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Abstract 
 On the basis of the parabolic equation (PE) approximation to the wave equation in 

conjunction with the finite element (FE) method the applicability of recently reported 
in the literature nonlocal transparent boundary condition (NTBC) and the simpler 
local transparent boundary condition (LTBC) to the tropospheric ducting 
propagation (TDP) problems is studied and discussed. Ground-based, elevated ducts 
and cascades with smooth and piecewise linear modified refractivity profiles are 
used. Suggestions about the starting values for the transverse and propagation steps 
for both boundary conditions are made. 
 

1. INTRODUCTION 

The methods based on PE approach [1] to the Helmholtz wave equation are among 

the most widely used propagation modeling techniques for large classes of wave 

propagation problems [1]-[16]. This forward-scatter narrow-angle approximation has 

the advantage to be easily solved numerically through marching algorithms. PE 

primary drawback is that it neglects backscattering. In the tropospheric radio wave 

propagation prediction and assessment one is often interested in field variations over 

scales much larger then the wavelength and in these cases the forward-propagated 

field plays dominant role. The PE allows efficient and accurate numerical solutions 

for complicated refractive environment (including ducting), antenna patterns and 

underlying surface [7]-[16]. These reasons have turned the PE approach into the 

preferred technique for solving tropospheric propagation problems  in a number of 

thoroughly validated and practically applied programs as PCPEM [9], TPEM [11], 

TEMPER [10], [13] (a representative list of the proposed and used models is given in 

[17]). Although considerable advance has been made in this field, some propagation 

effects and computational area problems still persist. Among them is the investigation 

of transparent boundary conditions that is related to the increasing of computational 

speed and the possibility to use propagation prediction models in operational 

situations. In this work the application of transparent boundary conditions to the TDP 

will be addressed.  
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Three main numerical techniques to solve the PE have become popular: the split-

step Fourier algorithm [8]-[13], finite difference (FD) based algorithms [2], [3], [15] 

and algorithms using finite element (FE) method [4], [5], [16]. The split-step Fourier 

method has proven to be more stable numerically, thus allowing larger step sizes and 

shorter computational time, whereas FD and FE based schemes permit more 

flexibility in the implementation of various boundary conditions. Actually, the choice 

of the PE solution method depends strongly on the specific application. Whatever 

numerical technique to be chosen, as initial-value problem the PE requires 

specification of an initial field at a reference range (or altitude, if horizontal PE 

method will be applied, [14]) as well as boundary conditions in the other dimensions. 

The initial field is provided by the desired antenna pattern. The problem in the PE 

application to the TDP is that the natural (infinite) domain has to be truncated in 

height to the limited size of the computational window. To avoid the parasitic 

reflection from the artificial boundary back into the solution region the transformation 

of the zero-boundary condition at infinity to the boundary condition at the 

computational window upper boundary is required. (The problem with the parasitic 

reflection arises as well when the PE is applied for modeling structures permitting 

radiation losses, structures that scatter radiation and in some other cases [2].) The 

existing methods for solving this problem may be divided in two main groups [18], 

[19]. The first one (and most commonly used) consists in insertion of artificial 

absorbing layer adjacent to the concerned boundary. A small imaginary part is added 

to the refractive index near the extended computational window boundary so that the 

energy is absorbed and the reflection removed [9]. Or, viewing the discretized field as 

a sampled signal, the signal is “filtered” applying a suitable window in the extended 

region. In the TDP problems solution the filtering has been successfully used in [8], 

[12], [11] applying Hamming, Hanning and Tucky windows. More complicated 

algorithms for constructing the absorbing layer have also been reported [18]. If 

properly built, the artificial absorption procedure may be very accurate [2], [18]. Its 

drawback is the need to adjust the absorber parameters to each new problem. The 

absorbing layer increases additionally the integration domain that in the tropospheric 

case is inherently large enough, and, as a consequence, the computational time. Here 

arises the need of analytically found proper transparent boundary conditions that will 

insure as accurate as possible solution inside the computational window – this is the 

second group of solutions to the artificial boundary parasitic reflection problem. The 
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methods for constructing such boundary conditions give in general NTBC [3], [15], 

