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Abstract 

 The Pattern Equation Method (PEM) is a new numerical-analytical method of 
solving of diffraction problems.  The method is based on the modifications of the 
plane wave representations of the diffraction field by the Sommerfeld-Weil integrals 
which have been previously obtained by A.G.Kyurkchan. These modifications of the 
classic plane wave integrals permit to find the diffraction field by its asymptotic in far 
zone that is by the pattern.  The field can be found in the whole space outside the field 
singularities convex envelope which is located entirely inside the scatterer in most 
interesting cases for  practice.   

 

1. PROPOSED METHOD 

The Pattern Equation Method (PEM) has been presented in [1] and then tested in 

papers [2-15,17]. It is the new rigorous and universal method of solving boundary 

problems of electrodynamics, acoustics and optics. This method reduces to neither 

standard methods of solving mathematical physics boundary problems. In solving 

problems of wave scattering by single body [1-3] the group of bodies [4, 5], discrete 
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gratings in free space [6], periodical interface of two media [7, 8], a body immersed in 

homogeneous semi-space [9-11] and a body in layered medium as well as the 

problems of modes of periodical structures [13, 14] and dielectric waveguides [15] the 

high efficiency has been demonstrated. 

We shall state the main idea of the method using two dimensional problem of  the 

primary plane wave field U 0  diffraction on the cylindrical scatterer with the cross-

section  [1, 7]. When a two-dimensional problem is considered the representation 

mentioned above has the following form [16]: 
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where U  is the wave (diffraction) field which satisfies the homogeneous Helmholtz 

equation everywhere outside the scatterer:  

1
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g( )ϕ  is the pattern of the wave field, that is the function of the angle coordinate in 

asymptotic equality:  
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The pattern g( )ϕ  in turn is expressed in terms of the field U r1( , )ϕ  by the 

following integral:  
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where U U ,  U is the primary field. For simplicity we restrict ourselves to 

the case when the complete wave field satisfies the homogeneous Dirichlet  condition 

on the scatterer  surface S .  Based on the above mentioned relations (1) and (2) 

present the pair of transformations which allows to semiinvert  the diffraction operator 

and reduce the boundary problem to a second kind integrooperator equation relative 

to the pattern. The example of the equation is [1]: 

U= +0 1 0
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Here  g 0 ( )α  is the known function,  is the operator function, $ ( , )K α ψ
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where r = ρ ϕ( ) is the equation of the contour S  in the polar coordinates. 

In the case of a  three-dimensional problem the following modification of the plane 

wave integral is used as the main relation [2]: 
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where g( , )θ ϕ  - is the pattern of the wave field;  $B  is the operator determined by the 

formula: 
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If the pattern is defined by its Fourier series: 
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Using the formula (4) as well as the integral representation for the pattern g( , )θ ϕ  

in terms of the boundary value of the wave field and its normal derivative we can get 

integro-operator equation of the second kind relative to the function g( , )θ ϕ  similar to 

(3) [2].  The integral equations in both two- and three-dimensional cases are solvable 

providing the convex envelope of the diffraction field singularities lies entirely inside 

the scatterer. All convex as well as so called slightly nonconvex  bodies satisfy this 

condition.  Expanding the pattern in terms of some complete system of  functions, for 
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m

example, into the Fourier series, we can reduce the equation (3) to the infinite 

algebraic system:   

a a G an n nm
m

= +
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∞

∑0                                                                                                   (6)       

relative to the Fourier  coefficients a  of the pattern. The  free terms a  correspond to 

the expansion of the function  

n n
0

g 0 ( )ϕ ,  G  are the elements of the system matrix.   nm

The Pattern Equation Method has a number of advantages compared with the 

standard methods. These advantages are conditioned by the nature of the method.  

Indeed, when the boundary problem is solved by the current integral equation method, 

the required value is the distribution of the tangential component of the wave field 

(that is the current) on the scatterer surface. This value strongly depends on the body 

geometry. For example, the currents at the surface of  a sphere and a thin disk with the 

same diameter have very different dependencies  versus the coordinates. At the same 

time the main parameters characterizing the pattern such as the main-lobe beam 

width, the first side beam level etc. slightly depend on the geometry and are mostly 

determined by the typical sizes of the scatterer. Another example  is the problem of 

wave scattering by two bodies. If dimensions of the bodies are small compared with 

the wavelength, their patterns are approximately isotropic for all distances between 

the scatterers (in a two-dimensional case). However the currents on the bodies 

surfaces significantly change when scatterers are close to each other. Thus the 

dimensions of the algebraic systems occurring when the problem is solved by Pattern 

Equation Method are determined by the typical sizes of the scatterer and practically 

don't depend on its geometry, the type of the boundary conditions and the availability 

of other bodies near by. 

