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Abstract 
     The process of optical wave propagation through a randomly inhomogeneous 
atmosphere is attended by gigantic random fluctuations developing in the wave 
intensity. It is known wave diffraction is the reason of limitation of intensity, but it is 
also known traditional methods for calculation of statistical moments of intensity are 
difficult enough. 
     To take proper account of diffraction influence on optical turbulence effects and at 
the same time to simplify the problem the ”warm rays” method is offered. The method 
is based on the analogy between the evolution of the density of a warm gas of 
noninteractive particles and monochromatic optical waves propagating behind a 
random phase screen, which in many cases is a good model of real atmosphere.  
     The method allows to obtain a simple in structure expression for the correlation 
function of intensity fluctuations. To confirm the adequacy of applied assumptions 
verification is performed by an example of the dynamic phase screen. The diffraction 
influence on the integral probability function of intensity is also considered. The 
influence of parameter characterizing the relation of focusing and diffraction of 
waves is also analyzed.    
 

1. INTRODUCTION 

It is well known when optical waves propagate through  a chaotic media, the 

inhomogeneities of refractive index    focuse  the rays. The process is attended by 

gigantic random fluctuations  of wave intensity. Knowledge of the distribution of 

intensity is  of  interest for a variety of reasons. Indeed, the practical use of waves 

propagation requires knowledge of the probability  of  a high-intensity spike or a low-

intensity fade  at  some  time  and place. Ideally, one desires a theory determining the 

complete probability density function of intensity, but this goal  has  proven  to  be 

quite difficult. Many theoretical studies [1-5] have  concentrated  on the  variance  of  

intensity  with an effort  directed  toward   an understanding of the general pattern of 

higher moments.  

Since various inhomogeneities act as many different type of lenses with random 

properties, they create a random distribution of caustics and foci, where the wave 

amplitude tends to become infinite [5-6] and all higher moments  of  intensity  are  
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unlimited. However this occurs only in geometrical approximation.   In real media the 

restriction of caustic peculiarities of  intensity is due to diffraction. At the same time, 

the  exact  mathematical description of the diffraction effects is considerably difficult 

aim [6]. 

 In this paper  an  approximate  method is proposed to  take into  account the 

diffraction limitation  of  intensity.  

 

2. MATHEMATICAL  FORMULATION 

For simplicity only two-dimensional problem is analysed here. However it is easy 

to extend this method to real three-dimensional case. Consider a scalar wave field of 

the form E(x,z)exp(ikz), where k is wave number and x is a coordinate perpendicular 

to the propagation distance z. Then the complex amplitude of the wave can be 

described by the parabolic wave equation [6], namely,   
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where η is the fluctuating part of  refractive index. It is conveniently to consider the 

method for the example of a random phase screen  which in many cases is a good 

model of real atmosphere [7]. Let an optical wave propagating along the z axis with 

the intensity I0  falls on a random phase screen located in a plane z=0. The geometry 

analyzed is shown on Fig.1. For the present instance we may suppose the fluctuation 

part of a medium's index of refraction is equal to zero everywhere, but, instead of it, 

the random boundary condition  on the screen appears. 

Then define the Wigner function [ 8 ] 
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which is  the ray intensity  of a wave propagating with an angle v to the z axis. This 

allows to get from (1) and (2) the Liouvelle equation [9] 

 

                                                                             x   
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   Figure 1. The geometry of the considered problem. AB is a phase screen. 
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with the boundary condition 
 

       (4) f x v z I f x v( , , ) ( , )= =0 0 0

              

and full intensity in the fixed point (x,z) is 
 

       (5) I x z f x v z dv( , ) ( , , ) .=
−∞

∞

∫

 

One can notice that just the same as (3) Liouvelle equation describes an evolution 

of density of noninteractive particles  [9] in the phase space  (x,v), where x and v are a 

coordinate and velocity of a particle, respectively. The limitation factor for the gas 

density is a thermal scattering of velocities. The absence of this scattering gives the 

unlimited peculiarities in the  density  field.  In  our  case  it  is  the diffraction that 

restricts the intensity fluctuations. So, we  will  use this analogy and call our method 

the ”warm rays” method. 

     Now we shall consider an initial angle  v0  under which a ray  goes out the  screen  

is  a  random  function  with  known  statistical  properties. 
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     Let plane wave with the intensity I0  falls  on  the  phase screen setted in the plane 

z=0 and contributed the distortion kΨ(x) . Then the boundary  condition (4) is 

 

 [ ]{ }f x v z I ik x q k x q k ivq dq( , , ) exp ( / ) ( / ) .= = + − − −
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To find the wave intensity behind the screen  the  functions  are used 
 

             (6) 
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In terms of this functions one can write  
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or, in another form 

 

  ( ) ( )[ ]f x v f x v v x0 0, ,= −Τ

 

where fT (x,v) is given by 
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This function fT takes the diffraction into account and gives the diffractional 

smoothing of peculiarities. Moreover, it  helps  to find the following exact expression 

for the wave intensity  behind  the screen 
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Here 
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    ( ) ( )X z a a v a z, = + 0

 

is an equation  of  a geometrical  ray coming out the point with coordinates (x=a, 

z=0) on the screen, and δ(q) is delta-function.  