[19]-[23]. (A brief description of the derivation of the NTBC for some one, two and 

three-dimensional problems may be found in [23]). For the TDP problem the NTBC 

has been reported and successfully applied in [15] in conjunction with a FD based PE 

method. In [15] a NTBC accounting for the income of the energy through the upper 

window boundary has also been proposed thus permitting field assessment when the 

source is situated above the computational domain (which is not an exceptional case 

for the tropospheric propagation problems). The NTBCs minimize the magnitude of 

the reflected field and optimize the computational window size to the domain of 

interest (which has to include the essential tropospheric refractivity and terrain 

changes) but are quite complicated and require additional computational efforts. In 

some practical applications, for instance, radar performance assessment tools [10], 

propagation models are required to execute in real-time over large domain of interest 

with changeable parameters. For problems in which minimizing the reflected field is 

not of major importance and when limitations on computational cost are imposed 

some compromises in accuracy could be made applying simpler or more complex 

(modified) LTBC [2]-[5], [18]. In [24], the simpler LTBC [2], [5], firstly proposed 

and used in the integrated optics, was successfully applied to an important case of the 

TDP – the case of antenna submerged into a ground-based duct. This LTBC has the 

advantage to adjust the boundary correction term at every propagation step in 

straightforward manner thus providing rapid and accurate solution. A comparison 

between the reflectivity properties of the NTBC [15] and the simpler LTBC [5] 

applied for ground-based (evaporation) ducts propagation was made in [25].  

In this paper, the applicability of the NTBC and the simpler LTBC to different TDP 

problems (ground-based, elevated ducts and cascades) is studied and discussed using 

the PE approximation in conjunction with the FE method. Suggestions about the 

starting values for the transverse and propagation steps for both boundary conditions 

are made. 
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2. THEORY 

Assuming azimuthal symmetry, exp(-iωt) time dependence and earth-flattening 

approximation, the PE describing TDP can be written in the form (detailed derivation, 

validation and notes on the application of this equation for the case of tropospheric 

propagation may be found in [8], [9]) 

 

( ) ( ) ( )( ) ( ) 0,1,2, 22
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where m stays for the modified tropospheric refractive index (here assumed not to 

vary in the propagation direction), k is the vacuum wave number, the rectangular 

coordinates z and x are thought of as altitude (z=0 at the Earth surface, x=0 at the 

antenna location) and range, respectively, and u(x,z) is the reduced function, related to 

a field component [8], [9]. This equation holds for both, horizontal and vertical, 

polarizations the difference between them being contained in the boundary conditions 

at the Earth surface. In this work the Earth surface is considered smooth and perfectly 

conducting and the horizontal polarization is addressed. 

To solve (1), the standard FE method using the weak Galërkin approximation [26] 

and the Crank-Nicholson algorithm has been applied. Description of this numerical 

procedure application to the TDP problem is reported in [16] and here only the final 

results of the NTBC and LTBC implementation in the FE scheme will be given.  

 

2.1 NTBC implementation 

The NTBC will be applied following [15] for the case when the initial field u(0,z) is 

zero for z greater then Zb, Zb being the computational window upper boundary. This 

upper boundary must be chosen so that the computational window includes all 

refractivity and terrain particularities. The lower boundary is the Earth surface. The 

NTBC is taken in the form 
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where  
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aj denotes the sequence of zeros of the Airy function Ai, [27], Ai' denotes the 

derivative, α (α>0) is the parameter from the modified refractive index definition 

above Zb: m2(z)=1+α(z-Zb), see [15]. The NTBC defined by (2)-(4) involves the field 

and its derivatives along all the distance the field has already traveled. It is derived for 

linear change of m above Zb and allows application for any refractive index structure 

below Zb. In [15] the NTBC was validated for finite-difference PE implementation to 

the TDP problem. Here, discretizing (2)-(4) and applying the Crank-Nicholson 

algorithm for the propagation direction x, the following definitive matrix FE based 

equation with NTBC application is obtained from (1) 
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where the superscript n denotes the quantities related to the nth propagation step, 

superscript n-1 - the quantities related to the (n-1)th propagation step, the subscript b 

indicates that the quantity is taken at Zb, the term Dn-2 accumulates the influence of the 

preceding steps. The coefficients C and the term Dn-2 are as follows  

 