TABLE I 
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The table I illustrates the calculation results of the scattering  characteristics for a 

oblate spheroid with the semiaxis ka kb= = 5, kc = 0 5. . Here cond  is the system 

matrix condition number; S  is the integral scattering cross section; S  is the value of 

the integral scattering  cross-section obtained from the optical theorem; 
i 0

N  is the 

maximum number of  the harmonics in the series of type (5). 

You can see that the results are stabilized in third decimal place when N kd≈   

where  is the diameter of the sphere circumscribed around the spheroid. So the 

PEM "doesn't observe" such a significant sphere deformation. 

d

The integral equation for the pattern permits to obtain explicit analytical solutions 

for a number of interesting practical cases. One of these examples is presented below. 

This is the second merit of the method. 

The third advantage of the PEM is that the matrix elements of the algebraic 

systems, generated by the method, are expressed by the integrals half of dimension as 

much as those in the standard methods, for example, in the method of current integral 

equations. 

To illustrate the next advantage of the method we present the following form of the 

matrix of the algebraic system obtained in solving the problem of wave diffraction by 

periodical grating which is located near to the two media interface: 

G G G (G G ).s a g h= + +                                                                                               (7) 

You can see from (7) that the matrix of the algebraic system is the sum of  two 

matrices. The first of these matrices is similar to that used in solving the problem of 

wave scattering by a single scatterer which is the element of the grating in the 

problem considered. The second matrix is the multiplication of the two matrices: G  

and (G . Here G  is determined just by the geometry of the grating element 

and the type of the boundary condition on its surface as well as the matrix G .  The 

matrix G  depends only on the parameters characterizing the grating itself (the period 

and the incidence angle of primary plane wave).  The matrix G  is determined by the 

parameters of the grating, the parameters of the media and the distance between the 

grating and the interface. 

a

G )g h+ a

s

g

h
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Thus the matrices G  and  are universal in the various problems of effort 

required and don't depend on the availability of any surfaces or medium 

inhomogeneities surrounding the scatterer. 

s Ga

At last one more important advantages of the PEM is the possibility of rigorous 

justification of the computational algorithm of solving one or another diffraction 

problem. There is a unified procedure to fulfill the asymptotical evaluations of the 

matrix elements and free terms of the corresponding algebraic systems. This 

procedure allows to get following sufficient condition to solve the systems by the 

reduction method: 

σ σ2 > 1                                                                                                                        (8) 

The values σ 1 and σ 2 are determined by the problem geometry and the type of the 

primary field. The condition (8) is obviously fulfilled providing the scatterer is 

convex or slightly nonconvex and the interactive bodies don't touch each other. 

The condition (8) rather strongly restricts the ratio of the "amplitude" of period of 

the periodical surface if the problem of scattering by the periodical surface is 

considered [7]. For example, in the case of wave diffraction by the sinusoidal surface 

f x a x b( ) cos( )= 2π , where a  is the amplitude of the surface and b is it's period, the 

condition (8) leads to the limitation: 

a b < 01055. .K  

However the limitations on the problem geometry which follow from the 

inequality (8) don't make the problem insolvable. The problem of wave scattering by a 

body of complete geometry can be replaced by the problem of diffraction on the 

group of bodies near by with more simple shape.  

Analogous replacement can be made in the case of the scattering by strongly 

"modulated" surface. 

As an illustration of PEM applying to various problems we shall consider the 

concrete examples. 
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                                                           Figure 1. 

The scattering pattern of a very oblate spheroid with the semi-axes ka , 

which has been found by PEM is shown on fig. 1. The normal plane wave 

incidence is assumed. The pattern of infinite thin disk with the radius ka  is shown 

by a dashed line on this figure. You can see good coincidence of the curves. In 

calculations we used the equation system similar to (6) which had dimensions 11 . 

