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Abstract 

Electromagnetic field transformation caused by a time variation in external 
magnetic field in plasma is considered. The time variations of magnetic field and 
plasma density and are approximated by a sequence of step functions. Different initial 
wave orientations have been analyzed. Numerical illustrations are presented. 
Detailed analysis for a single jump of the external magnetic field is performed. 

1.  INTRODUCTION 

In a series of papers, see for example [1-6], the effects in a magnetized plasma 

whose density changes in time have been examined. It is well known that the 

switching on of an external magnetic field in the plasma changes the type of 

electromagnetic oscillations in it, i.e. changes its properties. The transformation of 

electromagnetic waves in the plasma with a slow time-varying external magnetic field 

has been considered in [7] in the adiabatic approximation. However, the adiabatic 

conditions are also held in the case of an abrupt magnetic field jump, when the period 

of oscillations is much longer than the duration of the jump. For instance, in the free 

electron lasers [8], the electronic beam passes through the domain of the magnetic 

field polarity change within 10-8 – 10-10 sec. Therefore, in the microwave band, the 

condition of the abrupt jump is fulfilled. This condition is 1<<Δω t  where  is the 

characteristic oscillation frequency, 

ω

tΔ  is the jump duration.  

It should be noted that, in general, the external magnetic field becomes 

inhomogeneous when it changes in time. Indeed, if the dimension of the considered 

domain is a, then the duration of the transient magnetic field is uat ≈Δ , where u is 

the propagation velocity of the magnetic field disturbance. Therefore, the condition of 

the abrupt jump is ω<< ua . In its turn, the magnetic field can be considered 

homogenous if 1<<κa , where κ  is the spatial scale of the field. As umω>κ , 

mailto:K.Yemelyanov@univer.kharkov.ua


ELECTROMAGNETIC SIGNAL EVOLUTION IN A  NONSTATIONARY PLASMA  
WITH A MAGNETIC FIELD JUMP 

 

52 

where  is the frequency of the magnetic field oscillations, we obtain the following 

conditions for the time change of a homogenous magnetic field to be abrupt: 

mω

ω
<<

ua , 
m

ua
ω

<< . 

The fulfillment of these conditions is determined by both the type of considered 

electromagnetic oscillations and the way of the external magnetic field orientation 

that can be directed along one of the numerous branches of the plasma oscillations 

[9]. These conditions can be satisfied at least locally. 

The paper is organized as follows. The formulation of the problem is presented in 

the second section. In the third section, the expression for the medium operator is 

obtained. In the fourth section, the solution for a single jump in every parameter is 

obtained exactly by means of the resolvent of the Volterra integral equation for 

electromagnetic field in a magnetized plasma. In the fifth section it is shown that the 

resolvent obtained for a single jump in parameters can be used for a sequence of 

jumps, i.e. an arbitrary time dependence of parameters can be approximated. The 

evolution of a plane electromagnetic wave and plasma oscillations in the case of a 

time jump in external magnetic field has been considered in the sixth section. It is 

shown that the initial wave is transformed to three pairs of waves with different 

frequencies, the waves in each pair remain transverse and propagate in the opposite 

directions provided that the magnetic field is parallel to the initial wave. In the case of 

a normal magnetic field orientation, the waves have both transverse and longitudinal 

components. At last, the seventh section is concerned with the investigation of the 

transformation of the plasma oscillations. 

2.  BASIC EQUATIONS 

Let us consider an electromagnetic field in plasma when the external magnetic 

field and the plasma density vary in time starting from the zero moment. In this case 

the field is described by the following operator equation [10] 

EFE K̂+= ,           (1) 

where  is the product of the operators VΓK ˆˆˆ = Γ̂  and V . By means of the Dirac 

bracket notations [11], the propagation operator 

ˆ

Γ̂  is defined as  

∫ ∫
∞

′′′=
t

ΓdtdΓ
0

ˆˆ xxr ,  
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2 , and ( )rx ,t=  denotes the time-

spatial four-vector. In these expressions, c is the speed of light, )(tδ  is a Dirac delta 

function. 

