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Abstract 
The evolution of statistical moments of the angular power spectrum for a semi-infinite absorbing 

medium, with large-scale random inhomogeneities is nvestigated. Nonsymmetrical structures are 
considered. Firstly the case of a normal illumination of the medium with anisotropic absorption is 
considered, while later an oblique illumination of the medium with regular absorption is taken. 
This approach is employed to derive systems of differential equations for the statistical moments. 
Then the systems were solved numerically. The most interesting result is the conclusion that under 
the asymmetrical dissipation of scattered waves the width and asymmetry of the spectrum can grow 
with the growing of absorbing properties of the medium. 

 

1. INTRODUCTION 

It is well known that the absorption does not only attenuate EM waves in random media, but 

changes their statistical characteristics essentially [1,2]. Especially  grating effects can be observed 

in case of anisotropic absorption of scattered waves. 

In this work evolution of statistical moments of the angular power spectrum of waves in the 

semi-infinite absorbing medium with large-scale random inhomogeneities is investigated. Two 

cases of incident wave directions were considered corresponding to normal and oblique directions. 

The last problem corresponds to the cases of light propagation in ocean, infrared light in clouds and 

near infrared light in biological tissues. Within the scope of the first problem the following cases 

were considered:  normal wave propagation in magnetised plasma when electron gyrofrequency is 

considerably higher than the other characteristic frequencies; quasilongitudinal propagation of 

waves and in general case based on expression for refraction index of  high-frequency waves in 

magnetised plasma [3]. 

 

2. EM WAVES IN MAGNETISED PLASMA 

Problem and Method  

Let’s consider plane monochromatic wave which falls along the normal direction on a boundary 

of semi-infinite layer of collisional magnetised turbulent plasma (Fig. 1). Polarisation of the wave 

coincides with polarisation of one of the normal waves of the plasma. External magnetic field B0 

forms an angle θ with the initial direction of k0 wave vector of the EM wave. 
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In the following shift of centre of gravity, variances and third central moment of angular 

spectrum of the wave power in the plasma is computed. 
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Figure 1. 

Let’s introduce Cartesian system of spatial coordinates X′Y′Z′ as shown in Fig. 1. Z′ axis 

coincides with the boundary interior normal. The direction cosines of k are conveniently measured 

in the basis sx
0, sy

0, sz
0 with sz

0 || B0 and sy
0 || OY. 

It is assumed that random inhomogeneities of refraction index are smooth in the scale of the 

wavelength. Variations of the normal wave intensity can be described by radiation transfer equation 

[4,5]. Under conditions of strong absorption and anisotropic scattering the angular spectrum will be 

narrow at arbitrary distance from the boundary. Therefore the transfer equation can be written in 

small-angle approximation [2,5] 

[(sz cos θ + sx sin θ ) ∂
∂ σ  z′

 + 1 + κ(s)/σ ]I(z′,s) = 

= I(z′,s′) χ(|s
−∞

∞

∫∫ x − sx′| / η , |sy − sy′|) ds′/ 4π η  ,     (1) 

where I(z′,s) - angular power spectrum of the normal wave or intensity of the wave on depth z′ in 

direction of unit vector (sx, sy, sz); σ - scattering coefficient [4,5]; κ(s) - absorption coefficient [3-5]; 

s = (sx, sy); χ(s,s′) - indicatrix of scattering which satisfies to the norming condition 

−∞

∞

∫∫ χ(s,s′) ds = 4π  ;        η = 1 − ν 2 , ν = m 10 / m 00 ,         (2)                     

m nk = s
−∞

∞

∫∫ x
n sy

k I(z′,s) ds                                                                                          (3) 

- angular moment of the spectrum. The assumption of smooth inhomogeneities permits negligence 

of  the normal waves interaction [4-6]. 

Let’s introduce the following boundary condition: 

I(0,s) = I0 δ( sx − sin θ) δ( sy )  .                                                                                                    (4) 
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The assumption that all the radiation propagates in narrow solid angle near direction of the 

spectrum centre of gravity (|sy|, |sx − ν| << 1) permits use the following approximation: 

sz = 1 2 2− −s sx y  = N 0 + N 1 sx − N 2 sx
2 − N 3 sy

2 ,                                                                        (5) 

where 

N 0 = ( 1 − ν 2 / 2η ) / η   ,     N 1 = ν 3 / η η  ,     N 3 = 1 / 2 η  ,     N 2 = N 3
 / η  . 

