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Abstract  
An integral equation method with numerical solution is presented for the analysis 

of infinite 2D grating embedded into bianisotropic multilayered medium. Dyadic 
Green functions for shielded and open structure are derived using 4 \Theta 4 transfer 
matrix method. This method is verified by examining various results for microstrip 
resonator on isotropic and on ferrite substrates and for regular periodic strip line on 
the chiral substrate. The results of testing of the algorithm convergence are 
presented. Resonant frequencies of the 2-D grating on uniaxial crystal substrate are 
computed versus phase shifts per periods of grating. Influence of the chirality 
parameter on the resonant properties is studied.  

 
 
1. INTRODUCTION  

Development of the millimeter-wave integrated circuits (MIC's) and microwave 

monolitic integrated circuits (MMIC's) technology has resulted into growing interest 

of multilayered planar transmission lines, resonators and antennas, which consist of 

layers of anisotropic and gyrotropic materials [1]. Recently much attention has been 

focused on composite materials, the so-called complex media. The isotropic chiral 

media [2] - [5], anisotropic chiral media [6], chiroferrites [7, 8], omega-medium and 

more complex bianisotropic materials [9] have been studied.  

Until now the number of publications dealing with planar (microstrip, slot and 

coplanar) regular lines using of arbitrary type anisotropic substrates is restricted. The 

finite-element [10], transmission lines [11] and integral equations (IE) [12]-[14] 

methods have been used to determine the propagation characteristics of such lines.  

The analysis of planar discontinuities is a more complicated three-dimensional 

problem, and only particular cases of anisotropy and biisotropy have been considered 

for microstrip resonators [15] and gratings [16]. Thus, the microstrip and slot 

resonators on the uniaxial crystal and on the ferrite substrates have been studied in 

[15], where the anisotropy axis and magnetization axis have been taken to be directed 

only along one of the coordinate axes. Only the isotropic chiral medium has been 

considered in [16] as a substrate for 2-D microstrip grating .  



A FULL -WAVE ANALYSIS OF 2-D MICROSTRIP GRATING ON A MULTILAYERED 
BIANISOTROPIC SUBSTRATE  

50 

 
In this paper an analysis is presented for the infinite 2-D microstrip grating 

embedded into multilayered bianisotropic medium (see Fig. 1).  
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Figure 1. 2-D microstrip grating, embedded into multilayered bianisotropic medium. 
 
This structure may contain an arbitrary number of layers both above the grating 

and below it. Integral equations method is used, which seems to be the most 

appropriate one concerning problems with planar geometry. A dyadic Green function 

for multilayered bianisotropic media is constructed using a 4 x 4 transfer matrix 

method [17]. This method is a great convenience for structures with planar geometries 

and it has been applied to microstrip lines on anisotropic substrates in [18]-[20]. The 

convergence properties of the proposed algorithm are investigated and its accuracy is 

verified by comparing the results with those of other authors. Then the resonant 

properties of the 2-D grating are studied.  

 

2. THEORY  

A two-dimensional (2-D) periodic grating is considered with a period of Lx along 

the x axis and with a period of Lz along z axis. The quantities wx and wz are the sizes 

of rectangular grating elements along x and z axes, respectively. As shown in Fig. 1, 

the substrate structure consists of N layers with thickness dm (m = 1,...N) and is 

bounded by electric wall at y = 0 . The plane y = H may be an electric wall or an 

interface with an isotropic dielectric. The grating is placed on the interface between i - 
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th and i +1 - th layers. The thickness of conductors is assumed to be negligible and the 

dielectric loss is absent.  

In this paper the algorithm developed in Ref. [21] for a regular periodic stripline on 

the multilayered anisotropic substrate is extended to the case of bianisotropic media 

and three-dimensional structure.  

In order to represent the field components in the layered structure the transfer 

matrix method is used. Let us consider the m - th layer with thickness dm. It is 

characterized by relative permittivity tensor εm, permeability tensor μm, and the two 

cross - coupling tensors ζm and ξm. All of these tensors have a general form, i.e. all 

their components may be nonzero.  

The source-free Maxwell equations can be written as    

        

 
     (1) 

 

where ρ = 120π Ohm is the wave impedance of vacuum, k0 = ω (μ0 ε0)1/2.  