So the system order is approximately equal to kd , where d  is the largest cross size of 

the body. Further increase of the system dimension results in the changes of third or 

fourth decimal place. 

kb= = 5

kc = 0125.

= 5

11×

 

                      Figure 2.                                                                      Figure 3. 

Let’s consider the problem of wave scattering by an impedance body [17]. Assume 

the so called impedance boundary condition is satisfied on the body surface: 
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where  is proportional to the local impedance of the scatterer surface. Figure 2 

presents the pattern of an prolate spheroid with the semiaxes ka ,  

irradiated by the plane wave which propagates along the large semiaxis, that is 

W

kb= = 1 kc = 5

θ 0 0= , 

ϕ0 0= . The curve 1 corresponds to the acoustically soft spheroid (W ), the curve 2 

corresponds to the spheroid with the so called «matching impedance» (W ), that is 

the completely sound-absorbing spheroid. You can see that the reverse reflection (in 

the direction of 

= 0

i= −

θ π= ) by the ideal spheroid is more than 10dB lower than it is by the 

acoustically soft spheroid. The figure 3 shows the results of the calculation of the 

pattern of the plane wave propagating orthogonally the symmetrical axis of the body 

representing the round cylinder with the radius ka = 1 and the height 2  (the 

curves 1,2), or the spheroid with semiaxis ka

6kc =

kb= = 1, kc = 3 inscribed into the 

cylinder (the curve 3). In this case the curve 1 corresponds to the acoustically hard 

body (W ) and the curves 2 and 3 correspond to the sound-absorbing body. In the 

situation considered the reverse reflected field attenuation for the completely 

absorbing scatterer is still more. Besides the comparison of the curves 2 and 3 

demonstrates that the pattern typical minor lobes which are correspond to the end-

walls of the cylinder (

= ∞

θ = 0, π ) are absent.   

 

                                                                  Figure 4.   

As the second example we consider the problem of wave scattering by the group of 

N  bodies. The dependence of the effective scattering cross-section (ESC) σ  on the 
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plane wave incidence angle for the group of three round cylinders with the radius 

 is shown on fig. 2. The cylinders are located at the apexes of equilateral 

triangle. The length of the triangle side varied between kL

ka = 1

= 8 (the curve 1), 5 (the 

curve 2) ... 3 (the curve 4) and kL = 2 04.  (the curve 5) [5]. You can see that with 

decreasing of the distance between the scatterers the integral ESC of the group σ Σ  

monotonically diminishes and with increasing kL  the ratio σ Σ N  tends to the limit 

equal to σ Σ  of   the single scatterer. Such a behavior of the value σ Σ  can be 

interpreted by the fact that in a "dense" group of scatterers some part of  incident 

wave power remains in the system on the average per period. 

And now consider an example of the PEM application to obtain some analytical 

relations. The following approximate formula for the reflection coefficient of the 

plane wave by the periodical grating composed of round cylinders was presented in 

the paper [6]: 

R i b a
b0

1

1 2 2
0− ⎛

⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥

−

λ
π ϕln sin ,≈ −

⎡

⎣
⎢                                                                            (9) 

where a  is the cylinder radius, b  is the grating period, λ  is the incident wavelength, 

ϕ0  is the grazing angle. In spite of its simplicity this formula is valid for approximate 

calculations when b λ << 1. The comparison with the rigorous computations using the 

system of type (6) shows that when b λ = 0 05.  the "exact" reflection coefficient 

doesn’t differ from the approximate one for more than 0.1%.  

 

                                                                    Figure 5. 
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a

The fig. 5 demonstrates the dependence of the absolute value of the field U d

versus the wave number  for the cylindrical scatterer immersed in the semi-space to 

the depth d . The refraction index 

( , )0  

= 2 ν  is equal to 3. It follows from the graph that 

the maximums of the dependence corresponding normal wave incidence (the curve 1) 

are at the points ka n= +π π2 , n = 1 2 3, , K. Thus the irradiation of the media 

interface by a plane wave with various frequencies permits to evaluate a body 

immersion depth since the full field maximum corresponds to the value d  which 

is equal to 

a−

λ 4. The curve 2 corresponds to the incident wave grazing angle ϕ0 30= o.  

