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Abstract  

The problem of synthesis of the equidistant linear antenna array according to the 
prescribed amplitude pattern, reduced formerly to a nonlinear integral equation, is solved 
analytically with a small number of unknown complex parameters. For these parameters, a 
set of transcendental equations is obtained. Limitation of the number of parameters is given. 
Numerical results are presented. The results obtained can be generalized for other problems 
described by the discrete Fourier transformation. 
 
1. INTRODUCTION 

The synthesis problems of different kind of antennas according to prescribed radiation 

pattern or to its different physical characteristics are widely discussed in the literature [1-6]. 

For the practically important case, if only amplitude radiation pattern is required, these 

problems have been described in [7]. The problems were stated in the variational formulation 

as problems of minimization of the mean-square difference between the given and obtained 

amplitude patterns in the corresponding functional spaces. These last problems were reduced 

to nonlinear integral or matrix equations which have been solved numerically by the iterative 

methods. 

Recently, explicit solutions of such kind of equations have been obtained for the case of 

the linear antenna [8]. In this case the radiation pattern is calculated as the Fourier transform 

of the current distribution at the antenna. The solutions have the form of integral expressions 

depended on a finite numbers of complex parameters for which a finite system of 

transcendental equations are obtained. These results can also be used in other applications 

described by the Fourier transformation. 

In this paper the results mentioned above are extended for the case of equidistant linear 

antenna arrays described by the discrete Fourier transformation. The main distinction of these 

problem in comparison with preceding case is connected with periodicity of the radiation 

pattern as a function of generalized coordinates, and following this, with the way of 

introducing the complex parameters in question. In part, the results described were presented 

in [9].  
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2. PROBLEM STATEMENT 

As it is well known, the radiation pattern of the equidistant linear antenna array with 

identical radiators having the individual patterns ( )f 0 ϑ  is calculated by the formula 

( ) ( )f f I en
ikdn

n M

M

ϑ ϑ ϑ=
=−
∑0

sin    (1) 

where ϑ  is the polar angle in the spherical coordinate system, N=2M+1 is the number of 

elements in the array (for simplicity, N is assumed to be the odd number), In  is the current at 

the nth elements, k is the wave factor, and d is the distance between the elements. The mutual 

influences of the elements is neglected  in this formula. 

Let us consider a real positive function ( )F ϑ  being the prescribed amplitude directivity 

pattern which should be approximated by the actual amplitude directivity pattern ( )f ξ . It is 

natural to assume that  in the side lobes area that means for any ( )F ϑ ≡ 0 ϑ α>  where 2α is 

the main lobe width. In what follows we introduce a generalized angle coordinate 

 and will denote the prescribed and actual radiation patterns in these coordinate 

by the same symbols F and f , respectively. For the case 

ξ ϑ= sin / sin α

( )f 0 1ξ ≡ , in new coordinates 

formula (1) gets the form 

( )f In
icn

n M

M

ξ ξ=
=−
∑ e    (2) 

where  is a specific physical parameter of the problem. Accordingly, the 

prescribed amplitude pattern  equals 0 for 

c kd= sinα

( )F ξ ξ > 1. 

One can see that in the form (2) the radiation pattern ( )f ξ  is a periodical function of ξ with 

the period 2 . It is sensible to prescribe the amplitude pattern π / c ( )F ξ  only on one period, 

what gives a inequality c ≤ π . Then the synthesis problem for the equidistant linear antenna 

array with identical elements can be formulated as the problem of minimizing the functional 

(σ ξ ξ
π

π

= −
−
∫ F f

c

c

( ) ( )
/

/
2) ξd .   (3) 

 

The vector  of the current distribution at the antenna elements is the subject to be 

found in this problem. In [7] this problem was reduced to the nonlinear integral equation  

{ }I = In
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where  

K
c

Nc
c

( ' ) sin( ( ' ) / )
(sin ( ' ) / )

ξ ξ
π ξ ξ

ξ ξ
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−
−

2 2
2
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When this equation is solved, the desired current distribution is calculated by the formula 

I c e F e dn
inc i f= −

−
∫2 1

1

π
ξξ ( ) arg ( ) ξξ

dξ

1

,   (6) 

  n=-M,...,M. 