     It should be emphasized here that (6), (7) and (8) give the closed form  of exact 

solution of our problem. Unfortunately it isn't possible to simplify this solution  if the 

phase on the screen changes on arbitrary law. So we shall consider one concrete 

example to show how the ”warm rays” method can be putted into practise.  

 

3. RESULTS AND DISCUSSION 

     Let a plane wave falls on the screen with phase ϕ  evenly distributed on the 

interval [-π,π] 
 

       (9) ( ) ( )k x k xΨ = +ψ κ ϕ0 sin .

 

Calculating in consecutive order v0(x), Φ(x,q,k) from (6) and fT(x,v) from (7), one can 

find the intensity I(x,z). The additional assumption the wavelength λ is smaller than 

the smallest screen dimensions are allows  to  use  the  expansion  of Φ(x,q,k) in a  

series  with  a  parameter  /k.  The  first-order approximation makes it possible to 

obtain the following form  for the intensity field 

κ
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where Jn   is  the  Bessel  function  of  n-th  order,  y=κ x  and t=zΨ  are 

nondimensional coordinates. Notice that the plane t=1 is the plane where the gigantic 

peculiarities are concentrated in geometrical approximation. The most important 

feature of the last expression is the parameter 

0
2κ
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It characterizes a correlation between two  contrary  mechanisms: focusing and 

diffraction. We can remember the  analogy  of  waves intensity and particles  density  

behavior  and  then  call  this parameter the ”rays temperature”. The smaller ε  is, the  

larger  the intensity peculiarities are.   

     One can see it comparing the intensity fields with different ε. Since parameters y 

and ϕ possess equal rights in (10), we can examine the dependence of I on random 

phase ϕ in the fixed point (y=0, t=1). The choised point is interesting because of it is 

the region where strong focusing of the wave takes place in geometrical 

approximation, so I(ϕ) is infinite under some ϕ. Here we study the influence of the 

“ray’s temperature” if ε=0 and ε=0.01. 

 

      
 

  (a) ε=0       (b) ε=0.01 

 

Figure 2. Intensity field I (y=0,t=1) versus phase ϕ. Parameter I0 =1. Exact data (dots) are plotted for 
comparison.  

 

     On Fig.2,a  the  intensity  field  in this point is plotted under the condition  ε=0. 

The high-intensity spike on the curve corresponds to the strong focusing of rays in 

geometrical approximation. The influence of ε  is shown on the Fig. 2,b. Clearly, 

Fig.2,b confirms our conclusion that the ε growth corresponds to diffraction destroys 

the spikes before the focusing begins. 
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     To check our results the second curve is plotted on each figure.  On the Fig.2,a it  

is  the exact  geometric optical  solution  
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where bm  are the solutions of the following equation 

 

 y b t b y− − + =cos( ) .0  

 

Obviously  it  isn't  possible  to distinguish these curves. On the other hand the 

convenience of our screen model is it allows to  find the exact intensity field from (1) 
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2
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So, the exact field is also plotted on Fig.2,b and an important observation from this 

plot is that exact  and  our  solutions  coinside very closely. It means the adequacy of 

our method is good enough. 

      We can go now to study the probabilistic characteristics  of the intensity. Notice 

that the most simple way  is  to  calculate the integral probability function. Obviously 

it is equal  to  the  relative amount of values  I(ϕ)  for  which the  inequality  I(ϕ)>I  is 

satisfied. 

     It can be shown [10]  in geometrical optics approximation in the fixed space point 

the integral probability function F(I) is inversely proportional to I: 
 

  ( )F I I~ /1

          

and we have found numerically that the same result  our  method  gives if ε=0 

(Fig.3,a).  
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  (a) ε=0, n=1     (b) ε=0.01, n=2 
Figure 3. The integral probability function F(I). The upper lines are approximating curves F appr~I -n.  
 

Just this result means all higher statistical moments of intensity are unlimited.  When  

the  ε  grows  the diffraction influence is  stronger and then faster distribution 

functions  decreases. For example, using the data for intensity field I(ϕ) when ε=0.01 

we have computed that F(I)~I-2  in a region of large I. This result is shown in Fig. 3,b 

(the removing lines on Fig. 3 exactly are approximating curves with powers -1 and -2 

respectively). Hence,  the  larger   ε  is, the   stronger  statistical moments are 

limited. For  example,  the  "warm  rays" method  helps  to   calculate   the   

dispersion   of   intensity fluctuations.  The  hypothesis  of   statistical   splitting   of 

diffractional and  geometrical  averages [11] makes  it  possible  to obtain the 

dispersion of intensity fluctuations σ   for Gaussian  law  of  phase  distribution  on  

the screen in the form 

I
2
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One can verify this integral converges in every point t, it being found that if ε=0.01 

then (σI
2)max= σI

2(t=1)=2.8. Furthermore, the increase of ”ray’s temperature” ε causes 

the decrease of the intensity fluctuations.  
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     Notice that all these results are obtained in the assumption λ is much more smaller 

than all typical dimensions on the  screen so we only  touch  up  the  simplest  

geometrical  approximation. Nevertheless the use of the  ”effective  temperature”  

allows  to calculate the intensity behind a screen as well as  to  find  the dispersion of 

intensity fluctuations and asimptotic law  for  the probability density function. 
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