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Abstract 
An efficient computational method is developed to solve three-dimensional (3D) 
electromagnetic (EM) scattering problems. The advantages of a standard Method of 
Moments (MoM) formulation are combined with those of a standard Method of 
Auxiliary Sources (MAS) approach, which, especially for the case of -even arbitrarily- 
curved conducting surfaces, has been proved to give accurate results with 
significantly low computational cost. Namely, a novel hybrid MoM/MAS technique is 
developed, in order to determine the response of 3D EM structures to a time harmonic 
incident field. The electric fields inside the dielectric parts of the examined 3D 
scatterers are represented by pulse piecewise functions, while equivalent current 
sources are employed to represent the secondary fields generated by the conducting 
parts of the scatterers. The validity and accuracy of the method is checked and 
numerical results are presented, proving the suitability of the proposed technique to 
treat diverse EM scattering problems. 
 

1. INTRODUCTION 

The motivation of the present work has been the development of an efficient 

computational method in solving complex and arbitrary structures in terms of both 

their geometry and constituents. Scientific and technology areas needing such a 

computational tool include design of microwave antennas and microwave-millimetre 

wavelength integrated circuits, assessment of electromagnetic (EM) interference and 

EM compatibility phenomena and investigation of the EM interaction with the human 

body. 

During the last decades numerous efforts have been carried out to develop 

generalized computational EM techniques. Initially the emphasis was given to method 

of moments (MoM) techniques [1] and diverse MoM versions, such as Galerkin 

technique, point matching technique etc., using integral equation formulations. In all 

these cases, the use of the Green's functions provides a significant reduction of the 

unknown field region and, moreover, guarantees the satisfaction of the far-field 

radiation conditions, known as Sommerfeld-Muller conditions. It has been established 
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that MoM techniques are characterized by a very high accuracy level. However, a 

drawback of MoM is the computational complexity in evaluating the "system matrix 

elements" (which usually require the numerical computation of multiple integrals, 

thus, increasing drastically the relevant computational cost), as well as the numerical 

singularities related to the MoM impedance matrix self terms. Furthermore, another 

difficulty in applying MoM techniques has been the high complication arising in 

solving realistic geometrical models. 

In fact, the effort to analyze "real world" problems, has motivated the development 

of other numerical  techniques, such as the Finite Elements (FE) [2] and the Finite 

Difference Time Domain (FDTD) [3]. However, both FE and FDTD suffer by lower 

accuracy and the difficulty in satisfying the Sommerfeld-Muller radiation conditions, 

which is usually accomplished  by using "Artificial Boundary Conditions". 

According to the above considerations, a new MoM technique is introduced, based 

on the following principles: 

a) Complex objects consisted of both dielectrics and perfect electric conductors 

(PECs) should be modeled easily. The examined structure should be arbitrary in terms 

of its geometry and consistence. 

b) Physical considerations should be embedded in selecting the set of basis 

functions describing the electric field inside the dielectric objects, while the same 

principle should be applied for the case of the PECs.  

As already mentioned, the principal motivation on developing the present 

technique has been to introduce a MoM incorporating easy modeling of structures and 

low computational cost. Nevertheless, in attempting to develop a generalized 

numerical code to cope with arbitrary dielectric and conducting bodies, the essential 

difficulty in matching the mathematical description of the 3D geometries and the 

formulation to be used to obtain the numerical results is faced. To this end, on one 

hand, based on past experience [4,5], the description of field penetrable objects can be 

easily described by using cubical cells of sufficiently small dimensions. On the other 

hand, the arbitrary shape of the 3D conducting surfaces discourages the use of a 

similar approach. Therefore, the Method of Auxiliary Sources (MAS) [6], which has 

already been proved very efficient in solving conducting geometries, is selected as the 

method to treat the conducting points of the examined structures. Moreover, MAS 

inherently eliminates the singularities problems of a typical MoM impedance matrix, 
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while does not require the integral evaluations at any stage of the MAS solution (i.e. 

matrix fill, field calculation etc).  

 
 
Figure 1. Generalized geometry. 

