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Abstract 

Our paper is dedicated to analysis of the light scattering by the particle in a film deposited on 
silicon substrate. The numerical method of investigating the complete mathematical problem is 
based on the Discrete Sources Method (DSM). It allows us to consider the electromagnetic wave 
scattering by different kinds of obstacles. The dependence of light scattered intensity by particles 
of different kind of material, size and location, and for different incidence angles are presented. 
The validity of total integral response is discussed. 

 
1. INTRODUCTION 

Advanced semiconductor devices are characterized by increased circuit density. Successful 

manufacturing of such devices requires decreasing the size of defects appearing under the different 

stages of technology process. In particular, it is necessary to detect a particle inside a thin film 

deposited on silicon wafer surface when lithography process is used. For this purpose the surface 

scanners, using a laser source of light, are the most efficient. The detection of particle is based on 

detailed investigation of light scattered by the particle. Experimental analysis of such kind of 

defects is expensive and rather complex because of weak signal of the scattered light. To expand 

the current detection ability one must have efficient mathematical model and computer simulation 

technique. Such mathematical model is based on complete system of Maxwell equations with 

strict boundary conditions and radiation conditions at infinity. 

In our paper DSM is applied to investigation of P/S light scattering by a particle in a film 

deposited at the substrate. In the framework of DSM an approximate solution to the scattering 

problem is represented as a finite linear combination of the fields of elementary sources – dipoles 

and multipoles with unknown amplitudes. The approximate solution satisfies Maxwell equations 

everywhere inside and outside the scatterer, boundary conditions at the surface of the film and 

radiation conditions analytically. As it is well known to approximate the exact solution outside of 

the scatterer it is sufficient to approximate the boundary conditions at the scatterer’s surface in the 

mean-square norm. Thus, the scattering problem is reduced to the approximation of the boundary 
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conditions of the exciting field at the scatter’s surface. So, we are able to construct relations to 

determine Discrete Sources (DS) amplitudes. 

In the case of stratified structure it is possible to construct dipoles and multipoles field 

satisfying the field transmission conditions at the films’ boundaries. It allows to fit all conditions 

of the scattering problem analytically except the boundary condition at the particle surface. In this 

case the dipoles and multipoles fields are constructed on the base of Weyl-Sommerfeld integrals. 

In case of axial symmetrical obstacle one is able to reduce the surface approximation problem 

to the sequence of one-dimensional approximation problems at the particle profile. To accomplish 

this we set DS at the symmetry axis. Then the approximate solution becomes a finite sum of a 

Fourier harmonics with respect to an azimuth variable ϕ. By expanding the external excitation in 

terms of a Fourier series with respect to ϕ-angle we transform the two-dimensional approximation 

problem into sequence of one-dimensional approximation problems at the surface element of the 

particle for each azimuth harmonic. 

There are various approaches one can use to determine the DSM amplitudes. A more reliable 

technique that generates stable results is the point-matching the Fourier harmonics at a finite set of 

points of the surface element. As was outlined in [4], more stable results can be produced if one 

uses an over-determined system of linear equations. 

 

2. MATHEMATICAL FORMALISM 

Let the incident linear polarized plane wave  has an incident angle γ with respect to 

the normal of a plane boundary  of upper half space  and film . Plane 

},{ 00 HE

fΞ ,0D fD 1Ξ  is the 

boundary of the film and а substrate. Let the axially symmetric particle , having a smooth 

boundary  be situated entirely into the film between planes 

1D

D∂ fΞ  and  of the thickness d, 

that its symmetry axis coincides with the normal to 

1Ξ

1Ξ . Let us introduce a Cartesian coordinate 

system Oxyz with its origin point located on the substrate and direction of the Oz axis coincides 

with the symmetry axis of the particle. The mathematical model can be formulated as the 

following boundary-value problem (BVP): 
 

tttttt ikik HEEH με −=×∇=×∇       ;   in iftDt ,1,,0    , = ,  (1) 
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attenuantion/radiation conditions at infinity (z ≠ 0,d)     (5) 
 

Here  is a unit normal to pn D∂ , and  is a total field in appropriate area. The particle 

surface is assumed to be smooth enough, 

},{ tt HE

),1( α∂ CD ⊂ , and the media parameters satisfy the 

conditions 0,Im ≤tt με  (the time dependence { }tiωexp ). Then BVP (1-5) has a unique correct 

solution. 

Before we construct an approximate solution of the scattered waves we need to solve the plane 

wave  difraction problem by the layered structure. As it is well-known, this solution 

may be represented in an explicit form. Let's designate an obtained field . 