The medium operator V  is defined by the constitutive equations as  

where 

ˆ )(ˆ EPE =V

P  is the polarization vector. The free term in the (1) consists of two items 

∫ ∫
∞

∞

′′′′′+=
0

)0( ),(ˆ),(),( rPxxrrFrF tΓdtdtt r ,     (2) 

where the first item 

∫ ∫ ∫
∞− ∞

′

∞−

′′′′′−′′′
π

ω′′′=
0 2

)0( ),()(
4

ˆ),(
t

e ttttdΓdtdt rExxrrF     (3) 

takes into account only the prehistory of the electromagnetic field interaction with the 

plasma until the beginning of the change in the magnetic field, and rP  is the residual 

polarization. 

A solution to (1) can be obtained by the resolvent method in the following form 

FFE R̂+= . We find the resolvent R̂  as a solution to the corresponding operator 

equation An integral equation for the matrix element of the resolvent operator is given 

by: 

∫ ∫
∞

∞

′′′′′′′′′+′=′
0

ˆˆˆˆ
njinijij

RKdtdKR xxxxrxxxx ,    (4) 
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ijδ  is the Kroneker index. 

3.  CONSTITUTIVE RELATIONS 

For obtaining a solution to (4), we have to define the medium operator in addition 

to the propagation operator, i.e. an expression for the polarization vector P  should be 
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found. Let us consider a cold plasma in the approximation of isolated particles. As 

defined in [9], it is possible to write P  in the following form: 

∫∫
∞−∞−

′=′=
tt

tdnetd vjP ,         (5) 

where n is the electron number density in plasma, v is the electron velocity. The 

electron velocity obeys the linearized equation of motion: 

[ ] )(, 0 t
mc
e

m
e

dt
d

θ+= BvEv ,         (6) 

where BB0 is the external magnetic field, )(tθ  is the Heaviside step function that takes 

into account the switching of the magnetic field at the zero moment. The solution  

∫
∞−

− ′′=
t

tdt
m
et )()( Ev           (7) 

to (6) till the zero moment determines the plasma polarization in the stationary state 

as described by the well known expression 

∫
∞−

′′′−
π

ω
=

t
e tdttt )()(

4

2
1 EP ,         (8) 

where mnee
22 4π=ω  is the plasma frequency. 

After the zero moment, the solution to (6) is obtained by the Laplace transform 

technique and is given by 

( )
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(9) 

where , )0(0 −= vv mceB0=Ω  is the Larmor frequency. 

For the positive time intervals, after substituting (7) and (9) into (5), we find that 

the expression for the polarization consists of the two terms: PPP += r2 . The first 

term is the residual polarization caused by the prehistory of the electromagnetic field 
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till the switching on of a constant magnetic field 

dt
dttr

),0()(ˆ),0()( 1
1

rPrPP α+= ,        (10) 

and the second term P defines the polarization of the plasma in the “new” state: 

∫ −α
π

ω
=

t
e dttttt

0

2
'),'()'(ˆ

4
),( rErP .        (11) 

In these equations, the susceptibility tensor α̂  represents the well-known 

expression for the polarization in a magnitoactive plasma [9]: 

( ) jikikjijij bbtbettt ⎟
⎠
⎞

⎜
⎝
⎛ Ω

Ω
−+−Ω

Ω
+δΩ

Ω
=α sin111cos1sin1)( ,   (12) 

where  is the unit vector in the direction of the external magnetic field after its 

jump,  is the anti-symmetric tensor of the third rank. 

b

ijke

Now it is possible to write the expression for the medium operator. From (11) we 

obtain: 

∫ −α
π

ω
=

t
e ttdtV

0

2
)'(ˆ'

