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Abstract 
 A mode matching scheme for the analysis of concentric cylindrical waveguide step 
discontinuities is proposed. An analytical evaluation of the involved coupling 
integrals is performed which results in a very fast and accurate method. The 
formulation is theoretically verified for the special case of a dominant mode 
excitation, while different excitations are numerically verified. The results obtained 
from the analysis of various structures are in a very good agreement with 
measurements and results given by other investigators. The speed and accuracy of the 
proposed method make it appropriate to be included within microwave network  
synthesis algorithms. 
 

1. INTRODUCTION 

 The analysis and design of corrugated waveguides and corrugated horn antennas as 

well as components based on them can be reduced to the analysis of waveguide 

discontinuities. Namely, waveguide discontinuities can be combined in tandem or in 

parallel for the design of components such as filters, polarizers, phase shifters, 

impedance transformers and corrugated horn antennas. The Mode Matching technique 

has been proved to be an efficient and robust technique for the analysis of multiple 

discontinuities. Moreover, a fast and accurate method implementing the Mode 

Matching is of primary importance in the development of a microwave network 

synthesis computer aided design (CAD) tool [1]. The best way to achieve this task is 

the analytical evaluation of the quantities involved in the analysis rather than the 

performance of any numerical integration. It is towards this aim that the present work 

tries to contribute. 

 For the application of the mode matching technique the boundary conditions at the 

junction are imposed resulting into integrals, known as coupling integrals. Their 

numerical evaluation is a very time consuming procedure, while they can be 

calculated analytically only for simple aperture geometries, as for example the 

rectangular cross-section. The junction of two cylindrical waveguides was studied 
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analytically in [2], where  closed form expressions for the coupling integrals were 

given, but only for the special case of a dominant mode (TE ) incidence. In this case 

only the  and TM  modes are excited. Recently, the rectangular to circular 

waveguide junction for the concentric and offset cases were studied analytically. In  

[3,4] the rectangular waveguide modal functions were expanded into Bessel-Fourier 

series and matched their coefficients with the corresponding ones of the circular 

waveguide. For this purpose they transformed the cylindrical coordinate system into a 

cartesian one at the junction. The resulting coupling integrals, after the 

transformation, are reduced to known Bessel integrals [5]. 

11

TE n1 n1

 Examining the technique employed in [3] it is realized that the key point for the 

analytical evaluation of the coupling integrals is the coordinate transformation from 

cylindrical to cartesian system. In this work we applied the above technique to the 

generalized analysis of an arbitrary incidence mode or multimode excitation of the 

junction of two circular waveguides. The procedure results to closed form expressions 

for the generalized scattering matrix of the junction. For this purpose all the coupling 

integrals are evaluated analytically and thus the required computation time is 

minimized. Furthermore, since the coupling coefficients are calculated very fast we 

are now able to include any large number of modes (truncation at a higher number of 

modes) as required to achieve the desired accuracy, with negligible increase in 

computation time. 

 

2. FORMULATION 

 The junction of two circular waveguides with different cross section is considered, 

as shown in figure 1. A common axis of symmetry (axis-z) is assumed for the two 

waveguides and their walls are taken as perfect conductors. The electromagnetic field 

inside each waveguide is expanded into a modal series, e.g. Collin [8, p. 354], and the 

components transverse to the propagation axis-z are expressed as: 
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Fp
and Bp

 are unknown mode coefficients for the pth mode and  is their propagation 

constant. The subscript p denotes the order of the excited mode numbered in an 

increasing sequence as they occurred. For example p=1,2,3,.. denotes the modes TE , 

γ p
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Figure 1. A cylindrical waveguide step discontinuity. 

 

The pth. mode wave admittance Y  is included in both field expressions for 

symmetry reasons following Bird [9, 10 p.35] and is given as: 
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where y0 0 0 1 120= =ε μ π/ /( ) mhos is the free space wave admittance, 

y y r r= 0 ε μ/ and k kr r r= =ω ε ε μ μ ε μ0 0 0 r  is the wavenumber.  

