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Abstract 

 A new hybrid Computational Electromagnetic technique is presented based on 
combined use of Finite-Difference Time-Domain (FDTD) and Method of Moments 
(MoM) technique. MoM is employed to determine the current distribution on perfect 
conductors and to satisfy the exact boundary conditions on the interface of 
inhomogeneous field penetrable material media by solving a Kirchhoff type integral 
equation, while FDTD is employed to describe the electric field inside the field 
penetrable regions. The case of two dimensional analysis is presented, while the 
suitability of the proposed technique to treat arbitrary structures in terms of their 
shape and constituents is exhibited. 
 

1. INTRODUCTION 

During the last 20 years a large amount of research work has been carried out in 

applying the Finite-Difference Time-Domain (FDTD) technique to treat various 

electromagnetic (EM) structures, by making use of the Yee’s [1] algorithm. Various 

type of Absorbing Boundary Conditions (ABC’s) simulating the radiation conditions 

at infinity have been employed to truncate the region being discretized, within which 

the field is computed in a nodal mesh. 

Despite the very high versatility of FDTD in treating many practical problems, 

there is still a drawback related to the ABC; that is the truncation of the region within 

which the field is computed. Despite many efforts, this generic problem remains an 

open issue. The same problem exists in using the Finite Element (FE) technique, 

where this «truncation problem» has been successfully faced by using an integral 

equation (IE) formulation to implement the radiation conditions. 

In this context, a new hybrid approach is presented in this article based on the 

combination of the Method of Moments (MoM) [2] and the FDTD [1,3]. The 
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motivation in proposing this technique is based on the fact that, although MoM is 

highly successful in solving arbitrary shaped conducting objects, the FDTD technique 

is the most versatile method in treating arbitrary shaped, inhomogeneous, dispersive 

and anisotropic lossy dielectric materials. Therefore, the complementarity of the two 

techniques is used to propose a general computational EM solver. 

In the following, the case of two dimensional (2D) fields with a single electric 

field component and non-dispersive media is presented. However, the proposed 

method is general and is being extended to three dimensional (3D) - vector field and 

dispersive media structures. 

 

2. COMBINATION OF FDTD AND MOM  

Consider the structure presented in Fig. 1. A field penetrable region characterized 

by a dielectric permittivity ε(x,y), a magnetic permeability μ(x,y) and a conductivity 

σ(x,y) -all three time independent functions- and a perfect electric conductor (PEC)  
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Figure 1. Generalized 2D scattering geometry. 

are assumed to be placed in the free space. The electric field is taken to be 

E t z t( , ) $ ( , )ρ ρ= Ψ  (1) 

where ρ = +xx yy$ $  and t is the time variable. The arbitrary external excitation primary 

field -either an incident plane wave or a near field source- is described in terms of a 

known field function Ψ0( , )ρ t . 
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Applying the Green’s theorem for the free space region bounded by the curves 

∂Sd, ∂Sc and C∝ (infinite radius circle), a time domain integral equation is easily 

obtained [4] in terms of the surface electric fields Ψ( , )ρ t , as 

Ψ Ψ( , ) ( , )ρ ρt t= 0
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being the Heaviside function, | | ( ) (ρ ρ− ′ = − ′ + − ′x x y y2 2)  and c = 1 0 0ε μ  being 

the speed of the EM radiation in vacuum. 

Eq. (2) is solved via a MoM and a collocation technique. The integrations along 

both the boundary curves ∂Sd and ∂Sc and the time axis are discretized, as 

Ψ Ψ( , ) ( , )ρ ρi m i mt t= 0

+ ′ ′ ′ − ′
′ ′

−
′ − ′

′ ′
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

+

−=
∑∫∑ dt G t t

t

n

G t t

n
t

j

N N

i j m
j i j m

j
k t

k t

k

m c d
Δ Ψ

Δ

Δ

111
l ( | | )

( , ) ( | | )
( , )

( )
ρ ρ

∂Ψ ρ

∂

∂ ρ ρ

∂
ρ  (5) 

where tm=mΔt (m=1, 2, …) are the field measurement time instants, Nc and Nd are the 

number of discrete points on ∂Sd and ∂Sc respectively, while ρ1 , ρ2 , …, ρNc
, ρNc +1 , 

…, ρN Nc d+
 are the position vectors on the boundary curves. Furthermore, the normal 

derivative ∂Ψ/∂n is computed by taking points on and in the ∂Sd and ∂Sc curves. 

Then, the inner to ∂Sd points, i.e. the points within the dielectric object region are 

linked to an FDTD modal mesh (see the next sub-section), while the PEC condition 

Ψ=0 is employed on (and in) ∂Sc.Following a lengthy analysis, the time integrals at 

the right hand side of eq. (5) are computed in terms of the time instants prior to the 

field measurement time instant at the left hand side (i.e. tm in eq. (5)). Therefore, 

starting at t=0, when the incident field Ψ0 has not yet arrived to either of the dielectric 
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or conducting objects, and being Ψ( , )ρ t

t=
=

0
0 , the electric fields on the ∂Sd and ∂Sc 

boundary curves are computed, taking always into account the link with the field 

inside the dielectric object. 