and 

κ(s) ≈ κ + κx′ (sx − ν) + [ κx″ (sx − ν) 2 + κy″sy
 2 ] / 2  ,                                                                  (6) 

where 

κ = κ(ν,0)  ,     κx′ = ∂ κ
∂ ν
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From (1) with (5) and (6) it is followed that angular moments (3) satisfy the infinite system of 

equations 

n 0m 00′ + n 1m 10′ − n 2m 20′ − n 3m 02′ + Am 00 + Bm 10 + κx″ m 20 / 2σ + κy″ m 02 / 2σ = 0 , 

n 0m 10′ + n 1m 20′ − n 2m 30′ − n 3m 12′ + Am 10 + Bm 20 + κx″ m 30 / 2σ + κy″ m 12 / 2σ = 0 ,       (8) 

n 0m 20′ + n 1m 30′ − n 2m 40′ − n 3m 22′ + Am 20 + Bm 30 + κx″ m 40 / 2σ + κy″ m 22 / 2σ = 

= η<s 2>m 00/2 , 

n 0m 02′ + n 1m 12′ − n 2m 22′ − n 3m 04′ + Am 02 + Bm 12 + κx″ m 22 / 2σ + κy″ m 04 / 2σ = 

=  <s 2> m 00 / 2 , 

n 0m 30′ + n 1m 40′ − n 2m 50′ − n 3m 32′ + Am 30 + Bm 40 + κx″ m 50 / 2σ + κy″ m 32 / 2σ = 

= 3η <s 2> m10 /2   ,..., 

where 

n i = Ni cos θ ,    i = 0, 2, 3  , 

n 1 = ( N 1 + tg θ ) cos θ  , 

A = [ κ − ν ( κx′  − ν κx″ / 2 ) ] / σ  ,      B = ( κx′  − ν κx″ ) / σ  , 

<s 2> = s
−∞

∞

∫∫ x
2 χ(s,s′) ds / 2π  .                                                                                                    (9) 

Single primes in (8) denote derivatives with respect to σz′. 

To this end five equations of the system in (8) is kept. This means that the influence on the 

spectrum of indicatrix moments higher than the second one can be neglected (9). This is possible 

when the scattering in the plasma can be described by a function rapidly decreasing towards large 

angles. 
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Simple algebraic transformations allow to derive closed-loop system of differential equations for 

the centre of gravity shift ν (2) and the following integral characteristics of the spectrum: 

vx = m 20 / m 00 − ν 2  ,        vy = m 02 / m 00  ,        μ = m 30 / m 00 − 3ν vx − ν 3                            (10) 

(variances and third central moment). The number of unknowns can be reduced due to the 

assumption about statistical independence of variables sx and sy: 

m nk = m n0 m 0 k / m 00

and besides that it was supposed that the spectrum at large angles of scattering is approximated by a 

Gaussian function. As the result firth central moment can be neglected and firth noncentral moment 

can be expressed through the previous those in the equations 

m 40 / m 00 = 3vx
2 + 6ν 2 vx + ν 4  ,        m 04 / m 00 = 3vy

2  ,  

m 50 / m 00 = 5μ (vx + ν 2) + 15ν vx
2 + 10ν 3 vx + ν 5  . 

The system was solved numerically with the use of Runge-Kutta and Gauss methods [7,8]. 

The derived solution is valid under the following conditions: 

<s 2>  <<  1  ,            v∞  <<  1  ,                                                                                                 (11) 

v∞2 = σ <s 2> / 2  κ″  ,                                                                                                                 (12) 

κ″ = ∂ κ

∂

2

2
0 0
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2

2
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( )

,

s
sy

  .                                                                                                   (13) 

The second of (11) inequalities means that the width of the spectrum should be small in deep 

(steady-state) regime. More so it is required that the width of the spectrum  at arbitrary distance 

should not exceed considerably the deep one. 

 

Results and Discussions 

a) Let’s consider first of all the simplest case when electron gyrofrequency ωBe is considerably 

higher than the other characteristic frequencies  ω , νeff , ωp   <<  ωBe , where ω - the wave 

frequency,  νeff  - collisions effective frequency, ωp - plasma frequency. 

If the incident wave E vector is in the B0, k0 plane, then under the conditions 

νeff   <<  ω  ,        νeff v s 2   <<  ω (1 − v) (1 − v + v s 2)  , 

where v = (ωp /ω) 2, the absorption coefficient in the sense of geometrical optics approximation 

[3,6] is 

κ(s) =  νeff v s 2 / c 1− v (1 − v + v s 2) 3 / 2  ,                                                                                (14) 
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with c being light velocity in vacuum. It should be mentioned that in this case normal waves do not 

interact, because of the second normal wave (E vector of which is  perpendicular to B0, k0 plane) is 

not scattered on the plasma inhomogeneities (the wave propagates like in vacuum). 

During the propagation centre of gravity of the spectrum turns toward B0 the external magnetic 

field direction (Fig. 2). The reason is that the absorption coefficient (14) diminishes to zero in that 

direction. Propagation results in a growth of variances due to the scattering. It is very interesting 

that the variance vx grows nonmonotone (for vy this effect is less pronounced). Moreover the value 

of vx variance in intermediate distances can exceed the asymptotic (large-depth) one. 

