guess for the same projection angle in the next EIT 

iteration.  In this manner the Gauss-Seidel is drastically speed up and needs about the half 

number of iterations to achieve convergence. 
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3. RECONSTRUCTION ALGORITHM 

 As explained in the introduction in order to reconstruct the conductivity distribution of 

an object, arrays of electrodes are placed on its surface which are uniformly distributed 

over it.  A sinusoidal current pattern is applied through a subset of these electrodes and 

the voltage developed on all the others is measured.  In this work we consider excitation 

by a single current generator or that just a pair of active electrodes is used to inject 

current.  The active electrodes pair is in turn rotated/moved about the surface of  the 

object and the voltage measurements are repeated to collect the total vector (Vm).  To 

collect a similar set of calculated voltages (Vc), a FEM model describing the real object as 

close as possible is constructed.  If any a priori information about the object conductivity 

distribution is known, then it is used in the initial guess, otherwise a homogeneous 

starting model is assumed.  A similar series of excitations as that used in measurements is 

applied and for each one the generalized Laplace equation is solved to calculate the 

voltages at the electrode positions.  The differences between the measured and calculated 

voltages are used to update the conductivity distribution, then a new set of calculations is 

carried out and the reconstruction procedure is iteratively repeated. 

 The reconstruction process can be formally defined as the solution of the system 

[F][σ]=[Vm-Vc].  This is a non-linear system, because the elements of matrix [F] are not 

constant but they are strongly dependent on the conductivity distribution [σ].  Thus, in 

order to solve this system it must be linearized (directly or indirectly) around an initial 

estimate [σ]ο, e.g. by expanding in Taylor series and keeping only the linear terms, solve 

the resulting linear system, update the conductivity to a better estimate [σ]1 and iterative 

repeat this procedure. 

 Furthermore, after linearization the resulting matrix is again ill-posed, (e.g. [6, 17, 

18]).  From a physical point of view, the current flow tends to follow the highest 

conductivity path.  Thus, when the conductivity of an area is changed the current 

streamlines are redistributed so that the effects of this change are minimized.  This means 

that fairly large conductivity changes may result in very small changes in the surface 

voltages, [16].  In the converse manner, small errors in either the measured (Vm) or 

calculated (Vc) surface voltages may be translated into large errors in the estimated 

conductivities.  This is the fact causing the ill-posedness in conductivity imaging and 

  



G. A. Kyriacou, C.S. Koukourlis, P. Bonovas and John N. Sahalos 23

constituting a limit in both its resolution and accuracy.  Moreover, this problem is 

strongly dependent on the data collection scheme employed, namely the relative positions 

of the driven electrodes.  For adjacent driven electrodes rotated/moved about the surface, 

the surface voltages are less sensitive to the central volume, while for an increasing 

electrodes relative distance the surface voltages become more sensitive to the central 

volume and less sensitive to the volume near the surface.  The best data collection would 

be the one giving the same and as high as possible sensitivity over the whole volume, this 

would result to the best possible conditioning of matrix [F].  An optimum driven electrode 

distance, but for the 2-D imaging, has been proposed by Kyriacou et al [12] based on the 

above approach. 

 Mathematically, the ill-conditioning is reflected on matrix [F] where the ratio of the 

maximum over minimum eigenvalue is a measure of its ill-posedness.  As it is expected, 

but also proved by Yorkey et al [6], the maximum eigenvalue is related to the area with 

highest sensitivity, while the minimum one is related to the area with lowest sensitivity.  

For the 2-D case and adjacent driven electrodes a ratio of max/min eigenvalue of the 

order of 106 was found, [6].  The ill-conditioning effects are stronger for the 2-D model 

(current is forced to flow in a plane), while a 3-D model improves the conditioning of the 

problem. 