 

The geometry of an arbitrary EM structure is given in Fig. 1, where one can see 

conducting surfaces, which may have apertures and (lossy and/or inhomogeneous) 

dielectric bodies inside and/or outside the conducting surfaces. This generalized 

structure is illuminated by an external known source, such as a dipole, a horn antenna 

or a plane wave. In analyzing of the given EM problem, it is necessary to calculate the 

induced electric currents on the conducting surfaces and the polarization currents 

inside the dielectric bodies. The format of the paper is as follows: A system of 

coupled integral equations is derived in section 2, which is solved via the proposed 

hybrid MoM/MAS technique. The MoM part employed in treating the dielectric 

bodies and the MAS part employed in treating the conductors are presented in 

sections 3 and 4 respectively, while the hybridization of the two methods is given in 

section 5. The validation of the proposed technique is checked in section 6 and 

numerical results are presented for several cases, while concluding remarks and 

suggestions for future improvements are given in section 7. In the following, a time 

dependence  is assumed for all the field quantities and is suppressed throughout 

the analysis. 

tje ω
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2. INTEGRAL EQUATION FORMULATION 

Applying the Green’s theorem, the unknown electric field )r(E rr
 at an arbitrary 

point  satisfies the equation: )z,y,x(r =
r
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 is the primary field due to the known external source, )r(Ediel
rr

 and 

 denote the contribution of the dielectric and conducting parts of the 

structure respectively, 

)r(Econd
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)r(r ′ε
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 denotes the relative dielectric permittivity (complex for 

lossy dielectrics and function of r ′r  for inhomogeneous dielectrics), )r(J ss ′r
r

 denotes 

the unknown conductivity currents distribution induced on the conductors surfaces 

  stands for the dielectric parts volume, condS , dielV k0 0= ω ε μ0  is the free-space 

propagation constant, with ω being the angular frequency and 0ε , 0μ  being the free-

space dielectric permittivity and magnetic permeability respectively and 
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is the free-space electric field Green’s dyadic function, with ẑẑŷŷx̂x̂I ++=  being 

the unit dyadic. 

In order to solve equation (1), the observation point )z,y,x(r =
r  is first restricted 

on the conducting surfaces  and then inside the dielectric parts’ volume  

Then, two dimensional (2D) integral equations arise, by requiring the fulfillment of 

the boundary conditions on the conducting surfaces , where the total tangential 

electric field should be zeroed. On the other hand, 3D integral equations arise, by 

requiring the satisfaction of equation (1) inside the dielectric parts volume . In 

order to solve the derived system of coupled integral equations in terms of the 

conducting currents and the electric field inside the dielectrics, a hybrid MoM/MAS 

technique is developed, as described in the following sections. 

condS dielV .

condS

dielV
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3. METHOD OF MOMENTS TECHNIQUE 

The contribution of the dielectric parts of the analyzed structure, denoted in 

equation (1) by the term )r(Ediel
rr

, is taken into consideration using “traditional” MoM 

[1]. To this end, all the dielectric parts are subdivided into cubic elementary cells, 

each of which can be characterized by a different dielectric permittivity, in a way that 

even inhomogeneous (lossy) media can be considered. MoM approach is 

implemented, by assuming that the electric field inside each elementary cell is 

constant. Therefore, the electric field inside the dielectric structure is described by 

cubic basis functions of the type 

∑
=

−=
N

1i
ii )rr(WA)r(E rrrrr

, (3) 

where , 
⎩
⎨
⎧

=
elsewhere   0

cell cubic  thensidei   1
)r(W r

iA
r

 are the unknown expansion coefficients of 

the electric field and ir
r

 denotes the ith cell centre of gravity. 

Using equation (3) and assuming that the structure under consideration is consisted 

only of dielectric parts, equation (1) becomes 
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In calculating the ijΓ  terms, two cases are encountered. First, when i=j (self term) 

and second, when i≠j (mutual term). In the first case, the calculation of iiΓ  requires 

special attention, since )r,r(G ii ′rr
 has a singularity. To this end, we calculate 

analytically the volume integral (see eq. (5)) over the inscribed sphere (where the 

singularity exists) and we calculate numerically the integral over the remaining 

volume of the cell. In the second case, the integral can be calculated easily, since there 

is no singularity of the integrand in the integration volume and several numerical 

methods of integration (Gauss, Simpson) or even average value approximation can be 
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used. More specifically, we calculate numerically the integral over the six adjacent 

cells, while for all the rest cells we employ an average value of the Green’s function. 

