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Abstract 
 The interaction of an electromagnetic field with a scatterer placed near a nonstationary composite 
medium using time domain techniques is examined. The composite medium is modeled by a 
nonstationary object  located near a plane surface. The surface appears at a zero moment of time and 
breaks down homogeneous medium into two half- spaces in one of which the permittivity and 
conductivity changes abruptly at this moment of time. The problem is solved by a Volterra integral 
equation that is equivalent to an initial and boundary value problem for the Maxwell's electromagnetic 
equations. The integral equation is derived by  means of a spatial-temporal Green's function, obtained 
for a piecewise homogeneous and time independent medium. 
 

1. INTRODUCTION 

 Recently there is a strong interest in analyzing electromagnetic phenomena using time domain 

techniques. Such phenomena are important in geophysical subsurface probing, remote sensing, stealth 

technologies, measurement of electrical properties of dielectric substrates, hyperthermia used in cancer 

therapy, subsurface communication, etc. [1-10]. Other important applications of electromagnetic wave 

propagation and scattering in media having time-varying parameters are related to ionosphere and 

other media, control of dielectric-resonator antenna by parameter variation, time-varying surface 

conductivity that can affect the fields radiated and scattered from objects. Furthermore, with the 

continuing and increasing interest in semiconductor and optical integrated devices, more-accurate and 

realistic simulations of these ones are needed [11]. In all these structures electromagnetic problems 

concerning medium with time-varying parameters (permittivity, permeability, and conductivity) are 

encountered. 

 In this paper, a time domain analysis is pursued to treat the electromagnetic field in a nonstationary 

composite medium which has time dependent properties. The composite medium is modeled by a 

nonstationary object  located near a plane surface. The surface appears at zero moment of time and 

breaks down a homogeneous medium into two half- spaces in one of which the permittivity and 

conductivity abruptly changes at this moment. The problem is solved by using a Volterra integral 

equation. This is equivalent to an initial and boundary value problem for the Maxwell's 
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electromagnetic equations. The integral equation is derived by means of a spatial- time dependent 

Green's function corresponding to a piecewise homogeneous and time independentt medium.  

 It is shown that the specific form of the integral expression depends on the object location and does 

not depend on the half-space medium parameters variations. In case when the object is within the 

nonstationary half- space the equation for the field is the Volterra integral equation of the second kind. 

In the other half space the electromagnetic field is derived by integrating the internal field over the 

object region.  

 It is also shown that after the medium characteristics change and the surface creation a free term 

appears in the integral equation. This term is caused by remainder phenomena due to a medium 

"memory" that results from a time delay because of the limitation of the light velocity, and determines 

a field interaction with a medium until changing of permittivity and conductivity in one of the half- 

spaces.  

 

2. STATEMENT OF THE PROBLEM 

 The problem being studied is stated as follows: let in a background medium which is described by a 

continuous vector functions of electrical as Pex  and magnetic M ex  polarizations there is a region V(t) 

and a subregion U(t) that contain different material media, as shown in Fig. 1. Consequently, the 

medium parameters have discontinuities on the boundaries of V(t) and U(t). 

 

 
Figure 1. The problem geometry in general case. 

 

 An electromagnetic field in the whole space satisfies the Maxwell’s equations [12] 
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where P  and  are generalized electrical  and magnetic polarization vectors of a medium,  is a 

generalized  current density, 

M j

ε0  and μ0  are the electrical and magnetic permittivities of vacuum. The 

Maxwell equations in (1) can be written in a generalized form after ref. [13] as follows: 
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where  denotes classical derivative at that point where it has sense, { } δ( )S  is a surface delta-

function, S(t) is the discontinuity surface of the field,  is the normal (transverse) component of the 

velocity of a given surface region,  is a normal vector to a surface S(t),  is a jump of the 

discontinuous vector function  on a surface S(t). 
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 The equations in (1) involve the boundary conditions for fields at all discontinuity surfaces, so 

generalized solutions of these equations meet these conditions [14]. 