Let us denote the column-vector of tangential components of electromagnetic field 

for the m - th layer as X(m) = [Ex, Ez, Hx, Hz]col = [X1, X2, X3, X4 ]col. Using the Fourier 

expansion of X(m)  

 

  

 

where Χnp = [X1np, X2np, X3np, X4np]col,  βn =  (ψ + 2πn) / Lx,  γp =  (φ + 2πp) / Lz and ψ, 

φ are the field phase shifts per periods Lx and Lz , respectively, one can eliminate Ey, 

Hy components from the Maxwell equations. The expressions of Ey, Hy in terms of the 

tangential field components are given in Appendix by (A.1). Substituting Ey, Hy into 

Eq. (1), the Maxwell equations may be written as a set of four ordinary linear 

differential equations  

 

      (2) 
  

The expressions for the components of matrix [A] are given in Appendix by (A.2). 

The solution of the Cauchy problem for Eq. (2) has the form:  
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where [Tnp
(m)] = exp( j [Anp

(m)] dm) is the transfer matrix or the matrix propagator of 

the m - th layer in spectral domain. The transfer matrix of each layer may be 

computed using spectral representation of the matrix function. When the matrix [A] 

has a simple structure, the matrix exponent is expressed as [22]  

 

 

  

where s is the number of different eigenvalues λκ of the matrix Anp
(m) and [I] is the 

unit matrix. The transfer matrix of N - layered structure may be obtained as follows:  

[B] = [TN ] x [TN-1] x ... [T2] x [T1].  

Denote by [Bt] and  [Bl] the transfer matrices for the structures, which contain the 

layers with Hi  y  H and 0 ≤ ≤ ≤  y ≤  Hi, respectively. Then at the y = Hi plane the 

following conditions  for Fourier components of EM field should be satisfied: 

for Fourier components of EM field should be satisfied:  

 

    (3) 

  

where the column vector Vnp = [0, 0, -Iznp, Ixnp]col Her Xnp
+, Xnp

-  are the vectors of EM 

field components which belong to the top and bottom layers with respect to the 

interface y = Hi considered, Iznp , Ixnp are the Fourier coefficients of the current density 

components Jz (x, z)  

 

   (4) 

  

Now conider a shielded structure. Let us express the vectros Xnp
+- on the y = Hi via 

the x and z components of magnetic field on the top and bottom shields  

 

  (5) 
 

 

 
  (6) 
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Denoting by [D] the matrix composed of the column vectors (Bt
3, Bt

4, -Bl
3, -Bl

4), 

where Bt
k, Bl

k are the k - th column-vectors of matrices  [Bt], [Bl] respectively, and 

substituting (5), (6) into (3) one can obtain for each Fourier-component the set of 

nonhomogeneous linear algebraic equations (SLAE) 

  

   (7)  
 

where Ynp = [X3np(0), X4np(0), X3np(H), X4np(H)]col is the column - vector of 

variables. The solutions Xknp(0) and Xknp(H) (k = 3, 4) of Eq. (7) are expressed via 

Ixnp, Iznp using Cramer's rule 

  

 
(8) 

 

The matrices [D0
3,] and [D0

4] are obtained by replacing the third and fourth 

columns in the matrix [D] with the column-vector Vnp , respectively. The matrices 

[DH
3,] and [DH

4] obtained by replacing the first and the second columns in the matrix 

[D] with the same column-vector respectively. Substituting (8) into (7) we obtain  

 

 

 

 (9) 

 

where Dnp = Det ([D]), C1np = det([C1]), C2np = Det([C2]), C3np = Det([C3]), C4np = 

Det(C4]). Expressions for matrices [C1], [C2], [C3], [C4] are given in Appendix, see 

Eq. (A.3).  

As a next step, consider a case, when the upper shield is absent. Nonradiative 

modes may be calculated using the technique described above. For this purpose one 

should place the upper shield far from the strip grating. However, it is required to 

construct an algorithm valid for calculations of the radiative losses. In addition, the 

Green function constructed for open structures may be used for the problems of 

antennas with 2-D grating.  
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If the grating considered is bounded with an isotropic half-space y > H , Eq. (5) 

should be changed. Defining kx = βn ; kz = γp , we express Hx and Hz for isotropic 

medium via Ex Ez as follows:  

Hx = tx Ex + tz Ez , Hz = qx Ex + qz  Ez  

where  

 

  
 

 

 

 

 
 

 

Here ε and μ are the permittivity and the permeability of the isotropic half - space y 

> H. The branches of the complex function ky should be selected so that the condition 

Re(ky) is satisfied, which corresponds to the case when the radiative waves leave the 

grating surface. Thus for components of vector X+
np one can obtain  

 

 

          (10) 

 