 Another effect pointed out from the early steps of EIT, [19], is that the image 

reconstructed with 2-D algorithms is contaminated by structures above and below the 

active electrodes plane.  This due to the fact that measurements are carried out on a real 

(3-D) object, where of course the equipotentials extend into the third dimension as well.  

This results in a distortion of the image toward the center and it has been observed by all 

EIT researchers at their attempt to reconstruct static images from measurements on 

laboratory phantoms.  Where-ever they put a single test anomaly it appeared in the center 

of the reconstructed image.  This can be removed in general by "dynamic imaging 

techniques", e.g. reconstructing also the image of a homogeneous tank and subtracting it 

from the image received with the anomaly.  An alternative technique in our previous 2-D 

studies [20] is to measure on a tank with (let them Vm1) and without anomalies (let them 

Vm2), subtract the two sets and use the difference (Vm1-Vm2) in the reconstruction 

process.  This technique efficiently handled the above problem and gave good results 

(correct offset position and satisfactorily good conductivity).  A more definite solution 

without the homogeneous tank measurements is expected by the employment of the 3-D 
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algorithms, since the 3-D FEM model accounts for the current flow (extensions of 

equipotentials) in all three dimensions. 

 In order for this paper to be self sustained let us first briefly describe the 2-D modified 

perturbation method (2D-MPM) before moving on to the 3D-MPM.  The 2D-MPM [12], 

is actually a modification of the "perturbation" method proposed by Kim et al [21] and 

improved by Yorkey et al [22].  They used constant voltage driven electrodes and 

measured the exiting currents.  The perturbation method is based on the "sensitivity 

matrix" defined as the change of the measured current (ΔΙ) versus a change in an elements 

resistivity (Δρ), namely ΔΙ/Δρ.  Even though notified in [22], that this matrix is non-linear 

(likewise each ΔΙ/Δρ) they changed the resistivity by a factor of ten (from 100 to 

1000Ω•cm) to calculate ΔΙ.  So, they changed the resistivity of each FEM element in turn 

and they solved Laplace equation to calculate ΔI at each "measuring" electrode.  This is 

of course a very time consuming procedure, especially if the non-linear sensitivity matrix 

is to be calculated at each EIT iteration using a small perturbation Δρ for more accurate 

calculations.  Kyriacou et al [12] stated that instead of using ΔΙ/Δρ, which is a linear 

approximation of the derivative ∂I/∂ρ, it is better to use the derivative itself.  Also, since it 

has already been established that is better to inject current and measure voltages at pairs 

of electrodes (ports), then the partial derivatives ∂I/∂ρ or ∂I/∂σ should be used.  The 

matrix defined by the partial derivative of the voltage difference observed at a port-i with 

respect to the conductivity of the jth FEM element, and for every combination i, j is called 

"Jacobian matrix", Jij=∂Vi/∂σj.  The MPM reconstruction algorithm is then given in the 

form : 
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where the superscript n denotes the iteration and M is the total number of linearly 

independent measurements from all projection angles (driven electrodes combinations).  

Vmi and Vci are the measured and calculated voltages at the ith sensing port.  k is a 

relaxation factor.  Until now we have set k=1, since a higher or lower value does not 

seems to improve convergence.  But further investigation is needed to estimate the effects 

of k. 
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 Exactly the same formulae (13) can be used for a 3-D conductivity reconstruction, but 

the voltages Vmi, Vci and the derivatives ∂Vi/∂σj must be calculated from a 3-D FEM 

model, σj representing the conductivity of the jth volume element. 

 There is some theoretical evidence that it is better to reconstruct the resistivity (ρ) 

instead of conductivity (σ) when constant current (I) is injected and the surface voltage 

(Vm)  is measured/calculated.  This is simply based on the definition of the impedance 

Z=Vm/I and the proportionality Z∝ρ or Z∝1/σ.  

