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Abstract 

The Method of Discrete Sources (MDS) was applied to construct complete 
mathematical models of light scattering from various kinds of defects on silicon wafers.  
In this paper the wafer defects are contaminating particles, surface defects (pits), and/or 
subsurface defects (bulks).  A heuristic approach was suggested as a tool for a qualitative 
analysis of scattering from wafer defects.  Numerical results demonstrate the advantage 
of the proposed technique. 

 
 

1. INTRODUCTION 

The foregoing miniaturization of microchips and increasing of numbers of elements at 

the same area of surface come to be a real factor of a technical progress in the last 

decades.  Being a first-step chain for the chip manufacturing silicon wafers demand an 

extra care of their purity, which is determined by certain defects of real wafers: 

contaminating micro-particles, pits and subsurface bulks, some other defects.  The purity 

monitoring is being carried out through special devices, namely surface scanners, where 

special collectors for analysis of scattered from wafer defect light are in use.  As a rule, 

these devices use a laser source of light.  Scanners of such a kind are developed for 

determination of wafer defect characterization: the number, type and size of 

contaminants, and their locations as well.  The wafer manufacturers at the present tend to 

monitoring defects as small as 0.06 μm. 

One of important problems to be solved is a determination of the contaminant size and 

material.  The other one, very new, is the identification of defects of various kinds.  In 

particular, how to distinguish a contaminating particle from a pit or a subsurface defect.  

The last problem seems to be even more important than identification of the material of a 

contaminating particle, because at the present any wafer defects are treated by scanners 

as particles.  In order to remove those defects the chemical cleaning of surface is carried 

out.  As a result, the number of particle decrease, yet pits only grow instead, or 
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subsurface defects transform to new pits.  When sounding repeatedly scanner again 

figures out a pit as a particle but just having a bigger size.  So that, the further "cleaning" 

of a surface can have a complete damage of wafer as a result.  

In this paper a new approach is developed allowing to analyze a scattering of TM or 

TE polarized plane wave from a penetrable particle, subsurface defect or pit on the 

surface of silicon wafer.  On the base of the Method of Discrete Sources (MDS) a 

program is developed enabling to carry out a numerical analysis of defects of different 

kinds.  Based on results of mathematical simulation and numerical experiments 

characteristic features of defects are established, that helps their identification. 

 

2. MODEL I: PENETRABLE PARTICLE ON SUBSTRATE 

Let us start from the Boundary Value Scattering Problem (BVSP).  Let { ,  to 

be a field of time-harmonic plane electromagnetic wave of linear polarization.  The plane 

wave is assumed to propagate in direction with an angle γ of a normal to the plane Ξ, an 

air-substrate interface.  Denote two half-spaces with  (air) and  (substrate), see Fig. 

1.   

}E H0 0

D0 D1

Let an axi-symmetrical scatterer  having a smooth surface Di ∂D  to be located at the 

interface in such a way that its symmetry axis to be parallel to an external normal of the 

interface Ξ.  Then introduce into consideration a Cartesian coordinate system, choosing 

its origin at the touching point of scatterer , and take Oz axis to be directed into , as 

it is shown in the Fig. 1.  Then the BVSP can be stated as follow: 

Di D0
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radiation/attenuation conditions at infinity (z ≠ 0).    (1.1d) 
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Figure 1. Geometry of the problem 

 
 

Here k c= ω / ,  is a scattered field in , and medium parameters fit the 

condition Im

{E H0 0
s s, } D0

,ε μt t ≤ 0 , the time dependence is chosen as { }exp i tω . 
 

Let us construct an approximate solution to BVSP (1) on the base of MDS [1].  For 

this goal let us represent the external excitation as a total of incident and reflected plane 

waves at the upper half-space ( ) and refracted wave at the lower half-space ( ).  

