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Abstract 
The method of solving the right-angle dielectric wedge (RADW) boundary-value 

problem (BVP) consists of integral representation of the inside and outside fields and 
matching these fields on the boundaries. As a result, a set of integral equations (IE) 
of the 1-st kind was obtained. A new iterative method is proposed for such equations 
solving. This method produces a robust and adequate solution to the ill-conditioned 
matrix equation (ME) resulted from IE while discretization. With the aid of this 
method, the fields radiated into the empty quarter-space are investigated 
 
 
1. INTRODUCTION 

The electromagnetic diffraction by a dielectric wedge is of a great interest in the 

theory of dielectric waveguide matching, the theory of resonators and antennas. The 

problem of diffraction of an E-polarized plane wave by a RADW has been treated by 

a number of authors [1-6]. The aim of these authors was to obtain an exact closed 

form solution to the 2-D Fredholm IE of electromagnetics [7]. However, the rigorous 

solution to this problem is not available to date.  

Some approximate solutions are also known [8-10]. In all this papers, far-fields 

were obtained approximately, but there were no backscattered field estimations in this 

works. However, it is of great importance to know the field behavior in the vicinity of 

the tip of the wedge and the backscattered far-fields. 

The solution obtained in this paper, permits to compute a scattered field in any 

observation point. Asymptotically approximation of the obtained solution gives both 

the backscattered and forward scattered far-fields. 

In the presented paper, the BVP for the TM plane wave diffraction by a RADW 

for a frontal incidence is solved numerically, but the obtained solution is valid at the 

whole space due to having an analytical form. The canonical method of fields 

matching on the boundaries is used. For the fields inside the wedge and outside of it 

the plain wave spectral representation [11] is used in the right-angle coordinates. 

Then, the boundary conditions satisfaction leads to a set of integral equations of the 

1-st kind for six spectral functions. The Laplace transform of the obtained integral 
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equations results in an ill-conditioned matrix equation (ME) with the aid of the 

quadratures. For such equation solving, a new iterative scheme is proposed, because 

of the known iterative methods do not work. This iterative scheme gives a stable 

solution in the sense of Hadamard that does not depend practically on sampling.  

 

2. BOUNDARY-VALUE PROBLEM 

It is assumed that the dielectric body with the relative permittivity ε  occupies the   

2nd , 3rd and 4th quadrants. The permittivity of the body will be a complex constant 

value: 

''' εεε j−=                                                           (1) 

 

where ''ε  is assumed to be positive. Inside 

this area a plane wave which has only a z-
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is radiated and diffracted by the empty 

quarter-space (see Fig.1) with dielectric 

constant 010 j−=ε . Here are 

denoted:

00020001 cos,sin ikik εε ==     (3)                                      

where  is the incident angle between                                Figure 1. 0i

0k
r

 and OY. The frontal  incidence  is  assumed with an  incident  angle: 

2/0 0 π≤≤ i . We put in this paper 1/ =cω . To solve  a  BVP  for   2-D  

waveequation,  the   total   electric  field   in   the 1st   quadrant    was     represented   

as    theWitteker’s integrals [11]: 
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Inside the dielectric body we used the analogous representation of the scattered field 

in the 2-nd quadrant: 
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and in the lower half-space ( ) for the scattered field we have: 0≤y

∫∫
∞

∞−

∞

∞−

++− += ξξξξ ξξ deAdeAyxE yjhxjyjhxj )()(),( 653                               (6) 

where εξξε −−=−= 22 jh , 0
22

00 εξξε −−=−= jh . The functions (4-6) 

satisfy the corresponding wave equations and radiation conditions inside and outside 

the body for arbitrary integrable function )(ξiA . The representations (4-6) have a 

physical sense of the plain wave decomposition and they must account all waves of a 

physical problem. Inside the empty wedge, waves  ~ )exp( 0 yjhxj −− ξ  in Eq. (4) 

move in the positive y-direction ( ) and in all x-directions, but waves 

~ )exp(

+y

0 yjxjh ξ−− move in the positive x-direction ( ) and in all y-directions. 

Then, such waves in Eq. (4) take into account any physical situations inside the 1

+x
st 

quadrant for mentioned incident angle. In the 2-nd quadrant there are waves that 

move in  -direction like  ~−x )exp( yjjhx ξ−−  and waves that move in  -direction 

like ~

+y

)exp( jhyxj −ξ . Then, the representation (5) accounts all possible waves in the 

2-nd quadrant. In the lower half-space (y<0) all scattered waves move in -

direction like ~

−y

)exp( jhyxj +± ξ  and then Eq. (6) accounts all such waves. 