Substituting (10) and (6) into (3) one can obtain SLAE with the variables X1np(H), 

X2np(H), X3np(0) and X4np(0)  

 

 

(11) 

The solution Xknp(0), (k = 3, 4) and Xknp(H) (k = 1, 2) of Eq. (1) are expressed 

using Cramer's rule via the same Eq. (8) with k = 1, 2 for Xknp(H). The matrix [D] for 

the case of open structure is composed of the column-vectors (Bt
1 + txBt

3 + qxBt
4) , 
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(Bt
2 + tzBt

3 + qzBt
4), (-Bl

3), (-Bl
4). The matrices [D1

H], [D2
H], [D3

H], [D4
0] are obtained 

by replacing the 1  4 columns in the matrix [D] with the column-vector V÷ np , 

respectively. Substituting (8) into (11) we obtain the same expressions as (9), where 

matrices [C1], [C2], [C3], [C4] are given in Appendix by (A.4). In the following all 

considerations relate to both shielded and open structures.  

Using the conditions Ex(x, Hi) = 0, Ez (x, Hi) = 0 with |x| ≤  w / 2 and taking into 

account (9) we obtain the pair of infinite equations:  

 

 (12) 

where 

 

 

 Taking into account (4), the equation (12) may be written as the vector 

Fremdholm integral equation of impedance type: 

 

 

(13) 

 

where the tensor Green function G(x, z | z', z') has the form: 

 

  

 
 

 

The integral equation is solved using the Galerkin method. The weighted 

Cehbyshev polinomials of the first kind Tk(x) and the second kind Ul(x) are used as 

basis functions  
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          (14) 

 

After applying the Galerkin procedure to Eq. (13) we obtain the homogeneous 

SLAE: 

 

 
          (15) 

where s  {kl} and r ≡  {lk} Here ≡

 

 

    

 

where Jk(x) is the Bessel function of k - th order.  

The resonant frequencies f r are found by an iterative root search from the 

determinant of SLAE (15).  

 

3. NUMERICAL RESULTS  

The algorithm and computer program developed were compared against the earlier 

published results. Numerical results for 2-D grating embedded into three-layered 

structure with wx << Lx, wz << Lz were compared to data available in [23],[15], with 

selected data points listed in Table 1. For the computations, the permittivity of layers 

1 and 3 was assumed to be that of air. The second layer is an isotropic dielectric with 

ε = 2.2. Other parameters of the structure are:  

d1 = 0.125, d2 = 0.127, d3 = 1.298, wx = 0.5, Lx = 10, Lz = 40 mm, ψ = π, φ = π. 

Next the proposed algorithm is verified by comparing of the results with [15] for 

resonator on ferrite substrate (see Fig. 2).  



I.S. Nefedov  57

3.5 4.53.0 4.0 5.

14.0

16.0

18.0

20.0

22.0

w  (mm)

R
es

on
an

t f
re

qu
en

cy
 (G

H
z)

z

M  =200 A/m0

160 A/m

This work

Ref. [15]

Figure 2. Comparison with the results of [15]. fr for microstrip 2-D grating on ferrite substrate with 
Lx=3.556; Lz=14.2; wx=0.3556; d1=3; d2=0.127; d3=3.985mm; ε2=11.5; ψ=π; ϕ=0. 

 
The three-layered structure is considered, where the second layer is ferrite while 

the first and the third layers are air. According to [15], the permeability tensor of 

ferrite has the form:  

 
 

 
Table I. Comparison with strip resonator.  
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Table II. Convergence investigation 

 

where μ = (ω2
┴ - ω2) / (ω2

Η - ω2); μα = ωωΜ / (ω2
Η - ω2); ωΗ = 2πγΗ0, ωΜ = 2πγΜ0;  

ω┴ = (ωΗ(ωΗ + ωΜ)) 1/2; Η0 = 357.94 Οe (3000 A / m) is the inner field, γ = 2.8 MHz / 

Oe is the gyromagnetic ratio. Saturation magnetization M0 is being 2005 Oe (160000 

A / m) and 2506 Oe (200000 A/m).  

As seen from Table I and Fig. 2, good agreement was obtained for both structures, 

validating the numerical solution to the three-dimensional boundary-value problems. 

The difference may be explained by the fact that infinite grating is not fully 

equivalent to a single resonator. To compare the results we need to take large L/ w , 

but the convergence of the series in Green function is decreased in this case.  