Thus, at the upper half-space ( ) it is sufficient to construct a representation for a 

scattered field only.  The idea of MDS is to construct a scattered field as a finite linear 

combination of multipoles' fields, so this combination would fit the Maxwell equations at 

fields , , ; at infinity: the radiation conditions in , and the attenuation 

conditions in , (the silicon is supposed to have an attenuation); and also the 

D0 D1

D0

D0 D1 Di D0

D1
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transmission conditions for tangential components of fields at the interface (that is an 

essential point).  Under these conditions the solution of BVSP (1) is being reduced to an 

approximation of the external field at the particle surface via multipoles' fields.  So that 

the determination of unknown amplitudes of discrete sources is being carried out from 

transmission conditions at the particle surface ∂D .  The advantage of this approach is 

the opportunity to estimate the defect of the solution obtained through calculation of the 

residual of boundary values at ∂D .  Let us construct the representation of approximate 

solution in such a way to take into consideration auxiliary the axial symmetry of an 

obstacle and polarization of inclining plane wave.  A similar approach has been used by 

the authors in some previous works for calculation of scattering from particle in free 

space [4].  Let us put the multipole sources of electric (e) and magnetic (m) kinds to the 

base of external field representation in such a way that the Hertz vectors for these poles 

have a form 
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e h
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e h

z x m my
e h
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e h

z y mg f g, , , ,( , ) , ( , )= + ∇ = + ∇ f ,
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with  being Cartesian orts.  We remind, the structure of such a form is 

determined by a half-space [3] presence and can be explained in the terms of Green 

tensor structure ( ).  The elements  and  are produced by elements 

 and G  of the Green tensor 
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where  is the Bessel cylindrical function, and  is the Hankel spherical 

function; the point q lies at the half-plane φ = const, and poles are located at the Oz 

symmetry axis: .  Spectral functions 

Jm (.) hm
( ) (.)2

w On ∈ z κ e h,  and ζ are 
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    (1.2b) 

Since the particle is located in the upper half-space , the field representation inside 

the substrate  is not effected.  Nevertheless, this representation will be considered 

later, assuming that it can be deduced in a similar way.  

D0

D1

The representation for fields inside defect is based on the poles having singularities at 

the infinity [3]  
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where  is the spherical Bessel function.  Now formally we must just construct 

representations of EM fields inside and outside particle.  This can be done taking into 

account not only the axial symmetry of the obstacle, but also the exciting field 

polarization [4]. 

jm (.)

 

Now consider the field of TM-polarized (the electric vector lies at the incident plane) 

plane EM wave, propagating under an angle γ to Oz axis.  Then a total field of plane 

wave at the upper half-space can be written as follows 
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where the Fresnel coefficient in TM-case is [5]  
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RP =
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In order to take into consideration the polarization of an external field, let’s introduce 

the following combinations of vector potentials: 
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υ = { , }m n  is a multiple index: 0 1≤ ≤ ≤ ≤m M n N, , here M is a maximal number of 

harmonics, and N is the multipoles number, being the same for the all range of m.  Let’s 

denote υ υ0 0 0 1, : { , }, { , }Y Y= M N=  are minimal and maximal values of the 

multiple index.  Besides that take into consideration vector potentials to describe dipole 

sources 
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According to the notations introduced we construct the representation of BVSP (1) for 

TM-case in the form 
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As mentioned previously, the representation (1.5) satisfies all the conditions of BVSP 

(1.1) except transmission condition at the particle surface.  By the analogy of the free 

space case [4] the potentials (1.4) are easily seen to be constructed in accordance with 

TM polarization of the external excitation (1.3). 
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In TE case (when  vector is orthogonal to the incident plane) the incident field is 

written as follows 

E0
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The Fresnel coefficient for TE-polarization has a form [5] 
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In this case the approximate solution to BVSP (1.1) will has a form (1.5), yet instead 

of potentials (1.4a) we use following combinations 
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Besides, the last term in the right-hand side (1.5), the dipole component, contains 

instead of a field { ,  the field { , , produced by the vector potentials of 

the kind 
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The dipole component in (1.7b) has such a form because in TE-case  vector lies at 

the incident plane. 

H0

 

So, the approximate solution to BVSP (1.1), where the vector multipole sources 

constructed in a special way are included, has a following properties: 

1) fits the Maxwell equations inside a particle and in both half-spaces; 

2) automatically satisfies the transmission condition for tangential components of 

fields at the interface Ξ; 

3) satisfies the radiation/attenuation conditions at infinity. 
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Due to the completeness of the multipole system [3] and the orthogonality property of 

the multipole system for TM and TE polarizations at an arbitrary axi-symmetrical surface 

the following result take place. 