 Namely, the resistivity is linearly proportional to the measured voltage ρ∝Vm, but the 

conductivity is inversely proportional to Vm as σ∝1/Vm.  From a first sight it is then truly 

reasonable to reconstruct resistivity.  But, recalling that the problem is non-linear and is 

always somehow linearized around a guess ρ(n) or σ(n) which after the solution is updated 

by a small amount Δρ or Δσ as ρ(n+1) = ρ(n)+Δρ or σ(n+1) = σ(n)+Δσ, it is then expected 

that no serious improvement will be obtained by reconstructing ρ instead of  σ.  In other 

words, moving along a curve of the form y=a/x in small linear steps seems to be as easy 

as along a curve y=bx.  What remains to be proved, is the convergence rate when imaging 

ρ or σ.  It seems that when the initial guess is far away from the true one then σ-imaging 

would offer faster convergence, but as we get closer ρ-imaging could perform better.  

This could lead to a reconstruction strategy like, starting with σ-imaging and after some 

iterations turn to ρ-imaging.  Nevertheless, the reconstruction formulae for ρ-imaging is 

formally the same as given in Eq.(13), just substituting σ for ρ and of course calculating 

derivatives with respect to ρ.  It is then : 
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 Let us at this point make a step forth and back to explain why the MPM algorithm for 

ρ- and σ- imaging are quite the same (this is not true for all EIT algorithms).  The 

derivatives ∂Vi/∂σj and ∂Vi/∂ρj involved in Eqs.(13) and (14) are given later in Eqs.(18) 

and (19).  They differ only by a term (1/ρj
2) occurring in both the numerator and 

denominator of Eq.(14) and thus eliminated, as well as a minus sign which is also 

eliminated by a sign change in the difference (Vmi - Vci).  Concerning the convergence 
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)

criteria, there may be two cases.  First the practical imaging case, when only the available 

information can be considered, and second the trial testing of the algorithm with computer 

or laboratory phantoms, when the target model conductivity vector σtrue is also known.  A 

measure of the available information can be defined by the mean squared voltage 

differences (SSQ) between the measured (Vm) and the calculated  (Vc) vectors at each 

iteration.  Usually the division by the number of elements (P) is omitted (but when 

comparing imaging of different models it must be used), so we have : 

   (15) (SSQ V Vmi ci
i

M
= −

=
∑ 2

1

The rate of convergence can be defined in any case be the rate of decreasing SSQ versus 

the number of  iterations.  The reconstruction will stop whenever SSQ approaches the 

measurements/calculations error or when SSQ starts to increase (divergence).  The actual 

error is always that of the conductivity (σ-error), but since the target distribution is 

unknown in practice, this can only be used for comparing different reconstruction 

algorithms or phantoms.  This is defined by Yorkey et al [6], as : 
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where ótrue  is the average value of  the target conductivity profile. 

 

4. EVALUATION OF JACOBIAN MATRIX 

 The Jacobian matrix entries are calculated from closed form expressions based on an 

equivalent resistor network of each FEM element, the network compensation theorem and 

the element nodal voltages. It must be pointed out that these calculations are very fast, 

since all the quantities are already available.  Especially, the nodal voltages are already 

calculated during the solutions of Laplace equation for every projection angle needed in 

any case to calculate the sensing ports voltages Vci involved in Eq.(13).  Yorkey et al [6] 

examined the compensation as well as a "standard" technique for the calculation of the 

Jacobian for a 2-D rectangular mesh model.  In our case we decided to use the 

compensation theorem technique because it can be easily extended to the 3-D case and it 

is a clarified one.  The standard method on the other hand involves additional derivatives 
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(they can be performed analytically) as well as the inverse of the FEM master matrix [Y].  

Thus the standard method is more compatible with algorithms using a direct technique to 

solve the FEM system of equations. 