4
ˆ .          (13) 

In the case of the magnetic field BB0 directed along the z axis, the expression for the 

 tensor (12) can be simplified, namely: α̂

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Ω
ΩΩ+−
Ω−Ω

Ω
=α

t
tt

tt
t

00
0sincos1
0cos1sin

1)(ˆ .      (14) 

4.  THE RESOLVENT OF THE INTEGRAL EQUATION 

The solution to (4) for the resolvent is convenient to obtain by using the Fourier– 

Laplace transform technique: 

∫ ∫ ∫∫
∞

′′+′′−−

∞ ∞

∞
′′′=

0 0

ˆˆ rkkr xxrrpp itp
ij

ipt
ij

eReddtddtR ,    (15) 

where , p is a complex variable, and k is a vector. In this representation, 

the matrix elements of the operators have the following form: 

),p( kp =

)(4ˆ
222

22
pppp ′−Δ

+

δ+
π−=′

kcp

pkkc
Γ ijji

ij
,      (16) 
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)(
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ij

VV , 

where ( ) ( )
pp

)(
′−
′−δ

π=′−Δ
kkpp 32 , ijij

~V α= , ij
~α  are the Laplace transformation of 

the elements of the matrix α  (see (12)). ˆ

In the case of the external magnetic field directed along the z-axis: , the 

 matrix becomes 

{ 1,0,0=b }
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The transformations made above enable us to obtain the resolvent of (7) as 

∫ ∫
∞

∞− ∞
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ππ
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where the T matrix has the following form: 
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Here  and ,22222
ee kcp ω++=ϕ Î  is the identity matrix. 
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where . 2222 kcp +=ϕ

The gyromagnetic polynomial in (19) has the following representation: 

)()(),( 2
3

2242222242 kcppppG eeee ω+ϕϕΩ+ω+ϕ=k .    (21) 

5.  THE CASE OF THE ARBITRARY TIME–VARYING MAGNETIC FIELD 

APPROXIMATION 

An arbitrary time-varying magnetic field can be approximated by a sequence of 

magnetic field jumps. In this case there is a need to advance the initial point of time 

sequentially from step to step. After each step, the transformed electromagnetic field 

is determined by the constructed resolvent in which the value Ω  should be replaced 

by a new one corresponding to a new value of the external magnetic field, i.e.  

should be replaced by  when passing from (n-1)-th step to the n-th one. Clearly, 

there is a need to take into account the change in the equation free term to which after 

each step the integral over the previous time interval should be added. Let us consider 

that the external magnetic field is absent till the zero moment and from this moment it 

varies with time step by step being constant between jumps. Then, as it follows from 

the equation of motion for the cold plasma, after the n-th jump in the external 

magnetic field, the polarization vector 

1−Ωn

nΩ

)(nP  is determined by the following relations: 

∫ −α
π

ω
+=

t

t

nnen
r

n

n

dtttttt ')'()'(ˆ
4

)()( )()(
2

)()( EPP ,     (22) 

dt
tdtttt n

n
n

n
n

nn
r

)()(ˆ)()(
)1(

)()1()(
−

− −α+=
PPP , 0)0( =rP ,   (23) 

where  is the moment of the n-th jump in the magnetic field,  is the 

corresponding susceptibility tensor. 

nt
)(ˆ nα

Taking into account the expressions for the electric polarization (22), (23), the 

equation for the electric intensity of the electromagnetic field, after the n-th jump in 

the external magnetic field, can be represented as the Volterra integral equation of the 

second kind: 
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∫ ∫ ∫
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The free term of this equation is equal to 
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The first term in (25) takes into account only the prehistory of the electromagnetic 

field interaction with the plasma until the beginning of the change in the magnetic 

field and is determined by (3), the other terms describe after-effects caused by the 

external magnetic field jumps. 