Theorem 1. Let { , : (1.3)/(1.6) then there exists Y and such coefficients 

 that the field { , : (1.5), where the vector potentials (1.4)/(1.7) 

converge uniformly to the {  exact solution of BVSP (1.1) while  at any 

closed compact outside the scatterer. 

}E H0 0

{ , }p qυ υ υ υ= 0

Υ }

}
E HΥ Υ

E H0 0
s s, Υ⇒∞

 

As noticed above, the approximate solution (1.5) satisfies all the conditions of BVSP 

(1.1) except transmission conditions at the particle surface.  Let us introduce into 

consideration the amplitudes vector { }p := pt t t
υ υ υ

, ,q rn
0

Υ
.  As far as we try to 

approximate scattering characteristics in the far zone it is quite sufficient to provide a 

minimum of the field residual at the particle surface in L D2 ( )∂  norm [3]. 
 

The numerical algorithm for the determination of pole amplitudes seems to be more 

convenient as split into few steps.  Because sources are located at Oz axis, the 

approximate solution (1.5) to BVSP (1.1) represents itself a finite linear combination of 

azimuth harmonics.  So, at the first step tangential components of electric and magnetic 

fields of exciting plane wave are expanded into Fourier series on φ variable, using the 

following representation for plane wave  

exp{ cos } ( ) ( ) ( ) cos− = − −
=

∞

∑i i Jm
m

m
m

ϖ φ δ ϖ φ2 0
0

m , 

where ϖ ρ γ= k0 sin .  As the representation (1.5) for the field { ,  has a form 

of finite linear combination of Fourier harmonics with a dependence on the azimuth angle 

as 

}E Ht t
Υ Υ

sin mφ  and cosmφ  (t.i. a trigonometrical polynomial), then the determination of pole 

amplitudes is being deduced to the determination of the amplitude vector p for each 

azimuth harmonics (i.e.  for a fixed harmonics number).  As a result, the problem of 

surface approximation is being reduced to an approximation of field azimuth harmonics 

at the particle surface element ℑ [4]. 
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For a solving of this task we use the collocation method, i.e.  the matching of azimuth 

harmonics at the set of collocation points   at the particle generatrix ℑ.  We 

should notice here, that both asymptotic evaluations [3] and numerical experience show 

the use of overdetermined systems enables to realize the most reliable numerical scheme 

for the amplitudes determination. 

{ }χl l= ⊂ ℑ1
L

Each such system of linear algebraic equations (SLAE), corresponding to certain 

azimuth harmonics, is an overdetermined one of dimension 4 4L N× .  For a harmonics 

not depending on φ we have a separate SLAE of size 2 2L N×  [4]. 

Remind, the different representations to an approximate solution, depending on the 

excitation polarization were proposed.  However, the feature of the approach presented is 

a possibility to use the same matrix (for a fixed azimuth harmonics) either for TM or TE 

case.  Thus, the determination of unknown pole amplitudes for TM and TE cases is being 

reduced to the duplex solving of SLAE having the same matrix but different right-hand 

sides. 

In practice, the number L of collocation points is chosen from a usual approximational 

relation for sine-shaped functions:  8-10 points per each wavelength; while the number N 

of poles is chosen less than L.  We usually take N from an heuristic relation L > 1.5N, that 

is quite sufficient for a reliable determination of pole amplitudes while N →∞ .  The 

maximal harmonics number M is chosen from the condition of good approximation of the 

plane wave by the finite piece of the Fourier series. 
 

Note, the estimation of a quality of the exciting field at the particle surface allows us 

to establish a reliable monitoring of an approximate solution to BVSP (1.1) as aiming for 

faithful one.  The residual calculation is important to being calculated at the whole 

particle surface, not only at the collocation points, with using as an external excitation the 

field of plane wave non expanded in Fourier series. 

One of the basic scattering characteristics is the far field pattern, being determined as  
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Let’s use an asymptotic approach [6] for a calculations of integrals of a kind 
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this formula the asymptotics for Green tensor elements in the far zone can be obtained, 

and so the far field pattern elements do. 
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where spectral functions with an over-lines are 
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Similarly, for TE case we have 
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Here the same designations as for TM case are used. 
 

In such a way, the Green tensor elements in a far zone do not contain any Sommerfeld 

integrals, so diagram components do.  Thus, once unknown pole coefficients are 

determined, to calculate scattering characteristics it is sufficient to calculate just a 

combination of elementary functions. 