The boundary conditions for the electric and magnetic fields lead to the set of 1-D 

IE of the 1-st kind for unknown spectral functions: 

 

)0,()0,()0,( 031 xExExE =−                                                                         (7) 

0,)0,()0,()0,( 031 ≥∂=∂−∂ xxExExE yyy                                                (8) 

),0(),0(),0( 021 yEyEyE =−                                                                       (9) 

0,),0(),0(),0( 021 ≥∂=∂−∂ yyEyEyE xxx                                            (10) 

0)0,()0,( 32 =− xExE                                                                                  (11) 

0)0,()0,( 32 =∂−∂ xExE yy ,                    0≤x                                           (12) 

 

for corresponding boundaries: y = 0, ; x = 0, and  y= 0, . 0≥x 0≥y 0≤x

The Laplace transform that is applied to the Eqs. (7-12), leads us to the set of IE: 
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The existence of inverse transform (21) ensures the equivalence of sets (7-12) and 

(13-18) therefore we solve the transformed set with the aid of quadratures. The matrix 

of the algebraic linear system is very ill-conditioned. The known iterative methods do 

not work for such matrices hence a new iterative scheme is developed for such 

systems solving. 

 

3. ITERATIVE TECHNIQUE  

A new iterative scheme is proposed to solve an ill-conditioned ME of the form: 

BKX =                                                                               (19) 

where K is a square matrix, X and B are vectors or matrices. The method is based on 

the LU-decomposition: 

ULK +=                                                                           (20) 

where  
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Then, the Eq. (11) is represented in the iterative form: 

XKFX ~~ +=  
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where 

ULKFLF 11 ~,~ −− −== . 

This equation gives the iterative process 
)1()( ~~ −+= nn XKFX                                                        (21) 

that produces a set of approximate solutions 

∑
=

=
n

i

in FKX
0

)( ~~                                                            (22)                               

with  as an initial guess. The corresponding discrepancy F~

FKXd n
n −= )(                                                           (23) 

tends to zero for consequent )(nX  if the iterative process (21) converges. The 

convergence depends on the right-hand side (F) and the decomposition parameter 

(α ). This is typical for ill-conditioned ME which has a solution if and only if the 

right-hand side is in the range of the matrix. Numerical investigations show that for 

some F and α  the following convergence condition fulfills: 

FFK n
n ~~ β= ,   .                                    ∑

∞

=

∞<=
0n

n Sβ

In that case the solutions (22) make up a compact set in a Banach space. Then, the 

tendency of discrepancy (23) to zero for consequent )(nX  ensures the tendency of 

approximate solution )(nX  to an exact solution  of  Eq. (11): eX

0)( →− e
n XX ,                                                           

according to Tikhonov's investigation [12]. Here ⋅  denotes a vector norm. For 

complex matrices, like used for integral equation set (13-18) solving, it is necessary 

to multiply the Eq. (19) by the complex conjugate matrix ∗K  and then to solve the 

equation 

BKKXK ** =                                                     (24) 

with the aid of the  mentioned iterative scheme. To find the optimal value of 

decomposition parameter α  it is enough to test  for n=1,2,3 and 4. The 

convergence rate of this iterative process is very high as a rule and discrepancies of 

the Eqs. (19) and (24) are approximately equal.  

n10=α

 This iterative technique gives a stable solution in the sense of Hadamard. We 

can not affirm that proposed method always converges but it is so for a wide class of 
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ill-conditioned ME. Numerical investigation shows that the more symmetric the 

matrix K is, the better a convergence is of the iterative scheme (21). The existence of 

diagonally predominance of the matrix K makes worse the convergence. 

With the aid of this iterative scheme the ME corresponding to the set of IE of the 

1-st kind (13-18) was solved. The obtained solution is immune to the sampling. In the 

same time, the known iterative methods do not give some convergent series for this 

ill-conditioned ME. 

 

4. NUMERICAL RESULTS 

The discretization of the IE set (13-18) by the quadratures is used in this paper 

with the aid of trapezoidal formula. The integration range was reduced to a finite one 

due to the physical considerations that permit to affirm the spectral functions )(ξiA  

to be concentrated not far from geometric-optical points and the numerical 

calculations prove that it is really so. We used the same meshing for ξ  and  ν . The 

range [-8, 8] was used while integration in (13-18) if the dielectric constant is less 

than 25. The interval ]1,1[−∈ξ  was sampled at 0.1 and the rest of interval was 

sampled at 0.25. The enlarging of the integration range up to [-20, 20] was tested and 

the solution was not change. For larger permittivity the integration range must be 

enlarged. A parameter σ  (19) was varied in the range: 0.5 – 0.9, a minimal 

discrepancy to find. The mentioned discretization produces the matrix K of the size 