The eigenvalues of each mode (χmn , ′χmn ) are determined by imposing the boundary 

conditions at the waveguide wall (ρ = a ) and are given as: 

Jm mn
( )χ = 0  defines the TM  eigenvalue 

mn
χmn  

   J  defines the TE  eigenvalue ′ ′ =m mn( )χ 0
mn

′χmn            (3) 

It is a common practice in the mode matching technique to employ the generalized 

scattering parameters since we aim at the analysis of complicated microwave 

networks. The generalized versus the ordinary (simple voltage ratios) scattering 

parameters are preferable because they are normalized with respect to the wave 

impedance which is different for each mode. This is also the reason why the mode 

functions in equation (1) are normalized with respect to the wave admittance. In this 

manner the generalized scattering parameters for each mode can be expressed as a 

function of the modal coefficients [10, p.16] as: 
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Thus, (F , B ) and (F , ) are respectively the amplitudes of the inward and outward p q q Bp
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waves at the junction as shown in figure 1. Moreover, in order for the field 

expressions to be independent from the magnitude of the excitation the mode 

functions are normalized to the mode propagating power at the junction (z=0). 

Namely, the Poynting vector is formed from the expressions given by Collin [8, 

p.357] and integrated over the waveguide own cross section to evaluate the 

propagation power. 
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After the normalization the transverse mode functions are expressed as: 
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 The above expressions are general and can be used to express the fields in both 

sides of the discontinuity. Also, all six components must be taken into account. 

Furthermore, there is coupling between TE and TM modes at the discontinuity. 

Namely, even with a TE incident wave, both TE and TM modes will be present in the 

reflected and transmitted fields. Thus, the boundary conditions at the discontinuity are 

imposed on the total electric and magnetic fields. The total fields result from the 

summation over the infinite set of excited modes. The boundary conditions at the 

discontinuity require the continuity for the transverse (E , Ht t ) field at the aperture 

(z=0, cross section of the small waveguide ρ ≤ R 2
) and the vanishment of Et  at the 

conducting obstacle (z=0, R 1
). These are imposed as: R≤ ≤ρ2
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 Superscripts I and II denote the waveguide with the large radius (R1) and the small 

one (R ) respectively. 2

 For computational reasons the infinite summations of equations (7) must be 

truncated to a finite number. It is also well understood that more modes should be 

taken into account for the waveguide with the large radius in order to achieve the 

same accuracy in both of them. It has been proved that the ratio of the number of 

modes M/N should be equal to the ratio of the waveguide radius R1/R , [11], namely 

M/N=R

2

1/R  where M, N the number of modes assumed to be excited within the 

waveguides with radius R1 and R . 
2

2

 The summation of equations (7) involves all the unknown modal coefficients F , 

, F and B . In order to construct a system of equations with these unknowns, it is a 

common practice to inner multiply in turn equation (7a) by each of the electric field 

modal functions of the larger waveguide (

p

Bp q q

I
je ), while for the magnetic field it is 

recommended to multiply equation (7b) by the small radius waveguide modal 

function ( II
jh ) [10, p.14]. This choice is justified by the fact that the boundary 

conditions for the transverse electric field (Et ) applies on the whole cross-section of 

the larger waveguide as described above. Thus, in order to enforce Et  to be zero at the 

conducting part of the discontinuity we must inner multiply Eq. (7a) by the electric 

field modal functions of the larger waveguide ( I
je ). In this manner, the contribution 

resulting from the conducting area (R 1R2 ≤ ≤ρ ) is set to zero and the integration is then 

restricted over the aperture (ρ ≤ R 2
). For the transverse magnetic field ( H t ) the 

boundary conditions require only its continuity at the aperture, while over the 

conducting area the unknown current densities are also involved. Thus, in order to 

restrict this condition over the aperture (ρ ≤ R 2
) it is recommended to inner-multiply 
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Eq. (7b) by the magnetic field modal functions of the smaller waveguide ( II
jh ). In this 

manner mixed modal functions inner products are involved in the resulting equations. 

It is then: 
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 The final separation of the unknowns is accomplished by integrating over the 

larger waveguide cross section (already done in Eq. (8) above) and using the mode 

orthogonality properties, e.g. [12]. In this manner all terms involving e ep

I

j

I  with p j≠  

vanish, while the integrals of the terms e ep

I

j

I  for p=j are equal to 2 (rather than the 

usual unity due to the normalization). Analogous results are obtained for the magnetic 

modal function integrals but using the two waveguides in vice-versa. Namely, the 

integrals of h hq

II

j

II  vanish at q j  and are equal to 2 for q=j. These manipulations yield 

the following system of equations in matrix form: 

≠
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 The remaining coupling integrals of Q  and Q , both of them over the small 

waveguide cross section (aperture S , 

qj

e

pj

m

2 ρ < R2 ), must be evaluated either numerically or 

analytically. In fact only one of the two matrices of integrals, either [  or [ ]  

need to be evaluated because the one is equal to the transpose of the other. This results 

from the relation between electric and magnetic field modal functions, which in turn 

is referred to the relation between transverse (

]Qe

qj
Qm

pj

Et , Ht ) and longitudinal (E , ) field 

components coming directly from the two Maxwell rotational equations. It is simpler 

to see this from equation (6), which gives 

z Hz

( ) ( )h z xet tρ ϕ ρ ϕ, ,=
∧

. 