The effect is the result of a competitive behaviour of two factors. On the one hand if the angle 

between wave vector k and the external magnetic field B0 is decreased the absorption coefficient 

(14) diminishes. This causes increase of the scattered wave intensity if geometrical paths of all the 

waves could be equal to each other. On the other hand the nonscattered wave come to  z=const  

plane by a shorter way that the scattered one.  If the absorption coefficients of the waves could be 

equal then nonscattered wave will have grater amplitude than the scattered one. It is obvious the 

equilibrium of the above factors takes place in transition to large depths. Numerical calculations 

showed that the effect of exceeding of deep value by the variance appears when  θ ≠ 0,  and this 

effect grows with increasing of θ and anisotropy of absorption. 
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Figure 2. Evolution of wave parameters when electron gyrofrequency is considerably grater than the other 

characteristic frequencies. θ = 15O, v = 0.7, <s 2> = 0.003; solid lines - νeff / σ c =5, dashed-0.5; numbers denote: 1-
ν*=ν/ sin θ,  2  -  vx

*  =  vx / η v∞ ,        3  -  vy
*  =  vy / η v∞ ,            4 - μ* = μ/(ηv∞ )3 / 2.          z = v∞ κ″z/2. 
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Figure 3.  Parameters  and  notation    are  the same as in Fig. 2. 
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Figure 4.  Qasilongitudional  propagation.  θ = 15O, v = 0.7, <s 2> = 0.003, νeff / σ c =5, u = 0.3 with the preceding 

notation. 
 

0.0 0.5 s
0

10

(s ,0)/

x

xκ σ

1
2

3

 
Figure 5.  1 - parameters correspond to those in Fig. 2,   2 - Fig. 4,   3 - B0 || sx

0. 

 

In transitional to deep regime region an increasing of the spectrum asymmetry takes place (the 

coefficient  μ* in Fig. 2). In deep regime the asymmetry diminishes to zero (μ*→0). The curves in 
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Fig. 3 exhibit the randomising effect of absorption [1,2]. The spectrum width increasing with the 

plasma absorption is observed in the range 1.5 < σ z′ < 2.5. 

b) A similar analysis can be made for the case of EM wave propagation in plasma with weaker than 

in above described case external magnetic field. Let’s consider the case of quasilongitudional 

propagation of unusual [3] wave with absorption coefficient 

κ(s) = νeff v / c 1 1 2− + −v u( s )  (1 + u(1 2− s )  ) 3 / 2  ,                                                             (15) 

where u =  (ωBe /ω) 2. It should be mentioned that vistlers have the same coefficient of absorption, 

so described below results could be apply for them. 

For illustration the case of  v < 1 is considered (Fig. 4). The absorption anisotropy causes a 

similar as in above case shift of the centre of gravity towards B0 the external magnetic field 

direction. But ν does not diminish to zero in deep regime. It is the result of slow relative variation 

of the absorption coefficient (15) over the range of angles [0, θ] (Fig. 5). In this case the waves 

scattered both along magnetic field B0 and at small angles attenuate rapidly. 

The nonmonotone variation of vx variance is absent in this case because of too smooth 

dependence of the absorption coefficient on angle (Fig. 5). The difference between deep values of 

vx and vy is the result of the difference between derivatives  ∂ κ

∂ ν

2
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ν∞ - value of ν in deep regime. 
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Figure 6.  Numbers notation corresponds to figure 2. 
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Figure 7. 

 

c)  The described above cases do not cover all the situations of anisotropic absorption of EM waves 

in magnetised plasma no doubt. But there are common peculiarities. It was confirmed by additional 

analysis on the basis of described above method but with numerical calculation of parameters (7). 

For the latter the expression for refraction index of high-frequency waves [3] was used. 

The    results    for    usual    [3]   wave     parameters     θ = 15O,    <s 2> = 0.003,    ω/σ c = 1,   

νeff  / ω = 0.1, v = 7, u = 2 are shown in Fig. 6. Geometry of the problem is shown in Fig. 1, but B0 

field is directed along  sx
0 vector and θ angle is counted from  sz

0  direction. This geometry permits 

to choose the most anisotropic part of absorption curve (curve 3 in Fig. 5). 

The results presented in Fig. 6 confirm the discovered above peculiarities of EM waves 

propagation. The presence absorption in  sx
0 = 0  direction (Fig. 5)  is  the reason of the fact that ν∞ 

≠ 0. The large relatively variation of absorption coefficient in  the range of angles [0,θ] explains 

nonmonotone dependence of the variances on distance. It should be underlined that in this case the 

last effect is observed for vy variance too. As it is expected μ* (the asymmetry) has maximum in the 

transitional to deep regime distances. 