354 x 354 and the CPU time to the ME solving with the aid of iterative scheme (21) 

with 800=α and tolerance level BXAtol −= ~  equals to 0.05 is of about 15 min on a 

PC Pentium Pro 200 MHz (with the code written in Matlab). For the mentioned 

parameters the boundary condition matching error is of about 0.002-0.005. The 

tolerance level decreasing to 0.01 tends to accuracy increasing but the solution does 

not change appreciably. Therefore we take tol = 0.05, the CPU time to save. 
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Figure 2. (a, b) the real (solid) and imaginary (dotted) parts of spectral functions for total field in the 
empty wedge; (c) the focusing effect in the empty wedge via incident angle: (1) , (2) , 

(3) , (4) , (5) ; (d) the scattered field in the low half-space for the same . 

o50 =i o150 =i
o250 =i o350 =i o450 =i 0i

The dielectric constant of the body is 2.1=ε . 
 

The typical solution of the ME corresponding to the IE set (13-18) for ε =1.2, 

=  is shown in Fig. 2 (a,b)  for total field inside the wedge (0i
o45 )(1 ξA , )(2 ξA ). The 

functions )(5 ξA , )(6 ξA  derive the scattered field in the lower half-space (y<0). 

Because of immunity of the solution from sampling, the far-field is evaluated 

asymptotically from (4-6) as described in [13]. It is represented as  

 

ρϑϑρ ρ /)(),(1
jeFE −=                                                               (25) 

with 

( )ϑϑεϑϑεεπϑ π cos)sin(sin)cos(2)( 02010
4/ AAeF j +=          (26)                           

for the  total field inside the empty wedge ( ) and with oo 900 ≤≤ϑ

( ) ϑϑεϑεεπϑ π sin)cos()cos(2)( 65
4/ −+−= AAeF j                (27) 
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for the scattered field in the lower half-space ( ). The amplitude 

patterns 

oo 0180 ≤≤− ϑ

)(ϑF  (26) of the total far-field inside the wedge for various incident angles 

are presented in Fig. 2c. We can see that the focusing effect of Rawlins [8] occurs for 

an empty wedge as well if the dielectric constant of a body is small. This effect 

vanishes for 5.1>ε . The main lob of the radiated field amplitude pattern varies 

significantly his direction with the incident angle changing that is important for 

antennas managing. The significant interest is to find the fields scattered in the back 

direction (y<0). In Fig. 2d we can see the scattered far-field amplitude patterns )(ϑF  

(27) in the lower half space for the same incident angles. We see here the field 

scattered by the edge (the first maxima near ), which maximum’s 

directions are almost independent from the incident angle. It contains also the 

backscattered field (

o135−=ϑ

02/ i−−= πϑ ), that is absent in geometric-optical 

approximation. The backscattered field was not obtained also in mentioned papers [8-

10]. The rest of the amplitude pattern is connected with the field reflected from the 

side. Both field amplitudes are of the same order in value ( 2.0≤ ). Then, the reflected 

field is significantly less than the field radiated in the empty wedge. 
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Figure 3. The focusing effect in the empty wedge via absorption level in the dielectric body for 

2.1'=ε , . (1) o450 =i ''ε =0.001; (2) ''ε =0.01; (3) ''ε =0.1; (4) ''ε =0.5; (5) ''ε =1. 
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The focusing effect of the total field in the empty wedge reveals the extremal 

property via an absorption level in dielectric body as we can see in Fig. 3 where the 

best focusing is observed for 01.0'' =ε  but not for 001.0'' =ε , and then it decreases 

with an absorption growth. 

 

5.  CONCLUSION 

The BVP solving method used in presented paper has no simplifications and is 

rigorous in this meaning. The unknown spectral functions )(ξiA  are derived 

approximately as a solution of a set of IE of the 1-st kind. A new iterative scheme is 

proposed to derive a solution of an ill-conditioned ME that obtained while IE 

discretization, which is stable in the sense of Hadamard and is immune to the 

sampling variation. The obtained solution ensures a boundary condition matching 

error less than 0.005 at any point on the boundary. The accuracy increases with the 

meshing subinterval value decreasing. The obtained spectral functions 

)(ξiA determine the analytical form (4-6) of the BVP solution that permits to 

compute fields and their derivatives at any point without additional calculations. The 

immunity of the solution to the sampling variation permits to obtain the far-fields 

with the aid of an asymptotic evaluation of integrals (4-6). 

The total far-field amplitude patterns are obtained in the empty wedge. The 

focusing effect of Rawlins is detected for an empty wedge for small permittivity of 

the body. The main lob’s direction depends significantly on the plane wave’s incident 

angle. The focusing effect reveals an extremal property via absorption level in 

dielectric body. The best focusing is observed for a non-zero absorption. 
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