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Abstract 
   In this paper a new model for determination of the electromagnetic field components 
of  linear induction system with a moving part is described. The analysis is done by 
four-dimensional electromagnetic potentials εΨ

r
using the theory of the magnetic 

loops. A model of the variable magnetic charge defined by sufficiently thin solenoid 
without scattering with variable magnetic flux )(tΦ  is also used. The vector 
components of the excited magnetic field H

r
 and the induced electric field E

r
are 

determined in the Minkowski’s space as elements of the dual Maxwell’s tensor. The 
results obtained are compared with those got from the analysis made by the finite 
elements method. 
Keywords: Linear induction system, four-dimensional electromagnetic potential, 
magnetic loops, Minkowski’s space, Maxwell’s tensor, finite elements methodh . 
 
1. INTRODUCTION  

The determination of the electromagnetic field in linear induction system (LIS) at 

the presence of movement is considered.  

1- magnetic yoke, 2 –air gap, 3 –metal sheet ; 

h , l – height and length of the inductor, respectively; d , c- length and width of the pole, respectively ; 

б – air gap; g – thickness of the conductive sheet. 

Figure 1. An idealized model of double-polar induction system 
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The LIS is power supplied by sinusoidal single-phase generator. The model of the 

LIS is represented in Fig.1. The magnetic system is symmetric because of the presence  

of a magnetic yoke with two inductors. The metal sheet placed in the air gap is moving 

with a constant velocity  in the  direction of one of the coordinate axes. constv =

The magnetic loop is connected with the fixed XOYZ while the metal sheet with the 

mobile X’O’Y’Z’ coordinate system. 

A model of variable magnetic charge defined by sufficiently thin semi-endless 

solenoid without scattering with variable magnetic flux ( )tΦ  is used [ 1 ]. 

The cross-section S of the magnetic pole is considered to be consisted of n – number  

magnetic charges ( in this case  n =5 ). Fig. 2. represents the magnetic yoke composed 

of  “ n “ – number magnetic loops. 

 

Figure 2.  A model of the magnetic pole 

c = 2a is the pole length , d = 2b is the pole width 

The magnetic charge possesses variable sinusoidal magnetic flux   

    ( ) ( )ψω +Φ=Φ tt m sin   ,          (1) 

where  is the amplitude of the magnetic flux , mΦ ω  is the circular frequency and ψ is 

the initial phase. 

 

2. RESULTS 

2.1. ELECTROMAGNETIC POTENTIALS 

The loop with a variable magnetic flux excites an electromagnetic field with electric 

vector-potential εA
r
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At an arbitrary point of the coordinate system XOYZ the scalar magnetic potential  

 is the following  μV
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A four-dimensional electromagnetic potential ( )εΨ
v

 is introduced  

( ) { }
⎭
⎬
⎫

⎩
⎨
⎧=ΨΨΨΨ=Ψ μεεεεεεεε V

c
jААА zyx ,,, 4321

v
 ,       (4) 

where   are the components of the vector-electric potentialzyx AAA εεε ,, εA
r

 in the 

direction of the axes  x , y , z and  is the scalar magnetic potential.  μV

The transformations of Lorentz  [1, 2 , 5 ] for the electromagnetic potentials  

( )zzzyyxx AvVVV
c
vAAAAAA ′′′′ ′+′=⎟

⎠
⎞

⎜
⎝
⎛ ′+′=′′=′′= εμμμεεεεεε αα ;;; 2  ,    (5) 

where :  

2
2

1

1

c
v−

=α  is the relative factor;  is the speed of light     (6) c

and  the transformations of Lorentz concerning the coordinates  

( ) ⎟
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⎝
⎛ −=′−=′=′=′ z

c
vtttvzzyyxx 2,,, αα       (7) 

in the Minkowski’s space  { jctzyxX ,,,= }
r

 are used. At lower speed ( 1≈〈〈 )αcv   the 

transformations of Galiley are used  

( ) ttvtzzyyxx =′−=′=′=′ ,,,   .         (8) 

 It is supposed [ 2 ]  

( ) ( ) ( ) ( )
td

td
dt
dtett

′
′Φ′

≈
Φ

−=Φ=′Φ′ ,   .       (9) 

   the condition ( ) ( )tt Φ=′Φ′  is introduced by analogy to the condition   

( ) ( ) ( ) ( )tititJtJ =′′=′′ ,    [1, 2 , 4 ]. 