To solve (24), for )(nE , the resolvent method is used. With the aid of the 

resolvent, the formula for the field intensity in the magnitoactive plasma after the nth 

jump in the magnetic field can be expressed as 

∫ ∫
∞

′′′′′+=
t

nnnn tRdtdtt
0

)()()()( ),(),(),( rFxxrrFrE .    (26) 

As it has been mentioned above, the expression for the resolvent for the sequence of 

jumps is the same as the resolvent for a single jump in the external magnetic field if 

the Larmor frequency is changed from step to step. 

6.  THE TRANSFORMATION OF A PLANE WAVE 

Consider the initial field as that of an eigenwave of the plasma, i.e., a plane wave: 

( )[ ]srErE −ω= tit exp),( 00 , where . Suppose that it exists till the 

external magnetic field in the plasma is switched on. Let us consider that the 

transformations of the wave are made for a single jump in the magnetic field. 

Substituting the expression for the initial field in (22), (23) and then substituting the 

obtained expressions for 

)( 2222
ecs ω−ω=

rP  and P  in (25) yields the free term as follows: 

∫
∞

∞−

−
π

=
i

i

iptepΦ
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dpt srrF )(
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where  
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)( 0
22
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0
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and V  is the well-known gyromagnetic matrix (see (17)). ˆ

Substituting (27) into (26) yields the expression for the transformed electric field 

when the external magnetic field is arbitrary orientated: 

( )∫
∞

∞−

−+
π

=
i

i

iptepΦpTI
i

dpt srsrE )(),(ˆ
2

),()1( .      (28) 

Formula (28) is a general expression which determines the transformed 

electromagnetic field for an arbitrary orientation of the external magnetic field. It can 

be simplified if the orientation of the external magnetic field is properly specified. Let 

us investigate two special cases of the mutual orientation of the magnetic field BB0 and 

the wave vector s. 

1. The external magnetic field BB0 is orientated along the propagation direction of 

the primary wave, i.e. { }s,0,0|| =sb , { }0,0,00 E=E . In such a case, the 

gyromagnetic polynomial can be simplified: 

)()(),( 22 pHppG eω+=s ,         (29) 

where . 222222222 )()()( scppppH +Ω+ω+=

The electromagnetic field is defined by the following expression: 
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where . 2222224)1( )()( scpppQ Ω+Ω+ω+=

The analysis of (30) gives us a possibility to conclude that the transformed electric 

field consists of three pairs of waves with the frequencies , which are the roots of 

the polynomial  (see Figure 1). Waves in each pair remain transversal, preserve 

the wave vector s, and propagate in the opposite directions (see Figure 2). 

kp

)( pH

1) t = 0

b
s

E ω,
E E E

−s

b
s

2) t > 0

1 2 3ω ω ω1 2 3, , ,  
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Figure 1. New frequencies in the case when the external 

magnetic field is orientated along the propagation 

direction of the primary wave ( ). sb ||

Figure 2. Transformation of 

electromagnetic waves when . sb ||

2. The external magnetic field is switched on normally to the wave vector, i.e. 

, . Then, the transformed electric field will be 

determined by the expression 

{ }0,0,s=⊥ sb { 320 ,,0 EE=E }
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where  is directed along the magnetic field and is the same as the 

primary wave (see Figure 3), 
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The new frequencies are defined as 
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⎜
⎝
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2
1
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and presented in Figure 4. 
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Figure 3. Transformation of electromagnetic 

waves when . sb⊥

Figure 4. New frequencies in the case when the external 

magnetic field is normal to the direction of the primary 

wave sb⊥ . 

In this case the component of the primary electric vector parallel to  is not 

changed. The component normal to b  forms two pairs of waves with the frequencies 

 (see Figure 3). These waves have both longitudinal and transversal components 

and correspond to the fast and the slow extraordinary waves, respectively [12]. 

b

kω±

It should be pointed out that in all the cases an abrupt change in the external 

magnetic field transfers a line spectrum of a primary electromagnetic field to the line 

spectrum of the transformed field. 