 The equivalent resistor network of an arbitrary (jth) parallelepiped element is shown in 

Fig.3b.  It is consisted of 28 conductances (Ymn) connecting the element vertices.  Their 

values are given by the non-diagonal coefficients of the parallelepiped element matrix 

[Y]e given in Eq.(10).  The symmetric form of  [Y]e is also an indication that it can be 

represented by a resistor network, while its diagonal elements can be considered as "self 

conductances" and do not contribute to the voltages changes.  Let the conductances of 

Fig.3b to the locally numbered as l=1 to 28 and their value written as Ymn=Yl=Slσj, with 

Sl being the geometrical weight constants. 

 
a                                                                        b 

Figure 3. a) Definition of ports-i and -k and perturbation of element conductivity from σj to σj +Δσj. and b) 
Equivalent resistor network of a parallelepiped element. 

Consider two of the ports as -i and -k defined in the 3-D model sketch of Fig.3a and Yl an 

arbitrary conductance of the jth element.  During the Laplace solutions for the calculated 

surface voltages ([Vc]) a constant current Ii is applied at the ith port and the potential 

distribution is obtained, so the voltage Vij(l)  developed across the conductance Yl can be 

readily estimated.  Similarly let this voltage be V΄kj(l)   when an equal current Ik=Ii=I is 

applied at port-k but with the conductivity of the ith element perturbed to σj +Δσj, or the 

lth conductance perturbed to Yl + ΔYl.  Considering for a moment only the perturbation 

of the conductance Yl, then the geometry is in principle the same with that used by 

Yorkey et al [6] to derive the derivative ∂Vi/∂σj.  They employed the compensation 

principle of electric circuits in conjunction with the discrete form of Geselowitz 

sensitivity theorem [23] given by Murai and Kagawa [24] and Nakayama et al [25].  
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According to this approach, the voltage change Δvi  at port-i when a current I is applied at 

port-k and the conductance Yl  is perturbed to Yl + ΔYl  is : 

  ΔVij(l) = -(ΔYl/I) Vij(l) V΄kj(l)   (17) 

Assuming a differential perturbation Δσj → ∂σj which gives ΔYl → ∂Yl=Sl∂σj, then the 

voltage across Yl + ΔYl  would be practically equal to that without perturbation, or 

V΄kj(l)=Vkj(l).  Also, when σj is perturbed, then all the 28 element conductances are also 

perturbed.  Thus, the resulting voltage change at port-i  is simply estimated by summing 

Eq.(17) over all the element conductances, as ΔVi=
l
∑ΔVi(l).  Rearranging this 

summation the Jij component of the Jacobian is obtained as : 
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The derivatives with respect to resistivity are readily obtained from (18) by just 

substituting σj = 1/ρj, which gives : 
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Actually, equations(18) and (19) are quite general and can be used for any FEM element 

by just substituting with its specific constants Sl.   

 

5.  DATA COLLECTION SCHEME-LINEARLY INDEPENDENT 

 MEASUREMENTS 

 The data collection scheme seems to be the most serious problem in 3-D EIT imaging.  

First, every EIT specific application puts some constraints to the electrodes placement.  In 

geophysical applications electrodes can be placed only on the top surface, while medical 

applications, in which we are interested herein, restrict the electrodes placement on the 

lateral body surface.  Until now there is not (or at least we are not aware) any work 

studying the optimum position of electrodes in 3-D geometries, handy electrode positions 

maximizing the EIT sensitivity.  A simplified approach is to handle separately a 

horizontal and a vertical cross-section.  Let us explain this with an example.  A three 

layers model is shown in Fig.4 with each layer divided into 8x8 elements.   
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           a                                                              b                                                         c  

 
Fig.4. Data collection schemes or selection of projection angles. a) Diagonal electrodes with large distance, 

b) Nearby diagonal electrodes and c) coplanar electrodes. 
 