 Assume that the background is described by following polarization vectors. 
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and the corresponding polarization vectors at the subregions V(t)\U(t) and U(t) are described by the 

vectors  and  respectively. Then the generalized functions describing the 

medium influense on the fields in the whole space can be written as follows: 
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where χ and γ are defined in Fig.1, jextr is the external source current. 

 From Eqs. (1) and (3) it follows that an electromagnetic field satisfies the generalized 

inhomogeneous wave equation  
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where c = 1 0 0ε μ  is the light velocity in vacuum. The left-hand side of this equation takes into 

account also the boundary conditions on the boundary of V(t). The right-hand side term 
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has also a discontinuity on the boundary of U(t). 

 The differential equation (4) is transformed into an integral equation by means of the Green's 

function G [13] 

E E F j= ′ + ⊗ −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟0 2 2

0

1G
c t extr
ε

∂
∂

.

x⊗ = −
∞
∫ d ' ( ' ' )

 (6) 

Here, the sign ⊗  denotes a convolution in the four-dimensional space-time, 

, where a b x a x x b) ( x r= ( , )t . The term  is the solution of (4) with zero right-hand 

side, that is the field in a medium whose parameters have discontinuity on the boundary of V(t) only. 

Therefore the field  satisfies the boundary conditions on the boundary, and presents an electric 

field in the piecewise homogeneous medium without an object U(t). 

′E0
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 Then equation (6) can be rewritten as follows 

E E F= + ⊗0 G 2 , (7) 

Where E E j0 0 2
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∂
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G , and the second item in the right-hand side is a field determined 

by an external source current jextr . To write an explicit form of equation (7) one needs the Green’s 

function corresponding to Eq. (4). 

 

3. GREEN’S FUNCTION FOR A PROBLEM WITH PLANE INTERFACE THAT HAS COME 

INTO BEING 

 It is known, that in general terms the Green’s function in Eq (4) pocesses an ambiguity since an 

arbitrary solution of the homogeneous equation can be added to it. This solution is presented in (6) by 

the item , so in the following only the singularity part of the Green’s function is needed. This part 

satisfies the equation 
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Here,  are operators corresponding to functions P, M and j, $ , $ , $P M j $I  is an identical operator, δ(x) - 

the Dirac delta-function. 

 As equation (8) takes into account the boundary conditions at the surface of the region V(t), the G 

function beeing also a solution of it, also satisfies these conditions. 
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 In solving equation (8) it is transformed into an integral equation whose solution will be achieved 

by virtue of a resolvent method. To do end the terms with discontinuity coefficients, are rearranged to 

the right-hand side of the equation [15]: 
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 Then from (9) the function G can be computed as a convolution G G F= ∗0 1 , where G0 is a Green’s 

function related to equation (9). As differentiation with respect to time can be transferred to , this 

convolution takes the form 
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 From here on, the case when the region V (t) originates with a zero moment of time is considered. 

This means that, $ $ , $ $ $P P M M jex ex1 1 1 0= = =
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G

 for t<0. Then equation (11) can be converted into an 

integral equation for t≥0: 
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In above eguation, the integral  is over the four-dimensional half-space t≥0. dx'∫

 The $K  operator properties are determined by properties of the function G0 which is the Green’s 

function of the wave equation (9) assotiated with the background, 
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Then one can easily take the singular part of the Green’s function of equation (14) because a regular 

part of this function gives a solution corresponding a homogeneous equation for the field, that is a field 

in the background. However this field is presented by the item  in (6) and one does not need to be 

repeat it. With these remarks we can take the known function: 
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where v c
=

εμ
 and θ( )t  is the Heaviside unit function. 