Since there are no results for the resonant frequencies of the planar gratings or the 

resonators on bianisotropic substrate, the results [12], [24] are used, where the 

propagation constant of the dominant mode in a single strip line on chiral (biisotropic) 

substrate is computed. The characteristics of the dominant mode in the periodic strip 

line with wx / Lx << 1 are assumed to be close to those for the single strip line (see, 

Fig. 3), where ξ = - j (ε0 μ0)1/2 κ, ζ = -ξ. 
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Figure 3. Comparison with the results of [12,23]. Dispersion curve for a periodic strip line with 
period Lx=23mm on a chiral substrate for various values of the chirality parameter κ. N=2, ε1=4+κ2, 

ε2=μ1=μ2=1, d1=wx=3 mm, d2=30 mm. 
 

 The results obtained by testing the dependence of the algorithm convergence upon 

the number M of the Fourier components taken to be into account are given in Table 

II. The numbers of Fourier components in x and in z directions are taken equal to M . 

The parameters of the structure are: N = 3, Lx = 1; Lz = 1; wx = 0.5; wz = 0.35; d1 = 

0.5; d2 = 0.1; d3 = 1 mm; ψ = 0; φ = π. The layers 1 and 3 were assumed to be air. The 

second layer is an uniaxial crystal which anisotropy axis lies in xOz plane and is 

directed along z -axis. ε┴ = 11.5; ε|| = 7, where ε┴ and ε|| are the components of the 

permittivity tensor of crystal across and along the axis of anisotropy.  

The appropriate choice of basis which takes into account the current singularity at 

the edges of strips, results in a very good convergence upon the order of Galerkin's 

matrix Q . For lowest type of oscillation with M = 40 we have fr = 54.357 with Q = 4 

and fr = 54.329 with Q = 12.  

Finally, some new results for a shielded microstrip grating on an anisotropic chiral 

substrate are presented in Fig. 4. The parameters of the structure are the same as in 

Table II with the exception that the crystal has chiral property. Anisotropy axis lies in  
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Figure 4. Resonant frequencies of microstrip grating and parallel-plate three-layered resonator 
versus phase shift ϕ per period Lz. 

 
xOz plane and forms the angles θ = 45ο and θ = 0 with z axis. We assume that ξ = -

j (ε0μ0)1/2
,  ζ = -ξ. The lowest resonant frequency of 2 - D  grating versus phase φ for 

different phase shifts ψ and κ are given in Fig. 4. It can be seen that the presence of 

chirality decreases resonant frequency. The influence of the anisotropy axis direction 

on resonant properties is small.  

In addition the lowest resonant frequency of 2-D parallel-plate with the same phase 

shifts is shown. It is equal to zero when ψ = φ = 0 . The resonant frequencies of 

parallel-plate mode are poles of the equation for computing of the grating resonant 

frequencies.  

 

4. CONCLUSION  

An efficient spectral-domain full-wave algorithm for solving the problems with 

microstrip discontinuities, embedded into multilayered bianisotropic medium is 

described. The integral equation method leads to the matrix problem of small 

dimension Q . The order Q = 4 of matrix is enough for the calculation of the resonant 

frequency of the lowest type of oscillation. The value of Q needed is defined by the 
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type of oscillation calculated. Limitations of method, which appear for the high-type 

oscillations consideration, are connected with the necessity to take into account the 

large number of basis functions in the approximation of currents. The resonant 

properties of the 2-D microstrip grating on the chiral anisotropic substrate are studied. 

The algorithm presented may be used for calculations of both 1-D and 2-D infinite 

gratings and resonators, embedded into complex media, which are characterized by 

material parameter tensors ε, μ, ξ, ζ, having arbitrary form. The algorithm described 

may be extended over the problem of wave diffraction on 1-D and 2-D infinite 

gratings. This requires to specify the fields of incident and reflected waves on the 

interface with isotropic half-space in the model of open structure. After that a 

nonhomogeneous vector integral equation for deriving the reflected waves may be 

obtained. The algorithm proposed may be improved by the acceleration of series 

convergence in Green dyadic.  
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APPENDIX A  

The field components Ey and Hy may be expressed via Ex, Ez, Hx, Hz, as follows  

 

Ey = uxEx + uzEz + vxHx + vzHz  

Hy = sxEx + szEz + txHx + tzHz       (A.1)  

 

where  
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The component of matrix [A] which are obtained from the Maxwell equations (1) 

are expressed as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The matrices [C1], [C2], 

[C3], [C4] for the shielded 2 - D grating are given by the expressions: 
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The matrices [C1], [C2], [C3], [C4] for the open 2 - D grating are given by the 

expressions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