Equation (4) is the Euler equation for functional (3). Its solutions are not only minimum 

points of the functional, but also all its stationary ones. 

Equation (4) is the subject to investigation in this paper. As it is established in [7], this 

equation has nonunique solutions. At some values of parameter c the branching of the 

solutions take place and number of these solutions increases.  To separate the optimal 

solutions among them, they should be substituted into functional σ  and  values obtained 

should be compared.  

Recall some simple properties of equation (4) from [7]:  

i. If the function  

   (7) f K F( ) ( ) ( ') 'ξ ξ ξ ξ= − ′
−
∫
1

1

is positive at , then it solves equation (4); − < <1 ξ

ii. If a function ( )f ξ  solves (4), then the complex-conjugated function , as well as 

 with any real α solves (4), too. 

( )f * ξ

( ) ( )f ξ exp iα

In [7] equation (4) was solved numerically by an iterative method and branching of its 

solutions was investigated by the methods of nonlinear analysis [10]. In what follows 

solutions of (4) will be expressed in the analytical form containing a finite number of complex 

parameters which can be calculated from a system of transcendental equations. 

 

3. ANALYTICAL SOLUTIONS OF THE PROBLEM 

It is seen from (4) that any solution of this equation is uniquely defined by its phase. This 

means that it is sufficient for solving (4) to find the function ( )( )exp argi f ξ . Suppose, that this 

function can be expressed in the form   

 



SOLUTIONS OF NONLINEAR INTEGRAL EQUATION OF SYNTHESIS  OF THE LINEAR ANTENNA ARRAYS 
 
46 

e
P
P

i f L

L

arg ( ) ( )
( )

ξ τ
τ

=    (8) 

where , τ ξ= tan /c 2

PL L= − − −( )( )...(1 1 11 2η τ η )τ η τ    (9) 

ηn  are some complex parameters non conjugated pairwise: ,  n,m = 1, 2, ..., L, 

and number L is some finite integer.  

η ηn m− ≠* 0

Substituting (8) into (4) and separating the integer parts from both hand sides of the 

equation yields 

( )
K F

P P
P

dL L

L

( ) ( ' )
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It is easily seen that 
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Using this equality in K  and substituting (9) into the numerator of (10), we have (ξ ξ−
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where dnm are elements of matrix D of coefficients of the two-dimensional polynomial 
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Since the set of functions  
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is linearly independent for ξ ∈ , identity (12) is equivalent to the following systems of 

equations 

−[ ,1 1]
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  m=1,2,...,L. 

One can prove that  

( )
det ( ) (

[ / ]
*

,

D
i

L

L n m
n m

L

=
−

−
=

∏1
2

2

1

η η )    (16) 

where square brackets denote the integer part of a quantity. The determinant does not equal 

zero owing to the properties of ηn.  This means that equations (15) can be satisfied only if 

 solve the following set of transcendental equations ηn n, , ,...,= 1 2 L
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L
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c

F
P

dsin( / )
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τ ξ
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L
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c

F
P
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( )
( )

2
2

0
1

1

−
∫ = ,  (17b) 

  n=0,1,...L-1. 

These equations are real. Global number of them is 2L, and it coincides with the number of 

the real quantities in the L complex unknown parameters ηn  contained in the polynomial . 

This means that equations (17) may be solvable at the fixed value of c. But solutions of (17) 

exist not always. There are some limitations on the relation between values of the parameters 

c and L which are  necessary to be satisfied for existence of the solution. We establish here 

the main of these limitations.  