 

2. MODEL II: SUBSURFACE DEFECT 

We begin from the BVSP statement, keeping designations of paragraph 1.  Let in the 

lower half-space  there exists an axi-symmetrical cladding  (the void will be a 

special case) having a smooth surface 

D1 Di

∂D , which symmetry axis coincides with an 

external normal direction to interface Ξ, see Fig. 1.  Then introduce into consideration the 

Cartesian system, choosing its origin at the point O Oz= IΞ  while Oz axis to be 

directed into  down the symmetry axis (see Fig. 1). Statement of the BVSP here has a 

form 
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radiation/attenuation conditions at infinity (z ≠ 0).    (2.1d) 
 

Here { ,  is a total field inside a cladding; { ,}E Hi i } ( , )E Ht t t = 0 1   is a scattered field 

in ,  and {  is a field of the refracted plane wave in .  As in the particle 

case (part 1), we construct the approximate solution to BVSP (2.1) on the base MDS [3]. 

When constructing, we shall detail only points differing from the particle case. 
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For a representation of the field in  the multipole sources of electric (e) and 

magnetic (m) kinds have been used.  Due to the fact the obstacle now is located in the 
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Here spectral functions κ e h,  and ζ  are 
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When constructing the field representation inside the defect we base on those 

multipole sources which singularities lie at the infinity.  In this case the defect assumes to 

be filled with any substance (not only with an air).  By the analogy with a particle case 

we construct an approximate solution that would take into account not only an axial 

symmetry of a geometry but the polarization of an external excitation as well.  So, 

approximate solution we need has a form (1.5), but substituting (1.2) to (2.2). 
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In TM case the field of refracted plane wave in the lower half-space has a form 
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where the refraction coefficient is [5] 
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For the case of TE polarization, when E  vector is normal to the incident plane, the 

refracted plane wave field is 

0
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and the refraction coefficient has a form 
 

T n
n

S =
+ −

2 0

0 1 0
2

cos
cos sin

.γ
γ ε ε γ

      (2.4b) 

 

As a result, the developed approximate solution to BVSP (2.1) with multipole sources, 

constructed in a special way, has a following properties:  

1) fits the Maxwell equations inside a defect and in both half-spaces; 

2) fits the transmission condition for field tangential components at the interface 

Ξ. automatically; 

3) satisfies the infinity conditions. 

Due to the completeness of the multipole system and the orthogonality property of the 

multipole system for TM and TE polarizations at an arbitrary axi-symmetrical surface the 

following result take place.  
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Theorem 2. Let { , : (2.3)/(2.4) then there exists Y and such coefficients 

 that the approximate solution converge uniformly to the exact solution of 

BVSP (2.1) while  at any closed compact outside the scatterer. 

}E H1
0

1
0

{ , }p qυ υ υ υ= 0

Υ

Υ ⇒ ∞
 

Note, the numerical scheme used for the construction of an approximate solution is 

completely analogous to the case of particle, but substituting matrix elements (because of 

the different representation for fields) and a total (incident plus reflected) field with the 

refracted one. 

Before turn to the diagram representation for the case of subsurface defect we need in 

expressions for fields in upper half-space (because only there the scattering diagram has 

any sense).  These expressions follows from (1.5), where index t is supposed to be 0. 

Moreover, the expressions for the Green tensor components from (1.5) will not any 

longer concur with formulas (2.2).  Now the Green tensor components come to be the 

follows 
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and also the expressions for spectral functions are the same as (2.2b). 

As before, the asymptotics are used to treat Sommerfeld integrals.  Then spherical 

components of scattering diagram will have a form for TM case as 
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and for TE case 
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The over-lined spectral function are 
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3.  MODEL III: ADVANCED FRESNEL APPROXIMATION 

In many engineering applications there is no need in elegant mathematical models;  

and one seems to be quite sufficient to have a model which keeps just basic features of 

scattering yet can not produce  a high accuracy.  In the paper [8] the Fresnel approach 

(FA) has been implemented for a simulation of light scattering from spherical particles on 

a substrate.  Such an approximation was shown to allow to reach reasonable results even 
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for the particle diameter as big as a half wavelength of an exciting field.  However, FA 

[8] ignores a tensor relationship between dipoles and vector potentials, while this 

relationship really takes a place for a strict approach (for instance, the horizontal dipole 

must generate a vertical component of the vector potential besides the horizontal one [3]).   
 