},{ 00 HE

1,,0  },,{ 00 fttt =HE

The solution should account for the axial symmetry and polarization of the incident wave. To 

satisfy (3) we use the Green’s tensor components to construct the DS fields. Thus, Hertz vectors 

for vector multipoles have the following expression: 
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where index e corresponds to the electrical type of vector multipoles having components  

and h corresponds to magnetic types. The appropriate azimuthal term 
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where  is cylindrical Bessel function, the point mJ ),( zq ρ=  is located in the half-plane φ=const, 

and the multipoles are located at the symmetry axis Ozwn ∈  inside . In this case for spectral 

functions  the following representations hold: 

iD
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Here . Except those, spectral functions satisfy the following 

conditions at the boundaries z= 0, d: 

ttttt kkk μελη 22222   , =−=
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From relations (9) it is easy to show, that inside a film the relation  takes 

place. 

0  ,3131 ≥≥= zdvv he
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We’ll build an approximate solution, using DSM [1]. The representation of total field inside 

the particle is based on regular functions, whose singularities are located at infinity [2] 
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where  − spherical Bessel function and mj Ozwn ∈ . It's easy to see that qwqwR θρ sin/ = , 

where qwθ  is an angle of spherical coordinate system with its origin point w. Thus,  functions 

may be represented as 
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where  are joined functions of Legendre. Now it is easy to notice, that functions m
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satisfy the homogeneous Helmholtz equation  everywere in the finite area 02 =+Δ i
mi

i
m GkG

3R . 

We’ll build approximate solution outside and inside , which takes into account not only 

rotational symmetry of the scatterer, but also simultaneously polarization of external excitation 

[3]. 

iD

Let us consider P polarized plane wave (the S-case was discussed in [6]), having angle 0θ  with 

Oz axis. Using the DSM methodology [3], we’ll have the following combinations of potentials 

taking into account the external field polarization 
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},{ nm=υ − multi-index with range of change: NnMm ≤≤≤≤ 1 ,0 , here M is a maximum 

number of the Fourier harmonics, and N − multipoles number, the same for all values of m. Let’s 

denote  the lower and upper values of multi-index. Besides we introduce 

vector potentials for vertical dipoles. The component with subscript 33 (i.e.

{( NMYYv ,  ,0 = })
σ ) answers for vertical 

dipoles in Green tensor 
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For convenience we shall use contracted notation for fields, constructing the approximate solution 
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than the representation for the approximate solution of BVP (1-5) for P polarized field is 
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Where the last sum corresponds to vertical dipole sources. 

So, the approximate solution of  BVP (1-5) for the scattered field  in 

 and total field in  (13), which in addition takes into account polarization of an 

exciting plane wave satisfy: 

 },,{ s
t

s
t HE

1,,0 , ftDt = iD

• Maxwell equations in ; ifD ,1,,0

• radiation and attenuation conditions in ; 1,,0 fD

• transmission conditions at the boundaries 1,fΞ . 

So, the representation (13) satisfies all conditions of BVP (1-5), except conditions at the particle 

surface. 
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By virtue of a completeness of a system of multipoles [2] and theirs orthogonality for two 

types of polarizations [3] the approximate solution (13) of the scattering problem (1-5) can be 

obtained with any degree of accuracy. 

 

3. NUMERICAL SCHEME 

We shall follow the scheme [1], underlining only the main differences. As it was already 

marked, the approximate solution (13) satisfies all conditions of BVP (1-5), except conditions at 

particle surface. So, the determination of unknown DS amplitudes is conducted just from 

conditions on  surface. D∂

It is convenient to divide the algorithm of amplitudes determination into several stages. As the 

sources are localized on the symmetry axis or in an appropriate part of a complex plane [3], the 

approximate solution (13) of BVP (1-5) is a final linear combination of Fourier harmonics on 

azimuth variable φ. Therefore at the first stage we decompose tangent components of electrical 

and magnetic fields of exciting plane waves in a Fourier series with respect to φ using 

representation for a plane wave of the following kind 
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here 0sinθρϖ fk= . As the representation for fields },{ ΥΥ
tt HE  (13) has a form of a finite 

linear combination of Fourier of harmonics, the DS amplitudes determination is reduced to 

determination of amplitudes vector for harmonics (i.e. at the fixed value of azimuth harmonics m 

number). Therefore the surface approximation is reduced to one-dimensional approximation on 

element ℑ of surface D∂ . 