For the four-dimensional electromagnetic potential ( )εΨ
v

 is obtained  

 



AN ANALYSIS OF THE ELECTROMAGNETIC FIELD IN 
A DOUBLE-POLAR LINEAR INDUCTION SYSTEM 

20

( )

( ) ( )

( ) ( )
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Φ
−

Φ
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Φ
−

Φ
=

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
+

+
+

−
+

=

=Ψ

∑∑

∑∑

∑∑

= =

= =

==

5

1

2

1

5

1

2

1
2

2

1

5

1

20

20

0

5
1

4

i k ik

k

ik

k

i k ik

k

ik

k
z

y

k

ikik

ikik

i
x

M
t

Q
t

c
jV

M
t

Q
t

c
vA

A
P

xArsh
P

hxArsh

P
hxArsh

P
xArsh

teА

μπ
α

μπ
εα

δ

δ

π
ε

μ

ε

ε

ε

ε

r
              (10) 

 

where :  ( ) ( )[ ]{ }22
ikiik bvtdzayP +−+++= α  ; 

     ( ) ( ) ( )[ ]{ }222
ikiik bvtdzayxQ +−+++++= αδ   

     ( ) ( ) ( )[ ]{ }222
ikiik bvtdzayxM +−++++−= αδ   

  ( ) ( ) ( )[ ]{ }222
ikiik bvtdzayhxC +−+++++= α   

  ( ) ( ) ( )[ ]{ }222
ikiik bvtdzayhxD +−++++−= α   

 

2.2. VECTORS OF THE ELECTROMAGNETIC FIELD 

The strength components of the excited magnetic field and  the induced electric 

field are determined as elements of the dual Maxwell’s tensor  [1, 2] (See 

Appendix 1). The dependencies 
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are used [ 1, 2 , 4 ].  

For the magnetic field are obtained the following expressions  
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   and   
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for the electric field strength. 

 
2.3. NUMERICAL RESULTS 

The calculations for the determination of the electric and magnetic field vectors for 

the linear induction system shown in Fig.1 are done using the following data : height 

of the inductor , length of the inductor mh 09.0= mL 22.0= , length of the magnetic 

pole , width of the magnetic pole md 04.0= mc 04.0= , air gap  m01.0=δ  and 

thickness of the conductive sheet mg 002.0= . 

The distribution of the magnetic flux lines in the  cross-section of the LIS is 

presented in Figure 3 . 

Figure 3. 2D flux lines for double polar LIS 
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 The distribution curves of the magnetic field strength in the LIS are shown in 
Figure 4.  

 
Figure 4 Distribution of the magnetic field in the air-gap 

of the double-polar linear induction system 
 
 
2.4. A COMPARATIVE ANALYSIS WITH FEM 

The outline of the LIS analyzed with FEM is represented  in Fig.5. The cross-

section of the LIS is considered. In this case the vector-magnetic potential  is  used 

in the analysis made by the FEM. The results are represented in Fig.6. 

μA
r

The distribution of the magnetic field strength in the air gap shows the same 

behaviour in the plane YOZ at  y=0 . 

 
3. CONCLUSION 

With the method represented in the paper one can determine the electromagnetic 

field components in the double-polar induction system using four-dimensional 

potential. A priority of this method is the obtaining of analytical results for the 

electromagnetic field components. The results obtained are  valid for a linear system 

but they can be jointly used with the rest methods for analysis of linearized non-linear 

systems. The results are comparable to those got with the finite elements method for 

the investigated system .  
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Figure 5. Outline of a double-pole LIS with two slots for FEM 

Simulations:1-magnetic yoke; 2-exciting winding; 3- air ; 4-load metal shee ; 5- buffer area; 
h – magnetic yoke height; hw –tooth height; lw-slot length ; d – tooth width; 

hb-buffer height; lb – buffer length; б –air gap; g – sheet thickness 
 

 
Figure 6. Distribution of the magnetic field in the air gap obtained by FEM 

  
The investigations may be continued for determination of other characteristics, e.g. 

drag force, braking force, lift force etc., and  as well as for an analysis of the 

electromagnetic field in multi-polar linear induction systems. Such systems at lower 

speeds of movement are the linear induction machines, liquid metal pumps, MHD 

generators etc., while at higher speeds – electromagnetic systems for magnetic 

resonance, electromagnetic guns, etc.  
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The method represented in this paper may be also used for optimization 

investigations as reported in [ 5 ] .  
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