Two possible diagonal driven electrode pairs (excitation ports) are shown in Fig.4a and 

4b, while a coplanar one is shown in Fig.4c. Recall at this point, that the scheme 

described in the previous section for the calculation of the Jacobian matrix requires that 

the voltage sensing electrode pairs (measuring ports) must be defined exactly in the same 

manner as the excitation ports.  Namely, define the virtual ports in the same manner all 

over the model, use one of them for excitation and all the others for measuring/calculating 

the voltages. Returning back to the data collection problem, it was found in [12] that for 

16 electrodes (numbered successively) around an 8x8 element 2-D model the best 

projection angles (excitation ports selection) is in turn 1-3, 2-4, . . . .  Thus, if coplanar 

electrode pairs should be used, then the best scheme would be that of Fig.4c.  Using the 

same approach for a vertical cross-section where there are only four electrodes at each 

vertical side, the electrodes should have vertical distance of only one layer.  In this sense 

the configuration shown in Fig.4b would be preferable than that of Fig.4a.  Following this 

approach for a model with the same horizontal cross-section as that of Fig.4, but with 

eight layers (instead of three), we could say that the data collection scheme of Fig.4b is 

preferable.  In order to define the linearly independent measurements needed in the 

reconstruction process we must first answer the following question.  When we drive 

current across one layer, using for example the scheme defined in Fig.4b, do we make 

measurements/calculations across all the other layers?  and even more important can we 

use the voltages measured across one layer to update the conductivity of all the other 
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layers including itself?  For example, when injecting current at a port across the first 

layer, measurements made across the third layer can be used to update the conductivity of 

the first layer? and even most those of the second or any other layer?  Logically, the 

answer to all these questions should be yes.  This is because any possible complicated 

effects are taken into account during the calculation of the Jacobian matrix which defines 

the sensitivity  of  the specific voltage measuring port with respect to the conductivity of 

the element whenever this is in the 3-D domain.  Also, this calculation depends or 

equivalently contains the information (voltage distribution) offered from the injection of a 

current at this specific measuring port as well.  This generalized data collection scheme is 

not yet investigated and requires a lot of simulation work.  Liu et al [9] studied a model 

with three layers each one with 4x4 elements giving a total of 48 unknown conductivities.  

They assumed N1=8 point equispaced electrodes around the periphery of each one of the 

four layers.  They used both adjacent coplanar and diagonal data collection schemes but 

with adjacent electrodes as shown in Fig.4b, 4c with the dotted lines.  They assumed 

voltage measurements only around the layer to which they injected current, thus they 

updated a layer's conductivity only by measurements carried out around it.  In other words 

they handled each layer separately.  The linearly independent measurements in such a 

data collection can be defined by considering each layer as a 2-D model.  So, for each 

layer of the model in [9], there are 7 unique projection angles and 8 measurements 

(including the one on current carrying electrodes) for each one, giving a total of  56 

measurements.  But, due to symmetry (Vij=Vji)  only half of them are linearly 

independent, giving 28 unique voltage measurements per layer or 3x28=84 for the whole 

model. In general for N1 electrodes placed around each level, there are N1(N1-1)/2 unique 

measurements per layer, e.g. [24]. In practice the four - electrodes technique, (two 

electrodes for injecting current and two separate electrodes for measuring voltage) for the 

data collection is now well established. Thus, avoiding voltage measurements on current 

carrying electrodes we have for the coplanar configuration N1(N1-3)/2 unique 

measurements, while for the diagonal configuration these remain N1(N1-1)/2. 

 In the case when voltage measurements are carried out at all the layers (let NL= 

number of layers and NL+1= number of levels) and N1 electrodes are placed around each 

level, there are NLN1 possible projection angles for the diagonal and NL(N1-1) 

measurements for each one of them. The total number of unique measurements is then 

M= NL
2 N1(N1-1)/2. For the model studied in [9] it is then M=252 (instead of 84), while 
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for the model shown in Fig.3 with NL=3, N1=16 and 3x8x8=192 unknown conductivities 

we have M=1080 unique measurements.  

 Finally, it must be noted that the number of unique measurements, which depends on 

the total number of electrodes (NLN1), restricts the number of the unknown conductivities 

(P), namely the number of elements into which the FEM model is to be subdivided. 