We suggested instead the Advanced Fresnel Approach (AFA), which enables to keep a 

tensor relation between sources (either dipoles or multipoles) and the vector potential (the 

Hertz vector).  This approach allows us to increase a simulation accuracy and is most 

useful for scattering from complex defects.  Let’s have a look at (1.2a)/(2.2a).  FA [8] 

means that 
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As it can be seen see from (3.1), there is no need in computing Zommerfeld integrals, 

which is the most expensive procedure.  The explicit physical formula (3.1) can be also 

obtain from the strict approach by setting a parameter λ  to be zero in spectral functions 

 (1.2b)/(2.2b) of integrands (the quasi-static approximation).  We call  as AFA 

barely the same approach but being implemented to the whole Green tensor 

.  Then we have for non-diagonal terms 
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The formulae (3.1) and (3.2) together represent the approach which we call as Fresnel-

2 approximation, while neglecting (3.2) (i.e. an existence of elements ), Fresnel-1 

(being, in fact, just FA [8]) is pro.  And neglecting the Fresnel coefficient r  in (3.1), we 

obtain the Fresnel-0 approximation, the most rough of all three.  For this model the half-

space is taken into account only through the excitation field and scattering diagrams.  The 

same, of coarse, is valid for the pit scattering analysis too. 

fm
e h,

p
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So, AFA allows to represent the scattered field in a clear analytic form both for near 

and far zones.  The computations demonstrated AFA enables to get a moderate accuracy 

and accelerate computing as much as 10-30 times. 

 

4. NUMERICAL RESULTS AND DISCUSSION 

The demonstrated in the present work results illustrate the opportunities of the MDS 

realization, enabling to analyze scattering from silicon wafer defects of various types.  

Here the calculation of unknown source amplitudes and scattering characteristics was 

being realized in a parallel for all the incident angles of the plane wave and both linear 

polarizations.  The numerical results given correspond to the exciting wavelength as λ = 

0.488 μm, so that the dimensionless wave parameter ka is completely determined by the 

particle diameter. Only spherical particles will be regarded.  All the dependencies 

presented are the scattered intensities (dimension μm2) at the incident plane (i.e. azimuth 

half-planes 0° and 180°) 
 

I F FTM TE TM TE TM TE, , ,( , ) ( , ) ( , )θ φ θ φ θ φθ φ= +
2 2

.  

versa the scattering angle θ.  The particle is supposed to be located at the plane interface 

of a dielectrical substrate (a wafer) having the refractive index  n = 4.5 - 0.4i 

corresponding to the silicon. 

The detail investigations of particles of different kinds have been carried out.  The 

most important fact established as a result of experiments is that for small particles the 

scattered field intensity for TM polarized plane wave for an oblique incidence does not 

decrease as one believed earlier [7], but increases instead.  Moreover, the intensity 

increases as in the specular direction, and in the backward one.  The use of this fact by 

disposing collectors in a proper way allows to increase the resolving ability of surface 

scanners. 
 

The basic scattering properties of particles on substrate taking place independently on 

the particle material can be summarized as following: 

• for "big" particles the scattered intensity for TE polarization exceeds the 

intensity for TM case over the whole range of scattering angles (see  Fig. 2); 
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• for "small" particles the scattered intensity for TM polarization exceeds the 

intensity for TE case almost everywhere (Fig. 2) except a narrow segment close to a 

normal to the interface. 

Figure 2.  Scattering from a spherical  PSL particle (the refractive index is 1.59).  ‘Small particle’ (0.07 
μm): 1, 2;  and 0.20 μm: 3, 4.   The wave incidence is −65°;  TM polarization: 1, 3,  TE case: 2, 4.  