 

4. METHOD OF AUXILIARY SOURCES 

The electric field scattered by the conducting parts of the analyzed structure, 

denoted in equation (1) by the term )r(Econd
rr

, is taken into consideration using 

conventional MAS [6]. More specifically, in order to briefly denote the principles of 

MAS, one could assume the diffraction problem of a linearly polarized, 

monochromatic EM wave incident on a body of external surface S, placed in the free 

space. For the needs of the present work, the body is assumed to be a PEC, although 

MAS can also treat scatterers penetrable to EM waves. The given problem is reduced 

to the solution of the corresponding wave equation in the outer region of the 

conducting scatterer and the validity of the boundary condition on the surface S, as 

Sz)y,(x,          ,0)z,y,x(E)z,y,x(E 0cond ∈=+
rr

, 

where  and  are the functions describing the scattered and 

incident fields respectively. According to a standard MAS solution, N number of 

auxiliary sources, radiating in the free space without the presence of the scatterer, are 

homogeneously distributed on the auxiliary surface σ, which is selected to be always 

inside the physical area of the scatterer and is conformal to S, as shown in Fig. 2.  

r
E x y zcond ( , , )

r
E x y z0( , , )

 

n=1
n=N

S

σ

 
 

Figure 2. Conducting scatterer geometry for the MAS formulation. 

 

Then, the scattered from the conducting surface field is described as a summation of 

the fields generated by the auxiliary sources: 
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where )r,r(G sn
rr , is given by (2) and nB

r
 are the unknown weights of the auxiliary 

sources. 

The fulfillment of the boundary conditions on the conducting surfaces, assuming 

the tangential vector  on the conducting surface 

point 
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, (n = 1,…,N ) are the expansion coefficients of the 

auxiliary sources to be determined. The last three equations can be rewritten as 
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field at an arbitrary point  can be expressed as rr
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5. COMBINATION OF THE TWO METHODS 

The contribution of the dielectric parts on the conducting surfaces equations is 

given by calculating the scattered by the dielectric bodies electric field, according to 

the equation 

r r r
E r As

i ij j
j

N
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Since the boundary condition on the conducting surfaces is related to the 

corresponding tangential electric field, equation (8) becomes 

p r E r p r A Ai
s

i i ij j
j

N
ij j

j
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( ) ( ) ( )r r r r r r
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where  denotes the tangential unit vector. p ri
^
( )r

The contribution of the conducting currents to the dielectric parts is taken into 

consideration using equation (7), with the observation point restricted inside the 

electric body (i.e. irr rr
=  for the ith cell). Then, equation (7) becomes 
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where  and 
r
A j

r
Bj  denote the unknown expanding coefficients of the electric field 

inside the dielectric bodies and the weights of the auxiliary sources inside the 

conducting surfaces respectively. The system of linear equations (9) is solved using a 

bi-conjugate gradient method. After the calculation of the unknown coefficients, the 

electric field at every point of the space can be calculated using equation (1). 

 

6. NUMERICAL RESULTS 

Based on the previously presented analysis, a numerical code has been developed 

and its accuracy has been checked. Firstly, the MAS part of the code has been 

separately checked by considering “pure” conducting structures, then, the MoM part 

of the code has been also separately checked by considering “pure” dielectric objects 

and, finally, the validity of the overall code (hybrid MoM/MAS technique) has been 

checked by analyzing structures consisted of both dielectric and conducting parts. 

Indicative 3D scattering problems have been solved and the derived results for 

“simple” geometries have been compared with known previously published data. In 

all cases, detailed convergence checks have been carried out, both in terms of the 

number and positions of the auxiliary sources placed inside the conductors and in 
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terms of the number of elementary dielectric cells, while the satisfaction of the proper 

boundary conditions has been verified.  

First, the problem of a conducting sphere placed in the free space and illuminated 

by an x-polarized and z-incident plane wave is considered. According to a standard 

MAS formulation auxiliary sources are homogeneously distributed on a spherical 

surface inside the sphere and the amplitudes and phases of the auxiliary sources are 

determined, using a point matching technique, requiring the fulfillment of the 

boundary condition for zero tangential electric field on the boundary of the sphere. In 

Fig. 3, the normalized monostatic radar cross section ]|E|/|E|r4[lim 2i2s2
r

D3
rr

π=σ
∞→

  

a
λ0

2
D3

aπ
σ

 
 

Figure 3. Normalized monostatic radar cross section (RCS) of a conducting sphere of radius a as a 
function of the wavelength λ0 in the free space. 

 

(where sE
r

 and iE
r

 denote the scattered and incident fields respectively)is plotted as a 

function of the free space wavelength and the results are found to be in excellent 

agreement with previously published data [7].  