( ) ( )
( ) (6)                                                        ,
0
02

2 1
2

2'

342

32
F

p
e

Ai
Ai

k

ekkiC
j j

xpi j

−
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∞

=

Δ

⎟
⎠
⎞⎜

⎝
⎛α

α π

 



ON TRANSPARENT BOUNDARY CONDITIONS APPLICATION TO THE TROPOSPHERIC DUCTING 
PROPAGATION MODELING 

64 

( )
( )

( )
( ) (7)                                     ,
0
0223

2
~

2'

342

32

1
2

2
F

Ai
Ai

k

ek
p

eekiC
i

j j

xpxp jj

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
= ∑

∞

=

ΔΔ

α

α π

 

( ) ( )( ) (8)                                                , 11
2 1

2

2

1
2 −−= Δ

∞

=

Δ−
Δ−−

=
− ∑∑ xp

j

xp

j

xlnpn

l

l
bn

jj
j

ee
p

ekiuD α

 

( ) (9)                                                                            1
2 1

20 ∑
∞

=

Δ−
Δ

−−=
j

xp

j

xnp
n Fe

p
ekiC j

jα  

 

where 

( ) ( )
( ) (10)                                                                                      .
0
0'

32312 x
Ai
AiekF i Δ= πα

 

The numerical problem concerning the convergence of these coefficients (notably for 

Δx→0) has been solved using the suggestion made in [15]. In (5) the vector {γ} and 

the expanded matrices A and B=L-k2M are given by 
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In (11)-(14) N is the total number of nodes in the problem cross-section, γj is the value 

of u at node j, Ψj are the basis functions (linear polynomials) defined over an element 
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e (the elements are line segments), [16], [26], T denotes a transpose. In (14) m2(z) is 

assumed constant within the element.  

An appropriate boundary condition was proposed in [15] as well for the case of 

source situated above the computational window. Such kind of problems may arise in 

the case of plane or satellite-earth communications. If only the field close to the earth 

surface is of interest, the reduction of the computational window cross-section to a 

height below the source height Za could speed up considerably the computation. Here 

a brief description of the incoming energy term is given following [15] and the FE 

computational scheme accounting for it is provided. 

With inclusion of the incoming energy term I(x), the NTBC has the form: 
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where I(x) is given by: 
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and gα is the same as in (3). Now the problem is to find the auxiliary function v(x,z) 

which is a solution of the PE in the domain z≥Zb with v(0,z)=u(0,z)≠0 for z≥Zb. As 

was shown in [15], for linear medium above Zb and source at height Za with aperture 

function (corresponding to a Gaussian beam pattern) of the form: 
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where θ0 is the half-power beamwidth angle, the function v(x,z) is: 
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The inclusion of the incoming term in the computational scheme requires the 

following expression to be added to the right-hand side of (5) 
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where the derivatives ∂v/∂z and ∂v/∂x are obtained from (18), the coefficient C is 

given by (6) and Cl is 
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In (20) pj and F are the same as given in (4) and (10), respectively. 

The above described NTBC provides correct solution to the radiation boundary 

condition problem but its application is not a straightforward task at all. On the other 

hand, the rays corresponding to the PE (1) bend upward and leave the upper boundary 

rapidly, i. e. the boundary has short “memory” and only the nearest neighbor points 

contribute to the boundary condition at the current point. The attempts to simplify the 

NTBC relying on this property (for instance, by presenting the discretized (2) in the 

form of inhomogeneous impedance boundary condition, i. e. 
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with subsequent preservation of C and omission of the “tail” B when the derivative is 

introduced in the computational scheme) have not given good results because they 

remain constant for every cross-section. The above observations gave reasons to try 

the LTBC [2]-[5] application to the TDP problem.  
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2.2 LTBC implementation 

The introduction to the LTBC will be made following [4]. The assumption that the 

field in the vicinity of the computational window boundary Zb consists of an outgoing 

plane wave and does not include any reflected wave leads to the field in the form 

 

( ) ( zxczxu )βα += exp, . (21) 

 