 
 

Now let’s turn to analyzing of pit scattering properties.  As it was been noticed 

previously, the problem how to distinguish particles upon a wafer interface from pits and 

subsurface defects comes to be more and more urgent last time. To analyze this problem 

we accomplished a numerical experiment, resulting in some characteristic features for 

defects of each type and enabling to distinguish particles and pits.  Note, pits arise as a 

result of the crush of crystal organized particles [2], being just crystals built in the 

substrate.  These pits have sizes from 0.07 μm to 0.2 μm, shaping as thetrahendrons with 

vertices α varying from 60° to 90°.  Such defects are simulated as axi-symmetrical cones 

with smoothed tips and edges.  The results of calculations for such cones are shown in 
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Figs 3, 4 the vertices 60° and 90°, aperture diameters 0.07 μm and 0.2 μm. Some typical 

features for all pits are:  

 
Figure 3.  Scattering from a conical pit (the cone vertex angle is 60°), the base diameter is 0.07 μm (1,2) 

and 0.2 μm (3,4).  Plane wave incidence is −65°;  TM polarization: 1, 3,  TE polarization: 2, 4.  
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Figure 4.  Scattering from a conical pit (the vertex angle is 90°).  The markers have the same meaning 

as in Fig. 5.  
 

• scattered intensity for TM polarization everywhere exceeds the intensity for 

TE case; 

• for any pit the backward intensity in TM-case essentially exceeds the 

corresponding intensity for TE-case; 

• at the range of scattering angles from 30° to 60° the difference between TM- 

and TE- cases is minimal. 

Emphasize, these properties keep for pits of other geometries as well (for instance, 

conical pits of vertex 110°, and also for half-spherical pits).  In Fig. 5 the scattering 

intensity for SiO2 particle is shown (refractive index is 1.44) as compared with scattering 

from a pit (vertex angle 60°). 
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Figure 5.  Results of scattering from a SiO2 particle (1,2) as compared with scattering from a conical pit 

(3,4: the cone vertex angle is 60°).  Plane wave incidence −65°,  TM polarization.  
 

 

In Figs 6, 7 the AFA is demonstrated as compared with the complete MDS model. The 

oblique (−65°) incident TM/TE plane wave and pits of different sizes and configurations 

are regarded.  As it can be seen from Figs 6, 7, the AFA shows a pretty good agreement 

with MDS for quite big pit diameters. 
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Figure. 6.  Scattering from a conical pit.  The cone vertex angle is 60°, the base diameter is 0.30 μm.  

Results from the complete model (1:TM, 3:TE) are compared with AFA, Fresnel-2 (2:TM, 4:TE).  Plane 
wave incidence is −65°.  
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Figure 7.  The same notation as in Fig.6 are used but the cone vertex angle is 100°, the base diameter is 

0.488 μm.  
 

In Figs 8, 9 there are some more illustrations of the AFA method for scattering from 

defects of different kinds.  Fig. 8 corresponds to scattering from the Si sphere (D = 0.20 

μm), the inclination of TM-polarized beam is −65°. Here curves 1, 2, 3 respond to MDS, 

Fresnel-1 and Fresnel 2, respectively.  Fig. 9 corresponds to scattering from the pit (cone: 

vertex angle is 100°, D = 0.30 μm) when the TM-polarized beam incidents normally.  We 

see in Figs 8,9 AFA produces an adequate results for both kinds of wafer defects, being 

quite good as compared with the explicit model (MDS). 
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Figure 8.  Scattering from a Si 0.2 μm sphere.  The inclination of the TM-polarized beam is −65°.   

Curves 1, 2, 3 respond MDS, Fresnel-1, and Fresnel-2. 
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Figure 9.  Scattering from a conical pit.  The cone vertex angle is 60°, the base diameter is 0.30 μm.  

The inclination of the TM-polarized beam is −65°.   Curves 1, 2, 3 respond MDS, Fresnel-1, and Fresnel-2.  
 

 

Basing on the investigation fulfilled one may establish the conclusions.   

1. Using the collector system of a surface scanner CR-80 [2] it is possible to 

distinguish a particle (any size, any material) from a pit (any diameter).  Saying CR-

80 we mean a system containing three cylindrical collectors being oriented 

orthogonally to the incident plane and centered with  three different angles.  Using 

the TM- and TE- polarized laser source and calculating the ratio of TE-scattered 

intensity to TM- one it is possible to distinguish pits from particles. 

2. AFA appears to be justified when there is no need in a comprehensive analysis 

of scattering.  Despite of its moderate accuracy AFA accelerates computing 

considerably and is adequate for engineering applications. 
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