 Moreover, the modal functions  e II

q , ej

I  and hq

II , hj

I are different for TE and TM 
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modes as shown in equations (6a) and (6b). Thus, each one of equations (8a) and (8b) 

can be decomposed into four sets of equations which can be discriminated as TE-TE, 

TM-TM, TE-TM and TM-TE couplings. Each one of these combinations results into a 

different coupling integral. 

 Since these integrals include Bessel functions with different orders and different 

arguments they require an increased computational effort, especially for microwave 

network synthesis applications. Thus, their analytical evaluation is of primary 

importance. It is toward this aim that the present work tries to contribute. 

 Examining carefully the work of Wade and MacPhie [3], it can be realized that the 

transformation of cylindrical to rectangular coordinates ( , ( ) ( )A x = −A cos A sinρ ϕϕ ϕ

( ) ( )Ay = +A sin A cosρ ϕϕ ϕ ) reduce the coupling integrals into a form with known analytical 

solutions. This is given by Abramowitz and Stegun [5, p.484] as: 
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 Carrying out the transformation from cylindrical to rectangular coordinates, the 

modal functions take the form: 
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where, , ( )[ ]s m± = ±sin 1ϕ ( )[ ]c cos m± = ± 1ϕ  and again ( ) ( )h z xet tρ ϕ ρ ϕ, ,=
∧

. 

This form applies to both waveguides. Using the formulae given in equation (10) the 

four coupling integrals for the electric field are expressed as: 
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while for the magnetic field is:    

          [ ] [ ]Q Qpq
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e T
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Using the above closed form expressions the coupling integrals can be evaluated very 

fast and they are in turn substituted into equations (9a) and (9b). This is a system of 

equations with totally (N+M) unknowns, namely M unknown reflected B ;, 

p=1,2,..,M and N transmitted F ;, q=1,2,..,N modal amplitudes. Since, we are actually 

interested in the generalized scattering parameters, the expressions for [  and [ ]  
are in turn substituted in equation (4) resulting in the final desired formulas as: 
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 A lot of practical microwave structures can be decomposed into a series of 

waveguide discontinuities, (like the one shown in figure 1), connected in tandem. In 

this structure the output from one junction coincides with the input of the successive 

one. The input of the first junction is the excitation of the structure and can be any one 

or a combination of the input waveguide modes. The incident field at the output of the 

last junction depends on the terminating load, and it is evaluated accordingly, e.g. 

from the load reflection. Each waveguide can be assumed to be empty (filled with air) 

or to be homogeneously fulfilled with an isotropic dielectric or magnetic material. The 

material properties are also included in the above formulation in order to allow the 

analysis of filters or any structure including for example dielectric windows, e.g. [14]. 

Moreover, structures like cylindrical corrugated horns can be equally well analyzed. 

 In order to verify the analytical part of the above formulation a dominant mode 

(TE ) incident field is first considered. For this case the coupling integrals of equation 

(10) are already given by Wu [2, p. 277] in closed form. In this case the present 
11
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method expressions given in equation (13) are exactly reduced to those of [2]. 

 

3. NUMERICAL RESULTS 

 Our primary aim was to develop a fast mode matching technique which should be 

able to handle complicated cylindrical waveguide structures. A lot of structures have 

been analyzed in order to verify this aim and some characteristic examples are given 

bellow. 

One of our first concerns was the numerical verification of the present formulation. 

For this purpose a thick cylindrical iris, shown in figure 2a, has been analyzed for 

different diameters and thicknesses. The results for the magnitude and phase of the S  

parameter are shown in figure 2b, where its thickness is varied (t=0.1 to 100mm) and 

its diameter (2b) is kept constant (b=9.525mm). These results are in a very good 

agreement with those of a moment method solution (MoM) [13] as well as with the 

corresponding measurements [13]. This investigation was repeated for various 

diameters, where our results are always almost identical to those of the MoM solution, 

while the maximum deviation from measurements was of the order of 1% for the 

magnitude and phase. A similar investigation for a constant iris thickness t=5.08mm 

and varying its diameter is shown in figure 2c. 