To this end, adopting a square nodal mesh inside the dielectric object and 

discretizing also the time axis, a recursive FDTD equation can be written, as [5] 
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where Ψn(i,j) is the field at the time instant tn=nΔt (n=1, 2, …) and at the nodal point 

(i,j), Δt is the time increment and Δx=Δy=Δs is the lattice space increment common in 

the x- and y-coordinate directions. Following the standard FDTD procedure, eq. (6) is 

used with a time step procedure to determine the field inner to the dielectric object. 

In the case of abrupt discontinuities of the ε(i,j), μ(i,j) and σ(i,j) parameters, a 

mesh deformation technique is employed to satisfy the boundary condition and the 

corresponding derivatives in eq. (6) are accordingly modified. In order to achieve 

numerical stability, the Curant criterion c t sΔ Δ≤ 2  [6] is always satisfied. 

The fields on the ∂Sd boundaries are linked with the nodal points just within the 

dielectric object. Through this link and the time step procedure of both eqs (5) and 

(6), the field distribution Ψ( , )ρ t  is obtained along the time axis. Note that, the fact 

that the boundary curves ∂Sd and ∂Sc can be taken exactly on the surfaces of the 

dielectric and conducting bodies minimizes the number of nodes used to describe the 

field. 

 

 

 

3. NUMERICAL RESULTS 

The method described in sec. 2 is employed to compute the structure shown in 

Fig. 2, where the inhomogeneous dielectric object/cylinder is enclosed in a 

rectangular  
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 Figure 2. Numerical computation geometry. 
 

FDTD grid of dimensions Lx×Ly, while the conductor is taken be of strip shape with 

zero thickness and width Lc. In solving eq. (5), on ∂Sd the mid points between the 

FDTD scheme points are taken as collocation points to discretize the Green’s function 

equation. The incident field Ψ0( , )ρ t  is simulated by a time pulse, as 

Ψ0 0( , ) cos sin
ρ

αt p t t x y
c

= − −
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⎝⎜
⎞
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α  (7) 
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α is the angle of incidence and t0>0 is taken sufficiently large, so that at t=0 the Ψ0 is 

zero on both ∂Sd and ∂Sc. Also, the pulse duration τ is taken to be much larger than 

Δt. 

Numerical computations have been carried out for an incident pulse with τ=4 nsec 

and α=45°. The conducting strip of width Lc=1.9 m with its centre at (x=-30, y=0). 

Stability tests have been carried out by varying all the spatial and incremental 

quantities and the accuracy of the results in terms of convergence is observed and 

verified. In Fig. 3 indicative numerical results are shown for diverse discretization 

schemes (varying both Δs=Δl space increment and Δt time increment) for the case of 
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a rectangular dielectric cylinder of dielectric permittivity εr=10 placed at the centre of 

an FDTD grid with Lx=2.9 m and Ly=1.9 m. The accuracy is of course expected to 

grow worse as time increases, due to error accumulation. 

 
Fig. 3. Convergence pattern: referring to Fig.2, the centre of the Lc=1.9 m width conducting strip is at 

(x=-30, y=0) and a rectangular dielectric cylinder of εr=10 is placed at the centre of the FDTD grid 
with Lx=2.9 m and Ly=1.9 m, while for the incident pulse it is τ=4 ns and α=45° and the simulation 

time is t=30.0 ns (the first-order reflected by the strip waves cross the dielectric region). 
(a) Δt=12×10-11 Δl=Δs=0.1 (b) Δt=8×10-11 Δl=Δs=0.1 (c) Δt=12×10-11 Δl=Δs=0.08 (d) Δt=8×10-11

 Δl=Δs=0.08 
 

Presentation of the numerical results by using advanced visualization techniques 

proved to be highly useful to ensure the accuracy of the proposed technique, by 

observing the validity of fundamental laws of electromagnetism, such as that of 

reflection and diffraction of EM waves by the conductor and the dielectric medium, or 

the disappearance of reflected by the mesh edges waves, when there is no dielectric 

(just free space) inside ∂Sd. In Fig. 4, a sample case is shown for the structure 

examined in Fig. 3 and for four different time instants, starting from a time instant 

when the incident pulse propagates for the first time through the dielectric region 

(Fig. 4(a)), going to a time instant when the pulse reaches the conducting strip (Fig. 

4(b)), then to a time instant when reflections from the strip start to appear (Fig. 4(c)) 
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and finally to a time instant when the reflected by the strip waves cross the dielectric 

region (Fig. 4(d)). More results concerning different dielectric permittivity values, 

dielectric cylinder shapes and excitation pulses are available at the web site 

http://www.cc.ece.ntua.gr/~fvancea. The satisfaction of the boundary conditions at 

each time step, as well as the observed propagation phenomena prove the validity of 

the derived numerical results. 

 
Figure 4. Scattering phenomena: the scattering structure of Fig.3 at four different time instants 

(Δt=12×10-11, Δl=Δs=0.08). 
(a) t=8.4 ns  (b) t=16.4 ns (c) t=22.4 ns (d) t=30.0 ns 

 

4. CONCLUSION - FUTURE WORK 

A novel hybrid computational EM technique based on the combined use of MoM 

and FDTD has been described for the case of 2D structures. Although in the present 

paper the case of dispersionless materials is considered, the proposed approach is 

easily extendible to dispersive materials, by taking into account the convolution 

integrals connecting the field quantities. Presently, the method is extended to 3D - full 

vector field case structures. The developed method has been proved to be highly 

efficient and accurate, since no «Artificial» ABC is imposed to truncate the field 

around the scatterers and the radiation conditions are embedded with the IE 

formulation. 
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