Equation (21) provides the following relation between the field and its z-derivative 
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As no reflection exists in the description of the field given by (21), equation (22) 

represents (local) transparent boundary condition [2]-[5]. The simplest way to obtain 

the unknown wave number β in the z direction is the following: at the step xn it is 

determined using the former-step field distribution. Thus for β at the upper boundary 

of the computational window we obtain from (22)  
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The final matrix FE based equation with LTBC application is 
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where {γ} and the matrices A and B=L-k2M+K are as given above, (11) – (14), and 

matrix K is 
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The matrix K contains the simplest form of the LTBC as described in [2], [5]. The 

term KN is given by (23) and renewed at every propagation step. A correction to the 

imaginary part of this term has to be made (if necessary) at every step in order to 

ensure the radiation outflow. A more refined way of determination of β is introduced 

in [2]. For the case of ground-based duct the LTBC scheme (23)-(25) was applied and 

validated in [24].  

 

3. RESULTS AND DISCUTION 

The LTBC and NTBC have been applied to ground-based, elevated and the 

combination of ground-based and elevated ducts for different antenna heights. Two 

kinds of modified refractivity M(z)=106(m(z)-1) profiles have been used: piecewise 

linear and smooth continuous profile. This is done in order to avoid any kind of 

“privileges” of the linear profiles and to use more realistic refractivity. A suitable 

smooth profile, allowing the modeling of a simple elevated or ground-based duct as 

well as the synthesis of more complicated profiles, was suggested in [28], [29] 
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where ΔN is the total change in the refractivity N (N is related to the modified 

refractivity M through M=N+106z/ae, where ae is the Earth radius), z0 is the height at 

the center of the change ΔN, Δz is the height range between points at which the 

change has reached 90 percent of its final value and α represents the basic gradient for 

the standard atmosphere (i. e. α=.118 N units/m). The parameters of the used profiles 

are presented in Table I (taken from [28]) and Table II (profile a taken from [15]). 

The initial field is provided by a Caussian beam antenna with half-power beamwidth 
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of 1o, no tilt of the beam and transmitting frequency of 10 GHz, see (17). The results 

are presented in the form of path loss (PL, in dB)  

 

PFxPL −⎟
⎠
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λ
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where λ is the free-space wavelength and PF is the pattern propagation factor as 

defined in [30] (at a given point PF provides the excess signal strength (under the 

specified refractive conditions) over free-space without accounting for atmospheric 

absorption but including antenna pattern). For all figures, except Fig. 8 and Fig. 24, 

one and the same Zb=500 m has been used. This computational window upper 

boundary insures proper LTBC application for all reported cases. The computational 

steps are chosen according to [25]. 

 
Table I Smooth modified refractivity profiles 

____________________________________________ 
 

Profile    ΔN   Δz   z0
____________________________________________ 

a     -20   100   175 
b     -50   100   -10 
c     -20   150   150 
d        7   200     75 

____________________________________________ 
 

 
Table II Piecewise linear modified refractivity profiles 

____________________________________________ 
Profile    Height (m)   M (M-units) 

____________________________________________ 
0         5 

a        50         0 
1050     118 

____________________________________________ 
  0         5 
50         0 

b        200       17.7 
300         2.7 

  1300      120.7 
____________________________________________ 
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Figs. 1 and 2 show PL (with LTBC and NTBC application, respectively) for an 

elevated duct with thickness Zd=144 m formed by the smooth M provided by profile a 

from Table I with antenna embedded inside the duct. The combination of profile b and 

c from Table I gives an elevated duct with Zd=175 m that absorbs a ground-based 

Zd=22.5 m duct. For this profile Figs. 3 and 5 show PL with LTBC application for 

antenna height Za=10 m (inside the lower duct) and Za=100 m (between the two 

inversions), respectively. The analogous PL but with NTBC application are shown on 

Figs. 4 and 6. Figs. 7 and 8 are obtained applying the bilinear profile a from Table II 

(ground-base duct, Zd=50 m) for elevated antenna with Za=250 m. For fig. 7 LTBC 

computation with Zb=500 m has been cut at z=50 m. Fig. 8 is obtained applying the 

NTBC scheme (5) with the incoming energy term (19) at Zb=50 m. The combination 

of profile b, c and d from Table I gives a cascade of two inversions, the first one has 

Zd=22.5 m and the second (elevated) has Zd=106 m.  
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Figs. 9, 11, 13 and 15 show PL for this profile with LTBC application and Za inside 

the lower inversion, between the two inversions, inside the upper one and above the 

inversions, respectively. The same but with NTBC application is shown on Figs. 