 

                                                                       Figure 6. 

On the next figure the distributions of the field U  versus ka  in the case when 

a scatterer is inside the plane layer [11] (see fig. 6) is shown. The thickness of layer is 

. The curve 1 corresponds to the layer lying on the metallic screen and the 

curve 2  corresponds to the symmetrical layer, with 

d( , )0

h = 4a

d h= 2.. Maximums of the 

curves conform here to the critical frequencies of the modes propagating in the layer. 

For instance for the curve 1 they correspond to the values  

k a n
n =

− −ν
ν

π2 1 2 1
8

( ) ,  n .  = 1 2, ,K

The calculations show that the maximums of the dependences are not displaced if 

the distance d  between the body and the upper layer boundary is changed. The 

refraction index ν  is equal to 3. 
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                                                                 Figure 7. 

Figure 7 presents the distribution of the scattering wave field on the upper 

boundary ( ) of the homogeneous dielectric layer which lies on the metallic 

screen  (d h ). At the top the layer  borderes on the homogeneous 

semispace . The scatterer is assumed to be a semicircle located within the layer 

and the primary field is a plane wave falling from the semispace  (the normal 

incidence is supposed to be). The curves 1 and 2 in the figure correspond to two 

various positions of the scatterer (see the graph). It follows from the figure that the 

scattering field at the point 

y d= 2

y d= − 1 d1 = − 2

y d> 2

y d> 2

x = 0 for the position 1 is approximately two times  more 

than for the position 2. The dashed curve in the figure conforms to the scattering by 

the round cylinder with the same radius. The cylinder is placed so that the distance 

between the point on its surface closest to the interface y d= 2 and this layer boundary 

is equal to the corresponding distance for the semicircle (positions 1 and 2). The 

figure demonstrates good coincidence of the curve 2 and the dashed curve close to the 

point x = 0.  
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                                                                        Figure 8. 

To illustrate the effect of the  excitation of the main (first) mode by the mirror with 

the semicircular cross-section we have plotted the dependence of the ratio between 

the value of the main mode power and the total mode power (carried along the 

positive direction) versus the rotation angle γ  of the body (see fig. 8). The radius of 

the scatterer is ka = 5. The body is placed in the middle of the symmetric layer which 

is irradiated by the normal incident plane wave. The relative refraction coefficient is 

equal to 31 .The maximum of the curve conforms to the point 3. γ = 45o. This result is 

in good agreement with the geometry optic theory. For comparison we have plotted 

the analogous dependence for the small round cylinder with the radius ka  (the 

dashed straight line in the figure). It follows from the figure that the semicircular 

reflector is rather effective to excite the mane mode in this slab. 

= 0 5.

TABLE II 
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The table II illustrates calculation algorithm convergence. The values Nu  and N g  

are the numbers of terms in Fourier series for field and pattern respectively. The 

quantities near these values indicates the calculation precision (number of significant 

digits).  

 

Figure 9. 

Fig. 9 illustrates the result of  PEM application for the problem of the eigen waves 

which are propagates along the sinusoidal surface f x a x b( ) cos( )= 2π  [7, 13, 14]. 

The dependence of the value h k −1 (where h  is the longitude wave number) on the 

number of the equations in the system of the type (6) is shown on the figure. The 

dependencies are plotted for the various values of the parameter a  characterizing the 

depth of the sinusoidal surface. The limitation (8) in this problem is equivalent to the 

condition a b < 01055. K. The figures shows that when this condition is broken the 

algorithm becomes unstable. 

In conclusion we present the results concerning the wave scattering by gratings. 

The pattern of the grating consisting of a round cylinders placed in free space is 

shown in the figure 10a. The radius of the grating elements a  and the period of the 

grating  satisfy the relation: a bb = 01.  (b = 0 75. λ , where  λ  is the wavelength). The 

grating is excited by the point source located at x0 0= , y a0 b2= + . The figure 10b 

illustrates the pattern of the same grating which is immersed in the homogeneous 

semispace with the relative refraction coefficient ν = 3. The depression of all spectral 

maximums of the large numbers is caused by the fact that the grazing angles of the 
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high number waves are less than the total internal reflection angle of the interface 

. Thus the interface becomes opaque for these waves. y d=

 

                          Figure 10a.                                                          Figure10b 
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