PL

Assume that equations (17a) are satisfied for n=0,1,...L-1. That means, that the function  

( )Φ s
L

Nc
c

F
P

ξ
ξ

ξ
ξ
τ

=
sin( / )
cos( / )

( )
( )

2
2

   (18) 

 

is orthogonal to any polynomial Q  of degree less than L. This function must change its sign 

at the interval (-1,1) not less than L times. In other case one can construct the real polynomial 

 of degree less than L whose zeros coincide with zeros of 

m

Qm ( )Φ s ξ . But function ( )Φ s ξ  

cannot be orthogonal to such a polynomial, because their product is real and it do not change 

its sign at the interval . From other side, the change of sign of  can belong only 

to the factor sin cω, what gives the inequality 

(−1 1; ) ( )Φ s ξ

Nc L
2 2

> ⎡
⎣⎢

⎤
⎦⎥
π   (19a) 

Similarly, from equations (17b) one can get the inequality  
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Nc L
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1
2

1
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>
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⎤
⎦⎥

−
⎛
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⎞
⎠⎟
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Both these inequalities together give  

L Nc
<

π
.   (20) 

This inequality shows that the number of unknown complex parameters  in the solutions 

of equation (4) is less than the general number N of unknown values 

ηn

In  of the current at the 

antenna elements. In particular, the number of ηn  is limited, when N increases but product Nc 

(this means, the antenna length) is constant. Note, that inequality (20) is independent of F(ξ). 

In fact, for the concrete given functions F(ξ) the maximal values of L are essentially smaller.  

Solutions with different values of L can exist simultaneously at the same value of c . 

Moreover, different solutions can also exist at one of the same value of L. Indeed, in any 

solution  with parameters ,  n = 1, 2, ..., L, one can substitute each parameter ( )f ξ ηn ηn  by 

. Such a substitution do not change function ηn
* ( )PL τ  and equations (17) remain to be 

satisfied. One can prove that this substitution do not also change the amplitude pattern ( )f ξ . 

Hence, the value of functional σ  is not changed, too. There exists a group of different 

solutions corresponding to the all possible combinations { }η ηn m, * , , n m L, , ,...,= 1 2 n m≠ , 

which give one of the same amplitude pattern ( )f ξ  and, consequently, one of the same value 

of σ. But these solutions differ one from others by the current distributions  calculated by 

formula (6). In what follows we will consider only one of the representatives from such a 

group of solutions, that has ,   n = 1, 2, ..., L. Several different groups of such a type 

of solutions with the one of the same value of L can exist, too.  

In

Im ηn > 0

At some values of parameter c the transcendental equations (17) with different values of L 

can be satisfied simultaneously. These values of c are the branching points of solutions.  

Note, that formula (8) can only describe solutions of equation (4) nonvanishing at the interval 

(-1; 1) and only such a type of solutions is considered here. Solutions which values in some 

points of the interval (-1,1) can equal zero are interesting for the case if the prescribed 

amplitude pattern  has a two-lobes form or it have be equal to zero in some fixed points. 

This case needs a special consideration. For the continual linear antenna it is partially 

considered in [11]. 

( )F ξ
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4. NUMERICAL RESULTS 

As an example, the numerical results for the antenna array with 5 and 11 elements are 

presented and analyzed below. The prescribed amplitude pattern was taken in the form 

. Transcendental equations (17) were solved by the Newton method.  ( )F ξ ≡ 1

In Fig. 1 the dependence on c of the real and imaginary parts of parameters ηn  are 

presented. The curves are marked by two digits n, m where n is the index at the parameters 

and m denotes the type of solution, joining the value of L and the solution number. We show 

only one solution from each equivalent group, that has positive imaginary part. 

At the  small values of c there are no solutions of equations (17) with L>0. This means that 

only patterns with  satisfy eq. (4) at such values of c. At some  an imaginary 

solution  of (17) with L=1 arises, which gives rise the polynomial of the first degree 

. Value c  is the first branching point. (The characteristic points c  are 

marked on the figures for N=5.)  

arg ( )f ξ ≡ 0 c c= 1

η1

( ) (P1 1τ η= − )1τ

,

c= 1 cm=

In the second branching point  a new solution of (17) with imaginary  arises 

with  L=2, which gives rise the polynomial of the second degree 

c c= 2 η η1 2 2 2, ,

 

( )P2 1 1 2 2 2 1 2 2 2
2

1 2 1 21 1 1, , , , , ,( ) ( )( )τ η τ η τ η η τ η η= − − = + − + , τ  

 

Solution  remains to exist. Both these solutions give the odd phase patterns arg f(ξ) that 

corresponds to the real (but nonsymmetrical) current distributions [7].  