7.  THE TRANSFORMATION OF THE PLASMA OSCILLATIONS 

By substituting  and 0=s eω=ω  into (30), we obtain the transformation for the 

plasma oscillations. Substituting eω=ω  in (30) yields the transformation of plasma 

oscillations when the external magnetic field is switched on at the zero moment and 

its vector b is normal to the electric field in the plasma oscillations. The latter 

transforms into two elliptically polarized oscillations: 

∑
= ⎪⎭

⎪
⎬
⎫
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⎪
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ω
Ωω

ωΩ+ω−ω
Ω+ω−ω

=
2

1

2
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e
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(33) 

where ⎟
⎠
⎞

⎜
⎝
⎛ Ω+ωΩ−+Ω+ω=ω − 221222 4)1(2

2
1

e
k

ek . The time dependence of the 

plasma oscillations field on the external magnetic field is shown in Figure 5. The new 

frequencies of the plasma oscillations are presented in Figure 6. 
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Figure 5. The time dependence of the plasma 

oscillations field when the external magnetic field 

is normal to the direction of the primary wave 

. sb⊥

Figure 6. New frequencies of the plasma 

oscillations when the external magnetic field is 

orientated along the propagation direction of the 

primary wave ( ). sb ||

In the case of a weak magnetic field: eω<<Ω , the both types of oscillations are 

almost circularly polarized and have the frequencies , which are 

slightly different from each other. 
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In the case of a strong magnetic field: eω>>Ω , the oscillation with the frequency 

 will be a circularly polarized cyclotron oscillation with a small amplitude: Ω≈ω1

}0,sin,cos{)( 2

2
01 ttEt e ΩΩ
Ω

ω
−=E .       (35) 

The other oscillation will have the frequency 242
2 Ωω≈ω e  and almost linear 

polarization: 

}0,sin,cos{)( 2202 ttEt ωω−=E .       (36) 

When the external magnetic field is parallel to the electric field of the plasma 

oscillations, i.e. , the latter are not changed as it follows from (31), 

(32). 

{ 0,0,|| 00 E=Eb }
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8.  CONCLUSION 

In this paper, a solution to the problem of electromagnetic wave propagation in a 

plasma with a time-varying magnetic field has been obtained. The method which is 

used allows to consider the simultaneous changes in the external magnetic field as 

well as in the plasma density. The problem is formulated as the Volterra integral 

equations and its solution is made by the resolvent method. 

The transformation of the arbitrary orientated external magnetic field with respect 

to the primary plane wave has been considered. A general expression which 

determines the transformed electromagnetic field has been obtained. When the 

external magnetic field is orientated along the propagation direction of the primary 

wave, the transformed electric field consists of three pairs of waves. Waves in each 

pair remain transversal propagate in the opposite directions. In the case when the 

external magnetic field is switched on normally to the wave vector, the component of 

the primary electric vector parallel to the external magnetic field is not changed, and 

the component normal to the external magnetic field forms two pairs of waves which 

have both longitudinal and transversal components.  

It should be noted that the sequential transfer of the zero moment gives a 

possibility to investigate the transformation of oscillations in the case of a sequence of 

arbitrary magnetic field jumps. In any case, the field transformed under the influence 

of magnetization has a discrete spectrum. 

It is shown that the switching of the magnetic field that is normal to the electric 

field in plasma oscillations transforms the oscillations into two elliptically polarized 

oscillations with different frequencies. In the case of a strong magnetic field, the first 

of these oscillations has almost a circular polarization and frequency close to the 

cyclotron one, and the second has almost linear polarization and frequency close to 

the zero frequency. In the case of a weak magnetic field, the oscillations have the 

frequencies which are slightly different, and the both are almost circularly polarized. 

The switching on of the magnetic field parallel to the electric field does not affect the 

latter. 
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