 

3. SIMILAR EFFECTS IN MEDIA WITH REGULAR ABSORPTION 

Problem and Method  

Similar effects take place in random media with regular absorption. 
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Figure 8. Evolution of wave parameters under oblique illumination of random medium with regular absorption.  θ  =  

37O ,  Λ =  0.2 ,    <s 2> = 0.0012; z = v∞ κz,; numbers denote:  1 -  ν* = ν / sin θ  ,     2  -  vx
*  =  vx /  v∞ ,     3  -  vy

*  =  vy 

/ v∞  ,       4  -  μ* = μ/(ηv∞ )3 / 2. 
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Figure 9.   The  same  case  as  in  Fig. 9  but  <s 2> = 0.003 . Dashed curve - vy , solid - vx ,. numbers denote:  1 -  Λ = 

0.2  ,    2  -  0.08. 
 

Let’s consider plane monochromatic wave which is refracted at θ angle on a boundary of semi-

infinite layer of random medium with the regular absorption (Fig. 7). k0 denotes initial direction of 

the wave vector of EM wave. XYZ - Cartesian system of spatial coordinates. Z axis coincides with 

the boundary interior normal. The direction cosines of the vector k are measured in the basis sx
0, sy

0, 

sz
0 (Fig. 7). 
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Let’s suppose that the medium inhomogeneities are large in the scale of wavelength. Under 

condition of a narrow angular power spectrum the transfer equation can be written in the small-

angle approximation: 

[(N 0 + N 1 sx − N 2 sx
2 − N 3 sy

2) ∂
∂ τ  

 + 1]I(τ,s) = 

= Λ I(τ,s′) χ(|s
−∞

∞

∫∫ x − sx′| / η , |sy − sy′|) ds′/ 4π η   ,     (16) 

where I(τ,s) - angular power spectrum of the normal wave or the wave intensity on optical depth 

τ=(σ+κ)z in direction of unit vector (sx, sy, sz); σ - scattering coefficient; κ -  absorption coefficient; 

Λ=σ/(σ+κ) - albedo of single scattering, s = (sx, sy); χ(s,s′) - scattering indicatrix, definitions of  η 

and ν coincides with the introduced above but angular moment of the light intensity is the 

following: 

m nk = s
−∞

∞

∫∫ x
n sy

k I(τ,s) ds                                                                                                          (17) 

From the (16) infinite system of equations for the angular moments is derived 

N 0m 00′ + N 1m 10′ − N 2m 20′ − N 3m 02′ + a m 00 = 0 , 

N 0m 10′ + N 1m 20′ − N 2m 30′ − N 3m 12′ + a m 10 = 0 , 

N 0m 20′ + N 1m 30′ − N 2m 40′ − N 3m 22′ + a m 20 = η b m 00 ,                                                     (18) 

N 0m 02′ + N 1m 12′ − N 2m 22′ − N 3m 04′ + a m 02 = b m 00  , 

N 0m 30′ + N 1m 40′ − N 2m 50′ − N 3m 32′ + a m 30 = 3ηb m 10 ,    ,..., 

where a = 1- Λ ,  b = Λ<s 2>/2 , primes in (18) denote derivatives with respect to τ. 

The system truncated up to fife equations was solved  numerically. The mentioned above 

assumptions are retained. 

The derived solution is valid under the conditions (11) but 

v∞2 = σ <s 2> / κ                                                                                                                          (19) 

and it is demanded that width of the angular spectrum at arbitrary distance should not exceed 

considerably the deep one (given by (19)). 

 

Results 

The most interesting effects arise in the case of strong dissipation (Fig. 8). In this case 

asymmetry of the scattered waves attenuation causes increasing of the angular distribution width in 

some interval of distances. The effect accompanies with growing of asymmetry of the distribution 

and its shift toward the boundary normal direction. 
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Effect of increasing of the wavefield fluctuations caused by absorption is demonstrated in Fig. 9. 

There is shown that the angular spectrum width grows with increasing of the medium absorbing 

properties. 

 

 

4. CONCLUSIONS 

Using the method, there were derived qualitatively the same evolutions of the statistical 

moments with distances for both the problems. 

The most interesting result is establishment that in some interval of distances the angular power 

spectrum variances can grow with the growing of dissipative properties of the media. At the same 

time there were registered nonmonotone changes of the variances with distance. Maximum values 

of the variances in intermediate distances in the case of strong dissipation can exceed the 

asymptotic values. Growing of the spectrum asymmetry in the intermediate distances accompanies 

the mentioned above effects. All the effects are absent both in the case of wave propagation in 

plasma along the magnetic field and under normal illumination of the medium with regular 

absorption. 

The work is partly supported by the Russian Foundation of Fundamental Research (grant No. 97-

02-16228). 
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