 The carrier of the function G0 is the light cone for t’<t with the vertex at the observation point 

. As this function has an integrable singularity in the four-dimensional space, the operator ( )t ,r $K  is a 

Volterra integral operator. The specific form of the $R  operator is obtained by substituting Eq. (15) 

into Eq. (13) 
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 The meaning of the expressions (7, 12) essentially depends on the observation point r according to 

the general theory of the integral equation method as in Ref. [16]. Inside the region V(t), (χ=1), the 

expression (12) is the Volterra integral equation of the second kind and its solution can be obtained by 

the resolvent $R  [14]:  Outside this region, (1-χ=1), the expression (12) is a 

quadrature: 
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( )G ( )G $K $I $R G( ) (ex)
1 01ex = − + +χ χ ,0χ  where superscript (ex) on the operator $K  

denotes that the argument r is checked outside the region V(t). So, the expression for the desired 

Green’s function  can be defined by a formula G1

( )G G $R G ( ) $K $I $R G(ex)
1 0 0 01= + + − +χ χ χ χ χ .  (17) 

 In the following analysis specific construction of the Green’s function is carried out when V(t) is a 

half-space bounded with a plane, that is χ θ= ( )x , as shown in Fig. 2. The medium in this half-space 

is a lossy dielectric. This implies that for t>0 

$ ( ), $ $ , $P M Me jx1 0 1 1 11 0= − = ==ε ε σ 1  (18) 
The medium permeability in the whole space is supposed to be μ=1. 
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Figure 2. Time jumps of medium parameters in one half-space. 

 

 The operators in Eq. (17) are integral operators: $A ' $A ' .= ∫ dx x x  Hereafter, the kernels of these 

operators are represented as inverse Fourier-Laplace transformations 
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 The resolvent operator $R  for a lossy dielectric half-space is constructed in [6, 17] and its kernel has 

the form: 

p x

k r

$ '
( )

( )
( )

( )

( )
( ' ),' '

R
v p v p

v p
x

v p p
v k

e

v p p
iv k iv k

e e x

ik x'

v
x'

pt i

=
− +

+

+ +

+

⎧
⎨
⎪

⎩⎪
−

−
+ +
−

+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫

⎬
⎪

⎭
⎪

−

⊥
−

− − ⊥ ⊥

1
2 2

2
1

2

1
2

1
2

1
2

1

1
2

1

1 1 1 1 1 1

1

1

1
1

2

σ

σ
θ

σ

ϕ

ϕ
σ

ϕ ϕ
θ

ϕ

Q I

Y I X
 (20) 

where Y1

2 1

1
1

1

=
− −

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊥ ⊥

⊥ ⊥ ⊥

k i
v

i
v

ϕ

ϕ

k

k k k* *
,   I⊥ =

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 0 0
0 1 0
0 0 1

,



SCATTERING OF RADIATION BY AN OBJECT LOCATED NEAR THE INTERFACE OF A NONSTATIONARY MEDIUM  86 

X I= −
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
+

⎛
⎝
⎜

⎞
⎠
⎟ + +

⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥
⊥v V

k i
v

i
v

vv V p p Vm em1
2

2 1

1
1

1

12
0 0
0

ϕ

ϕ σ
k

k k k k k* * * ( ) e , (21) 

V
v p v p
v p v p

V p
v v

v p v p
V

v v
v vm em e=

+ −
+ +

= +
−

+ +
=

−
+

ϕ σ ϕ
ϕ σ ϕ

σ
ϕ ϕ

ϕ σ ϕ
ϕ ϕ
ϕ ϕ

( )
( )

, ( )
( )

, ,1 1

1 1

1 1

1 1

1 1

1 1
 

( )ϕ ϕ σ ϕ ϕ= + = + + > =⊥ ⊥p v k p p v k y z2 2 2
1 1

2 2
12 0, ( ) , Re , , r⊥ , .