η1

After the value of  at which c c= 3 η η1 2 2 2, ,= , the image solution η η1 2 2 2, , ,

,

 transforms into 

the complex one with  . It gives rise the polynomial  η η1 2 2 2,
*= −

P i2 2 1 2 1 2 1 2
2 2

1 21 1 1 2, , ,
*

, ,( ) ( )( ) Imτ η τ η τ η τ η= − + = + − τ

, , τ

 

and also gives the odd phase pattern. As before, the current distribution is real and 

nonsymmetrical. But now the corresponding equivalent group also contains the solution with 

, which gives rise . This solution gives the even phase pattern 

 that corresponds to a complex symmetric current distribution. Both solutions with 

even and odd phase patterns give the same amplitude pattern and, following this, the same 

value of the functional σ. This fact was discovered numerically and described in details in [7]. 

Now it have got a new simple interpretation.  

η η1 2 2 2, = − P2 3 1 2
2 21, ( )ξ η= −

arg ( )f ξ
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The solution with two complex η η1 2 2 2, , ,  exists up to c = π . From them the solution with 

L=3, having two complex parameters η η13 23, :  and an imaginary one , is 

branched off at some c

η η23 13= − * η3 3,

c= 4. This solution gives rise  the polynomial  

( ) ( )( )( )P3 1 3 1 31 1 1τ η τ η τ η= − + −, ,
*

,3 3τ

= −

 

which gives the odd phase pattern. But other characteristic solution from this equivalent 

group has , η η1 3 2 3, , 3 3,  and gives rise the polynomial which has not any phase symmetry. η

Let us return to the imaginary solution η1  after c c= 1 .  At some value of   there arises 

a second solution of such a type and these two solutions exist simultaneously up to the value 

of  where they coincide and disappear.  

c c= 5

c c= 6
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Figure 1. Solutions of equations (17) for array with 5 (solid lines) and 11 (dashed lines) elements; .  F ( )ξ ≡ 1

 

All solutions in each of above mentioned groups give one of the same value of functional 

σ in the group, but these values are, in general, different for the different groups. Recall, that 

different solutions of equations (17) and, respectively, of equation (4) can give different 

values of the functional, from which only global-minimum value is interesting physically. To 

choose the optimal solutions, which are the global-minimum points of the functional, the 

values of  corresponding to different groups of solutions should be compared. In Fig. 2 the 

value of σ at the equiphase solution  arg  and at the optimal one are given for N=5. 

Digits at the curves are equal  the values of parameter L in the optimal solution. As rule, the 

optimal solution corresponds to the maximal value of L at the fixed c. But this rule is 

disturbed after  when the solution with L=2 is optimal although the solution with L=3 

continues to exist. 

σ

( )f ξ ≡ 0

c c> 7

The fact that value  reaches at c=π is explained by the special form of the desired 

amplitude pattern , which is realizable exactly in this case (e.g. by the current 

distribution ). 

σ = 0

F ( )ξ

I n n= δ 0
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Figure 2. Value of functional σ at the optimal (solid line) and equiphase (dashed line) 

solutions of equations (17) for array with 5 elements; F ( )ξ ≡ 1 .  

 

5. CONCLUSION 

The nonlinear integral equation describing the solutions of the problem of synthesis of the 

equidistant linear antenna array according to the prescribed amplitude directivity pattern, is 

solved analytically with some number of the complex parameters which are calculated from a 

system of transcendental equations. It is shown that the number of such parameters are limited 

and it is smaller than the number of radiators in the array. There exist the equivalent groups of 

solutions which have one of the same amplitude directivity pattern but different phase ones. 

Correspondingly, these patterns are formed by the different current distributions. The 

solutions are branched out at some values of the physical parameters where solutions of new 

types are arisen. Numerical results show that the optimal solution can be chosen among the 

different equivalent groups. 
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