Then, the problem of a dielectric sphere of radius a = 0.08λ (f = 90 MHz, a = 26.5 

cm) and dielectric permittivity 16r =ε  placed in the free space and illuminated by an 

x-polarized and z-incident plane wave is investigated. According to the methodology 

described in section 3, the sphere is enclosed by a cube of side 0.24λ (80 cm), which 

is subdivided to elementary cubic cells. In Fig. 4, the amplitude of the x-component of 
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the total (incident + scattered) field xE  along the x-axis is illustrated. The 

convergence is checked by increasing the number of elementary cells, while the 

results are found to be in agreement with both the Mei theory [8] and results derived 

using an independently developed FE code [9]. 
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Figure 4. |Ex| field along the x-axis of a dielectric sphere of radius 0.265 m illuminated by an x-
polarized and z-incident plane wave at f = 90 MHz: Convergence in terms of finer cell division. 

 

Finally, the overall code is checked by considering the presence of both a dielectric 

and a conducting sphere in the free space. In Fig. 5, the amplitude xE  along the x-

axis inside a dielectric sphere of dielectric permitivity 16r =ε  and radius 0.03 m 

illuminated by an x-polarized and z-incident plane wave at f = 900 MHz is plotted, 

while a conducting sphere of radius 1 m is also present at a distance d. It can be easily 

seen that, as expected, for large d values (d ≥ λ), the electric field inside the dielectric 

sphere is not affected by the presence of the conducting sphere and the Mei solution is 

again obtained. 
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Figure 5. Dielectric sphere of radius 0.35 m illuminated by an x-polarized and z-incident plane 
wave at f = 90 MHz in the presence of a conducting sphere of radius 1 m: |Ex| field along the x-axis of 
the dielectric sphere for different distances d between the two spheres. 

 

7. CONCLUSIONS - FUTURE WORK 

An efficient numerical method has been developed in analyzing 3D EM scatterers 

consisted of conducting and dielectric parts. The well known advantages of MoM 

have been combined with those of MAS, which, especially for the case of curved 

conducting surfaces, has been proved to give accurate results with significantly low 

computational cost. Therefore, the electric fields inside the dielectric parts of the 

analyzed structure were represented by pulse piecewise functions using conventional 

MoM, while equivalent sources were employed to represent the currents on the 
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conducting parts. The validity and accuracy of the method has been checked and 

numerical results have been presented, proving the suitability of the proposed 

technique to treat diverse scattering problems. 

The main challenge for future work would be to proceed with treating radiation 

problems, as well as larger-scale EM problems, meaning more complex EM structures 

in terms of their shape, constituents, electrical dimensions and/or external excitation. 

Therefore, the associated computational cost, in terms of consumed CPU time and 

memory requirements should be decreased to a reasonable level. In this context, both 

parallelization techniques, as well as optimization of the developed sequential 

MoM/MAS code should be considered. 

As far as the MAS part of the code is concerned, it would be interesting to 

incorporate into the overall MoM/MAS code an optimized version of MAS, rather 

than the conventional one introduced in the present paper. According to this 

“optimized” MAS [10,11], solving first the direct and then the inverse problem, the 

optimum -and therefore fewest- positions of the auxiliary sources are determined. As 

shown in [10], these positions coincide to the scattered field singularities. 

Nevertheless, it has been proved that in many practical cases, the most “expensive” 

part of the MoM/MAS code in terms of both CPU time and memory requirements is 

the MoM part, while conventional (unoptimized) MAS provides quite “fast” results 

for the conducting parts of the structure (fewer auxiliary sources compared to the 

number of dielectric elementary cells and extremely faster computation for the 

contribution at each collocation point compared to the CPU time needed to calculate 

the contribution of each dielectric elementary cell). An interesting 

version/optimization of the MoM part of the code would be to employ -instead of the 

pulse cubic basis functions described by eq. (3)- overlapping rooftops of the type 

⎪
⎩

⎪
⎨

⎧
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with  for t)2/n,2/n(n ε+αα−α=ℵ x≡  and )n,n(n α+αα−α=ℵ  for  (α 

being the cell side). The unknown electric field would then be 
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and the basis function given by eq. (10) would, in addition, satisfy the boundary 

condition at the cells interfaces, providing the same accuracy with fewer number of 

cells. 

Finally, parallelization of the most time-consuming part of the overall code should 

be implemented, together with an optimum “rearrangement” between sequentially and 

parallel executed part of the MoM/MAS code. 
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