+

 

 After lenghthy operations and some rearrangements we have for t>0: 

[ ]{ }
[ ]{ }

G x G x x G x x S x W x

x W x S G x x G x x x
1 11 12 1 1

2 2 01 02

= − + − − + −

+ − + + − + − −

θ θ θ θ θ

θ θ θ θ θ

( ) ( ' ) ( ' ) ( ' ) ( ' )

( ) ( ' ) ( ' ) ( ' ) ( ' )
 (22) 

Here, 

G ( ' ) $L
( )

( ) ,

G ( ' ) $L
( )

( )

* *

( )

* *

11
1

1
1

2
2 1

1
1

1

12
1

1
1

2
2 1

1
1

1

2

2

1

1

1

x x
v

p p
v

k i
v

i
v

p p e

x x
v

p p
v

k i
v

i
v

p p e

v
x x'

− =
+

−⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
+ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− =
+

− −

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
+ +

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊥ ⊥

⊥ ⊥ ⊥
⊥

− −

⊥ ⊥

⊥ ⊥ ⊥
⊥

ϕ σ

ϕ

ϕ σ

ϕ σ

ϕ

ϕ σ

ϕ

ϕ

k

k k k

k

k k k

I

I v
x x'

1

( )
,

−

 

S x x
v

p p
e v

x x'
1

1

12

1

1( ' ) $L
( )

,
( )

+ =
+

− +

ϕ σ

ϕ

X  

W x x v
p

vv T
k i

v
i

v

p T e

W x x v
p

vv T
k i

v

i
v

p T e

S x x

m e
v

x
v

x'

m e
v

x
v

x'

1 2 1

2

1

1

2

2 2 1

2 1

1 2

2

2

2

1

1

1

1

( , ' ) $L ,

( , ' ) $L ,

( ' ) $

* *

* *

=
−⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
− −

−

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ =

⊥ ⊥

⊥ ⊥ ⊥
⊥

− +

⊥ ⊥

⊥ ⊥ ⊥

⊥

−

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ ϕ

ϕ ϕ

k

k k k

k

k k k

I

I

L ,( ) ( )v
p

eex v
x x'

2 2ϕ

ϕ

X
+

 (23) 

where $L ( 'r( ' ) ( ' ) ( ' )= = −⊥
− + − ⊥

⊥ ⊥ ⊥ ⊥

∞
−

− ∞

∞
⊥ ⊥ ⊥∫ ∫ ∫d e dk k J k dp

i
ep t t i p t t

i

i
p rk r r

2 20
0 π π

, ( )p k⊥ ⊥= p, , 

X I(ex) = −
−⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

+
⎛
⎝
⎜

⎞
⎠
⎟ + +

⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥
⊥v V

k i
v

i
v

vv p
p

V p pm em
2

2

12
0 0
0

ϕ

ϕ σ
σ

k

k k k k k* * * ( )Ve , 



A.G. Nerukh, I.V. Scherbatko, A.G. Tyzhnenko, K. S. Nikita and N. K. Uzunoglu 87 

T
v p

v p v p
T

v
v vm e=

+ +
=

+
2 1

1 1

1

1 1

2ϕ
ϕ σ ϕ

ϕ
ϕ ϕ( )

, .

),−

 (24) 

 The background Green’s function can be presented as two items also 
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The arrangement of Green’s function G1 items of on (x,x') plane is shown in Fig. 3. 

 

 
Figure 3. The arrangement of Green’s function terms on the plane (x,x’). 

 

 All terms of the function G  equal to zero for t-t’<0 because of their analytic properties. For 

 the function G  transfers to  as a limit case which gives: 

1
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 From Eqs. (23) and (25) the properties of the Green’s functions G1 on discontinuity lines are 

observed. On the line x=x' the functions jump is: 
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On line x'=0 the G1 jump is equal: 

for x>0 
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for x<0 
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On line x=0 the G1 jump is equal: 

for x'>0 
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for x'<0 
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 From the properties of the obtained Green’s function on the discontinuity lines it is follows: that the 

action of the Green’s function on any vector gives a vector that has discontinuity on the line x’=0, but 

this discontinuity is caused by an initial vector component that is normal to an interface between 

media. On the line x=0 only a resulting vector component that is normal to the boundary has a 

discontinuity. 

