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Abstract 
The time-dependent Green’s function boundary problem for a semi-infinite 

circular perfectly conducting cone with periodical longitudinal slots is considered. 
This geometry can be regarded as a model of conical slotted antennas. The solution 
method employs Laplace inversion, the Kontorovich-Lebedev integral transforms and 
the Riemann-Hilbert method. Representations for the scalar Green’s functions for 
some particular cases of the structure and time parameter are derived. 

 
 
1. INTRODUCTION 

The dyadic Green’s function is a very useful tool for solving boundary problems to 

investigate electrodynamics characteristics of complex structures. Now the interest to 

cones and slot structures has been raised up because of them applications at the 

antennas techniques and radiolocaton. The transient boundary problem solution for an 

isotropic cone is already associated with mathematical difficulties [1]. One should use 

more complicated methods to solve the stationary problem for a cone with 

longitudinal slots [2]. The purpose of this study is to find representations for the time-

dependent Green’s function for a perfectly conducting cone with periodical 

longitudinal slots. The structure under consideration can be regarded as a suitable 

model of a slotted cone antenna with controlled beams and field polarization. 

 

2. PROBLEM STATEMENT AND METHOD 

The structure under consideration is a semi-infinite circular perfectly conducting 

cone with  slots cut along rulings (longitudinal slots). The geometry of the 

configuration and the assumed spherical coordinate system 

N

ϕϑ ,,r  are shown in Fig.1. 

In this coordinate system the cone is defined by an equation .γϑ =  The structure 

period Nl /2π=  and the slot width of the cone  are angular values. The slot width 

is a value of the dihedral angle formed by planes those pass through the cone axis and 

cone strip edges. 

d
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Figure 1. 

 

The time-dependent Green’s function ( )00 ,,, ttrrG rr  satisfies: 

1) the partial differential equation 
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2) the boundary condition 
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The solution for ( )00 ,,, ttrrG rr  is written as the sum of a free-space field  

and a scattered field , due to the presence of the cone 
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c  is speed of light in the medium surrounding the cone. The time-dependent Green’s 

function  can be obtained via the Laplace inversion from the time-

harmonic Green’s function 

( 00 ,,, ttrrG rr )

( )00 ,, trrGs rr  
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− >=
0

0000 0,,,,,, sdtettrrGtrrG sts rrrr       (5) 

that satisfies the three-dimensional wave equation, the Dirichlet boundary condition, 

radiation condition at ∞→r , singularity conditions at the tip and slot edges. 

Accoding to (4), 
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The method for solving the stationary boundary problem for  uses the 

Kontorovich-Lebedev integral transforms 
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here  is the Macdonald function. The function  can be represented in terms 

of the Kontorovich-Lebedev transform (9), [3] 
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0, mnmx +  are unknown coefficients, ( )ϑμ cos±mP  are associated Legendre functions, the 

upper sign corresponds to γϑ <<0  and the lower one to πϑγ << ,  is a 

gamma-function, 
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By using the Riemann-Hilbert problem method [4,5] for a unit circle arc we bring the 

functional equations (15)-(17) to the system of linear algebraic equations for 

coefficients  nmy ,
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The matrix operator of the system (18), (19) is compact and it’s coefficients are 

independent on parameter q . For any problem parameters the system solution can be 

obtained with the reduction method and for a partly transmitted cone 

( )( 1/,1 )<<−>> ldlN  with the iteration one too. The inversion of  is 

accomplished by procedure in [1]. It follows that 
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here ( )zη  is the Heaviside unit function. 

 

3. RESULTS 
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Let’s consider a partly transmitted cone that is defined by existence of the limit 
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Such a surface can be regarded as a model of a cone antenna formed by a great 

number of thin conductors. For the partly transmitted cone we obtain 
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In order to simplify (21), (22) we assume first that the source point is on the cone 

axis ( )0;0, 00 === mϕπϑ . Then (21), (22) reduce to 
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Applying the residue theorem to the integrals in (23), (24) one may derive series 

representations for . It follows from (23) 1G
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where  is the Legendre function, ( )zQμ jμ  are the positive roots of 

0=μD .                    (27) 

In the case of the partly transmitted cone the boundary problem spectrum is defined 

by the roots jμ  of (27). 
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For  1<<Q
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Taking into account the asymptoticbehaviour for the Legendre function 1),( >>zzQμ  

[6] one may approximate (26) by the leading term in the series for the long-time 
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where 0μ  is the smallest positive root of (27). For the special case of the partly 

transmitted cone  ( )1>>Q
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It should be noted that the nonstationary boundary problem spectrum is the same as 

for the stationary boundary one [1]. 

 

4. CONCLUSIONS 

Initial boundary value problem about constructing the time-dependent Green’s 

function for a perfectly conducting cone with periodical longitudinal slots is 

considered. For a partly transmitted cone and the cone with small angles the solutions 

are expressed in simple closed forms. The boundary spectrum is investigated for 
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special cases of the partly transmitted cone. It is shown that the nonstationary problem 

spectrum is the same as for the stationary one. The slot influence is studied. 
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