Moreover, an over-determined problem is inevitable in order to satisfactorily handled the 

measurements -calculations inaccuracies. For the 2-D problem a limit of the order of 

P<M/2 is recommended, while a good limit for 3-D seems to be P<M/4. This limit turns 

out to put a limit on the spatial resolution, since the relative distance between neighboring 

electrodes must be large enough so that the voltage between them is also large enough to 

be measured with the desired accuracy. 

 

5. NUMERICAL RESULTS 

 A lot of 3-D computer phantoms are reconstructed in order to test the present 

algorithm. First, a vertically homogeneous model with 3 identical layers subdivided into 

3x8x8=192 voxels, with 16 electrodes around each level as shown in Fig.4, was tried. The 

coplanar (Fig.4c) as well as the diagonal (Fig.4b) data collection scheme was used in turn. 

A homogeneous initial conductivity was assumed and the algorithm performed very well 

in both cases. The convergence curves are shown in Fig.5, namely the conductivity (σ-

error) versus the number of iterations in Fig.5a and the voltage squared error (SSQ) in 

Fig.5b. The conductivity for one of the layers of the target model is shown in Fig.6a and 

for the reconstructed image at the 15th iteration in Fig.6b. The image obtained for the two 

other layers was almost identical as expected. 
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                                          a                                                                                      b 

Figure 5. Convergence rate of 3D-MPM for a vertically homogeneous 3-layers computer phantom, 
a)Conductivity error (σ-error), and b) Voltage squared error (SSQ) versus the number of  iterations. 

 

 
                                               a                                                                                         b 

Figure 6.  Conductivity distribution for one of the layers of  Fig.5. model, a) Target model and b) 
Reconstructed image at the 15th iteration. 

 

A model like the previous one (shown in Fig.3), but with eight layers was then tried. It 

was considered a conductivity distribution with two anomalies (each one consisted of six 

elements), one at the 3rd layer with σ1=2.667mmhos/cm and the other at the 6th layer 

with σ2=2.667mmhos/cm, while the rest of the model is assumed homogeneous with 

σ=8.0mmhos/cm.  A 3-D presentation for the two layers with the anomalies is shown in 

Fig.7., while the reconstructed images for each layer at the 2nd iteration are shown in 
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Fig.8.  The first two layers (Fig.8.a,b) start to sense the lower anomaly which appears at 

the 3rd layer (Fig.8.c).  From the 4th layer the higher anomaly starts to develop (Fig.8.d) 

and gets its peak value at the 6th layer (Fig.8.f) where it truly exist.  At the two top layers 

the higher anomaly starts to decrease.  One observes that in the reconstructed image, the 

anomalies are gradually developed from layer-to-layer but not abruptly.  This is expected 

and has already noticed in the 2-D case, where a gradual change toward the anomaly 

occurred.  Nevertheless, the position and the relative value has been approximately 

located, with their peak value appearing at the correct point.  

 
                                            a                                                                                   b 

Figure7.  A vertically inhomogeneous target model. Only the conductivity of the 3rd and the 6th layers 
having anomalies are presented in a) and b) respectively. 

 

 
                                a                                                               b                                                     c 
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                           d                                                              e                                                             f 

 
         g                                                                            h 

Figure 8. Reconstructed images for the model of Fig.6 at the 2nd iteration and for the 1st to 8th layers are 
presented in a) to h) respectively. 

 

6. CONCLUSIONS 

 A reconstruction algorithm for 3-D EIT is developed based on the extension of the 

modified perturbation method. For this purpose the forward problem solution and the 

calculation of the Jacobian matrix were performed in a 3-D space. Some data collection 

schemes were examined, but this problem turns out to be vital in 3-D imaging and further 

investigation is needed. Finally, some successfully reconstructed 3-D computer phantoms 

are presented 
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