10,12,14 and 16. The piecewise linear profile b from Table II gives a cascade with 
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upper Zd=226 m and lower Zd=50 m. Figs. 17,19, 21 show PL for this profile and 

different antenna heights with LTBC application, whereas on Figs. 18, 20 and 22 PL 

for the same cases with NTBC application are plotted. 
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From the above examples it is clear that the LTBC presents results close enough to 

those given by the NTBC. To correctly implement the LTBC, Zb must be chosen in 

the region where the field immediately below Zb will have the same behavior as above 

it, i. e. the behavior of an outgoing wave. For every specific M profile and antenna 

type and location it is a matter of adjustment to find this region, but it can not be just 

above the duct. For the NTBC Zb could be equal to the upper duct boundary in both, 

u(0,z)=0 for z≥Zb and u(0,z)≠0 for z≥Zb, cases. For a given TDP case the LTBC 

requests greater value for Zb but even with this Zb (taken above the ducting region 

with a great reserve) the LTBC provides faster solution than the NTBC. The 

straightforward manner the boundary correction term is introduced and renewed at 

every step explains this speed but is not the only reason. As was reported in [3] and 

[25], in the LTBC application the smallest steps do not assure the best results because 

the reflectivity presents clearly pronounced minimum in respect of the transverse step 

for a fixed propagation step. For the above made calculations transverse step Δz=.5 m 

for the LTBC and Δz=.25 m for the NTBC application have been used for all cases 

with a propagation step Δx=20 m [25], the LTBC allowing propagation step up to 100 

m. These steps could be recommended as starting steps for the LTBC and NTBC in 

their TDP application. Thus, for the LTBC there is not a need of refinement of the 

scheme, whereas the NLBC works as better as smaller are the steps.  

It is tempting to apply the LTBC and NTBC to the lower computational window 

boundary if one is interested only in the field inside an elevated region. Below this 

boundary the field does not have the character of an outgoing wave (a comment about 

this case may be found in [23]). Nevertheless, it is possible to implement transparent 

boundary condition to the lower boundary if this one coincides with the lower 

boundary of a strong elevated duct and the source is situated within the duct. In this 

case the energy coming back to the computational domain from below will be lost but 

the essential distribution of the field inside the duct will be preserved. This is 

illustrated on Figs. 23 and 24 for a profile with trapping layer between 185 and 300 m 

giving duct between 100 and 300 m. Fig. 23 is obtained applying LTBC at Zb=500 m 

whereas Fig. 24 shows the result for the NTBC application to the lower and upper 

duct boundaries. 



Irina Sirkova 75 

On some pictures with NTBC application (Fig. 6, Fig. 12) one may notice reflection 

that is not expected to appear. The coincidence between Fig. 7 and Fig. 8 is not 

perfect, see also the lower part of Fig. 3 from [15] where the same example is 

reported. A possible explanation, especially for Fig. 8, may be the improper step sizes 

choice. More generally, this discrepancy may be due to the manner the x-derivative 

was introduced in the NTBC scheme. The discretization of (2) requires splitting of the 

integral from zero to x into integrals over subintervals [xn, xn+1]. Over each subinterval 

[xn, xn+1] ∂u/∂x term in (2) is treated as a constant while gα is integrated exactly. The 

results could be improved as well applying more sophisticated FE scheme but this will 

increase the computational time.  

 

4. CONCLUSION 

Recently reported in the literature NTBC [15] and the simpler LTBC [2]-[5] have 

been applied to different TDP problems with smooth and piecewise linear refractivity 

profiles using the PE approximation in conjunction with the FE method. Suggestions 

are made about the starting values of the transverse and propagation step sizes for 

both LTBC and NTBC. On the basis of comparisons between the two transparent 

boundary conditions it is considered that the LTBC may be applied in all TDP cases 

taking advantage of its simplicity and lower time consummation. It is quite clear that 

this simple technique may offer the possibility of real-time electromagnetic field 

prediction under operational situations. 
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