 

4. INTEGRAL EQUATIONS 

 As it follows from the equations (5) and (7) in the case of nonmagnetic medium ( )μ = 1 , the 

electric field satisfies to the equation 

E E P P j j= − ⊗ − + −
⎧
⎨
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⎫
⎬
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⎭⎪
0 2

0

2

2 2 1 2 1
1

c t tε
∂
∂

γ ∂
∂
γG ( ) ( ) .

G

 (31) 

where G t G t= − +θ θ( ) ( )0 1. 

 The obtained Green’s function allows us to write out in an explicit form the expression that governs 

the electric field in the case when the object U(t) is situated in the lossy dielectric medium, that from 

zero moment of time is divided by a plane boundary into two half-spaces. In one of them the 

permittivity and conductivity change in time abruptly. The permittivity in both half-spaces was the 

same and equals ε  until t=0. At t=0 it changes by jump to ε1  in the half-space x>0. The conductivity 

appears by jump from zero at t=0 in this half-space and its value is σ1 . Then the general integral 

equation for the electric field is followed from (31): 
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(32) 

It is worth noting that the second and third items in this expression are determined by vectors 

( P P2 − ex  and  for t<0. j2

 As it follows from Eq. (32) the field for t<0 satisfies the integral equation 
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This is a Volterra integral equation that describes a problem for a nonstationary object U(t) in an 

unbounded stationary space. The field obtained from this equation will be determined the third item in 

(32). 

 After the surface appearence, for t≥0 in the integral equation appears a free term been due to 

remainder phenomena. These phenomena are caused by a medium "memory" that results from a time 

delay because of the limitation of the light velocity, and determines a field interaction with a medium 

until changing of parameters in the nonstationary half-space. Consequently, this item can be included 

in the free item of equation (32) which for t>0 takes the form 
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where 
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 If the object U(t) appears after the moment t=0, that is P P2 = ex  when t<0, then the free item in 

(34) is equal to an undisturbed field in the background, F E= 0 .  

 The form of the free term and the equations essentially depend on in what half-space a field is 

considered and the object U(t is situated. 

 

Case A. The scatterer object U(t) is placed inside the nonstationary half-space. 

 The placement of the object U(t) is shown in Fig. 4. The integral equation at the nonstationary half-

space has the form 
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Figure 4. The placement of the object U(t) inside the nonstationary half-space. 
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 If the observation point is located in the region U(t) this expression is a Volterra integral equation 

of the second kind. If the observation point is located outside of the region U(t), this formula allows to 

determine the field in the half-space x>0 through integrating of the internal field over U(t).  

 In the other half-space, x<0,  the scattered field is determined by the formula via integrating of the 

internal field over U(t) with the item W2 of the Green’s function 
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Case B. The scatterer object U(t) is placed outside of the nonstationary half-space. 

 The placement of the object U(t) is shown in Fig. 5. If the observation point is located in the 

nonstationary half-space x>0 the scattered field is determined by the formula 
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This equation is analogues to the one (37) for the half-space x<0 in the previous case. 

 In the half-space x<0 the scattered field is determined by the formula that is analogues to (36) 
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 The field in the half-space x<0 is described by the equation that is a Volterra integral equation of 

the second kind if the observation point is located in the region U(t). If the observation point is located 

 
Figure 5. The placement of the object U(t) outside the nonstationary half-space. 

 

outside of the region U(t) this formula allows to determine the field through integrating of the internal 

field over U(t). As this is compared with the previous case it is seen that the specific form of the 

expression depends on which half-space the region U(t) is placed rather than where a permittivity jump 

has occurred. 

 

CONCLUSION 

 The Green’s function for the Maxwell’s equations in a medium consisting of two semi-infinitive 

media is derived. In one of these semi-infinitive media the permittivity and conductivity change 

abruptly in time. The obtained function allows the formulation of an integral expressions for the 

electric field scattered by an object that is located in either half-space. It is shown that the specific 

form of the expression depends on the half-space that the object is placed rather than where the 

permittivity and conductivity jump has occurred. 
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