11

An iris matched dielectric window shown in figure 3a, is analyzed in [14] using a 

«recurrence modal analysis» and considering a dominant mode excitation. This 

structure has been optimized in [14] for f =1.1. The present results for the reflection 

|S | and transmission |S | coefficients magnitudes are compared against those of [14], 

(only |S | is available in [14]), as shown in figure 3b and found to be almost identical. 

fc/

11 21

11

 In order to show the validity of the present formulation for excitation other than the 

dominant, the computer optimized filter (figure 4a) is analyzed for a TE  excitation. 

The results for the insertion loss is shown in figure 4b and compared with those given 

therein. An excellent agreement is observed. 

01

Our next concern was to prove the efficiency of the proposed method regarding its 

speed and its ability to handle complicated structures. For this purpose the corrugated 

horn antenna proposed in [16] was analyzed. This antenna has a semi-flare angle of 4 

degrees and aperture radius of 3.14cm and is decomposed into 1235 cylindrical 

waveguide sections, which in turn constitute 1234 waveguide discontinuities. 

Dragone, employed an approximate method for the analysis of corrugated horns and 
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also provided us with measurements for the |S |.  11

This corrugated horn was analyzed herein by employing both the present 

formulation as well as the commercial package of TICRA [6]. The results for the  |S | 

are shown in figure 5. The present method gives identical results with those of 

TICRA, but at a small fraction of CPU time as one can see from figure 6. Both 

methods give a good convergence with 35 modes. A satisfactory agreement between 

the present method and the measurements is observed. Especially, for frequencies 

above 32GHz our method performs quite better than that of [16]. 

11

 Moreover, the present method is quite faster than that of TICRA as shown in figure 

6, where the required CPU time is plotted against the number of modes at the 

aperture. At least 15 modes are required for the method to start converging, while 

about 35 modes are required for accurate results. Both programs are executed on a 

PC-486. Taking  into account that in the usual practice the analysis method should be 

included within a CAD package for the design of such structures, the present method 

is obviously preferable. The results for the H- and E- plane radiated field are shown in 

figure 7, for a frequency of 23, 29 and 35GHz. The far field is calculated by first 

evaluating the electric field at the aperture (or the equivalent magnetic current 

density) which is in turn integrated over the aperture to obtain the far field [7]. It must 

be noted that the latter is an approximate method, since the discontinuity between the 

aperture and the free space as well as the outer conducting part of the antenna, are not 

taken into account. Finally it can be easily deduced from the examples studied above 

that the proposed method is ready to be included in microwave network synthesis 

algorithms and this is actually our next goal. 
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Figure 2. Reflection and transmission coefficient of an iris, varying the iris thickness (t)  and diameter  

(b), (f=9 GHz, a=12.74445mm), a) geometry of a thick iris., b) varying the iris thickness for 
fixed diameter b=6.35mm, c) varying the iris diameter for a fixed thickness t=10.0mm.  
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Figure 3. An iris matched dielectric window [14] with f =1.1, fc/ ε r =2.8, t/a=0.04 and t =t,  i

 a=10.0mm, b=8.63mm, =8.79GHz, a) geometry of the iris, and b) results for |S | and |S |. fc 11 21
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Figure 4.  A TE  excited mode filter [15]. (a0=16.269mm, a1=6.718mm, a2=3.888mm,  01

     l1=11.142mm, l2=10.907mm, t=0.2mm), a) geometry of the filter, and b) results  

     for the insertion loss. 
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Figure 5. Results for the return loss of a corrugated horn proposed in [16]. 

 

4. CONCLUSIONS 

 A fast and accurate mode matching technique for the analysis of cylindrical 

structures that can be decomposed into multiple concentric step discontinuities, is 

proposed. The coupling integrals involved are evaluated analytically and the resulting 

closed form expressions are theoretically verified for the special case of a dominant 

mode excitation. For different excitations as well as for a number of applications the 

results are in a very good agreement with measurements and/or results given by other 

methods. The technique proposed herein is appropriate to be included in microwave 

network synthesis algorithms. 
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Figure 6. Required CPU time for the analysis of  the corrugated horn proposed in [16]. 
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Figure 7. H- and E- plane radiation patterns of a corrugated horn [16]. 
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