For solution of this problem we use the method of collocations, sewing together the azimuth 

harmonics at a collocation points set , and solving the obtained in such a way over-

determined system of linear equations. 

ℑ⊂=
L

1}{ llχ

The numerical algorithm of calculation of Weyl-Sommerfeld integrals (6-7) is applied to 

determine the limiting field values outside the particle surface at collocation points. 

It is possible to construct computing algorithm so, that for determination of DS amplitudes 

both for P, and for S polarization it is sufficient to use the pseudo-inversion of the same matrix [1]. 
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For scattered field intensity calculation at infinity it is necessary to have the scattered pattern. 

It is determined by following form: 
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In our case for scattered pattern it is possible to use asymptotic representations of Weyl-

Sommerfeld integrals as it is made in [4]. 

Then the final formulas for the patterns don’t contain the Weyl-Sommerfeld integrals, and can 

be easily calculated after the determination of unknown DS amplitudes. Then for φθ ,  - a 

component of scattering diagram in case of P polarization we have 
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Thus, the elements of the Green’s Tensor in a far zone and the components of the scattering 

diagrams both for P and for S polarization do not contain the Weyl-Sommerfeld integrals. 

Therefore after determination of the unknown DS amplitudes for computing of the scattering 

characteristics it is sufficient to calculate combination of elementary functions only (15). 

 

 

4.  COMPUTER SIMULATING RESULTS 
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In the present section the main attention will be concentrated on the analysis of computer 

simulating results correspond to the wavelength of an exciting plane wave equal to 0.488mkm. On 

Figures the distribution of intensities (in mkm2 units) of the scattered light in the incident plane 

(plane, originated by half-planes φ=0° and φ=180°) depending on a scattering angle and 

dependence of total integral response from the scattered angle  
 

2,2,, ),(),(),( φθφθφθ φθ
SPSPSP FFI +=  

 

are demonstrated. 

We will concern particles of different kind of material, different size and location, and the 

different incidence angles. We also concerned the ratio of energy flux throught the particle surface 

to the energy, radiated into the upper halfspace for different particles. Fig.7 illustrates these 

results. 

On Figs.1,2,4(a),5,6 the dependence of scattered light intensities on the scattering angle for 

incident angle 65° of the plane wave are shown. 

Figs.3,4(b) illustrates the dependence of total integral response on incident angle for different 

particles. 
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   (a)       (b) 

Figure 1. Fe particle D=0.10mkm, at Si substrate in case of no film and  film thickness=0.20mkm, (a) P-

polarized, (b) S-polarized. 

2SiO
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(a)                                                                                           (b) 

Figure 2. Si particle D=0.10mkm, at Si substrate in case of no film and  film thickness=0.20mkm, (a) P-

polarized, (b) S-polarized. 
2SiO
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  (a)       (b) 

Figure 3. Si (a) and Fe (b) particles D=0.10mkm, at Si substrate in case of no film and  film thickness=0. 2SiO
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Figure 4. Particles D=0.10mkm, in  film thickness =0.20mkm, at Si substrate. 2SiO
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Figure 5.  Si particles in  film 

thickness=0.20mkm, at Si substrate. 
2SiO Figure 6. Al particle D=0.10mkm, in  film, at 

different heights from Si substrate. 
2SiO

 

0 10 20 30 40 50 60 70 80
10

20

 Si
 Fe
 AlE

ne
rg

y 
ra

ti
o 

in
 %

Incident angle
0 10 20 30 40 50 60 70 80

20

 Si
 Fe
 Al

E
ne

rg
y 

ra
ti

o 
in

 %

Incident angle

 

    (a)       (b) 

Figure 7. Particles D=0.10mkm, in  film thickness=0.20mkm, at Si substrate. 2SiO

 

5. CONCLUSION 

1. The Total Integral Response (TIR) of P-polarized light smoothly decreases in presence of 

SiO2 film. In case of no film the TIR of P-polarized light have a maximum at incident 
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angle approximately 65 degrees. As to the S–polarized light, it's TIR smoothly decreases in 

all cases. 

2. In the absence of the film the difference of P and S polarizations is much strongly. 

3. Scattered intensity of P-polarized light in cases of SiO2 film presence and in the case of no 

film have a principal different view. 

4. P-polarized light intensity strongly depends on the particle height and dimentions. 

The a posteriori estimate of obtained results error was conducted by computation of discrepancy of 

boundary conditions at surface in  norm. In presented below results the relative error does not 

exceed 2-3%. 

2l
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