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Abstract 
Excitation of a plane waveguide with perfectly conducting walls by an elementary ver-

tical electric dipole in the presence of an anisotropic cylindrical inhomogeneity has been 
studied. Diffraction of normal waves on this inhomogeneity has also been considered. 
The interaction and transformation analysis of TE and TM modes at the boundary of cy-
lindrical inhomogeneity is given. The exact expression for the longitudinal component of 
electric field intensity presented in the double series form is obtained. Numerical calcula-
tions of the scattering and total electric field are performed and compared with the simi-
lar dependencies for the case of an isotropic cylindrical inhomogeneity placed inside the 
plane waveguide. Two limit cases are analyzed: the Relay approximation and the ray ap-
proximation for the case of long and short wavelength, respectively.  

 

1. INTRODUCTION. 

In the recent time significant attention has been paid to the investigating of electro-

magnetic waves propagation features inside plane waveguides containing uniform inho-

mogeneities. This considerable interest has been associated with wide use of the plane 

waveguides model in hydroacoustics, seismology and, in particular, in the theory of LF 

radiowaves propagation nearby the land [1]. As an inhomogeneity a borehole, mine, vol-

canic channel and other structures both of natural and artificial origin can be considered. 

These inhomogeneities are known to have a substantial influence on the behavior of elec-

tromagnetic fields distribution inside waveguides [2-4]. In [5] the affect of  step-form in-

homogeneity on propagation of electromagnetic waves inside a plane waveguide was 

analyzed. The problem of  electromagnetic waves diffraction on a perfectly conducting 

cylinder located inside a plane waveguide with perfectly conducting walls was studied in 

[6].  Excitation of a plane perfect waveguide in the presence of a magnetodielectric cylin-

der by some elementary dipoles was also investigated [7]. In this paper the excitation 

problem of electromagnetic waves by a vertical electric vibrator located inside a plane 

waveguide with perfectly conducting walls in  the presence of an anisotropic 
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inhomogeneity in the circular cylinder form has been considered as well as the diffraction 

problem of normal waves on this inhomogeneity. 

 

2. BASIC EQUATIONS  AND BOUNDARY CONDITIONS. 

Consider the plane waveguide with perfectly conducting walls inside which the anisot-

ropic cylindrical inhomogeneity is located. In Figure 1 the model geometry is demon-

strated: it is the side view on the plane waveguide of the width L with the anisotropic cyl-

inder of the radius b, as well as the top view in the section of plane . The cylindri-

cal coordinate system (r,ϕ ,z) is selected with the axis z oriented along the cylinder axis. 

As the source we have used an elementary vertical electric dipole placed outside the  
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Figure 1. Schematic representation of the problem model. 

 

cylinder at the point with the coordinates (a, 0ϕ , ). Properties of an anisotropic medium  0z

are characterized by the relative dielectric permittivity tensor 
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and the relative magnetic permeability 1μ , and medium properties of the waveguide are 

the constants 3ε  and 3μ .  

For the vertical electric dipole the vector electric and magnetic potentials  and , 

respectively, have the longitudinal components only. The equation assumed for the verti-

cal components of this potentials can be presented in the following form: 

→

A
→

F

• inside the cylinder  (region I) 
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• outside the cylinder (region II) 
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Here k2 and k3 are the wavenumbers inside and outside the cylinder, respectively: 

k k k k k2 0 2 1 3 0 3 3 0= =ε μ ε μ ω, ; c= /  is the wavenumber in vacuum, ω  is the circu-

lar frequency, с is the speed of light in vacuum; Λ =
ε
ε

1

2
 is the anisotropy coefficient; z-

component  of  the extraneous current is as follows 

                               ( ) ( ) ( 00
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where I0 is the current amplitude at the frequency ω , l is the radiator size, δ(х) is the 

Dirac delta-function symbol. 

The following expressions for the components of electric and magnetic fields intensity 

using the Lorenz calibration of the potentials will be used in such way [7]: 
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Formulate boundary conditions on the waveguide walls and the cylindrical surface. 

Firstly, the tangential components of electric field intensity on a perfect surface equal 

zero ( 0=rE , ) and in accordance with (7) and (8) for 0=ϕE 0=z  and Lz =  the 

boundary conditions can be written as 

                                                            0,0 ==
∂
∂ F

z
А .                                                 (13) 

Secondly, on the circular anisotropic cylinder at br =  the following boundary conditions 

have to be performed  

                                          
.,

,,

3131

3131

zzzz HHEE

HHEE

==

== ϕϕϕϕ                                                 (14) 

 

3. BOUNDARY PROBLEM SOLUTION. 

To solve the problem stated ((2-6), (13) and (14)) we shall apply the expansion of 

sources and desired field in terms of the normal waves of the plane waveguide with the 

perfectly conducting walls, as well as the variable separation method [10]. The problem 

eigenfunctions satisfied the boundary conditions (13) are well known and can be pre-

sented as [6] 
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For the δ-functions included in the (6) we shall use the following representation in the 

series form  [8] 
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Using the expressions (15) the solution of the problem stated will be given in the dou-

ble series form: 

                    ( ) ([A A r n
z
L

n
z
L

sns
sn

1 1
0

0=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ −

=−∞

∞

=−∞

∞

∑∑ cos cos cosπ π ϕ )]ϕ             (16) 

                    ( ) ([F F r n
z
L

n
z
L

sns
sn

1 1
0

0=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ −

=−∞

∞

=−∞

∞

∑∑ cos sin sinπ π ϕ )]ϕ               (17) 

                    ( ) ([A A r n
z
L

n
z
L

sns
sn

3 3
0

0=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ −

=−∞

∞

=−∞

∞

∑∑ cos cos cosπ π ϕ )]ϕ             (18) 

                     ( ) ([F F r n
z
L

n
z
L

sns
sn

3 3
0

0=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ −

=−∞

∞

=−∞

∞

∑∑ cos sin sinπ π ϕ )]ϕ              (19) 

Substituting (6), (15)-(19) into the equations (2)-(5) we can obtain the following sys-

tem of the ordinary differential equations for the ( )A rns1 , ( )A rns3 ,  and  ( )F rns1 ( )F rns3
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Represent the general solution of the equation (22) in the form 
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The expression between the square brackets is the particular solution of the equation 

(22) and corresponds to the forward wave which is propagated from the source to the ob-

servation point. The second summand in the (24) conforms to the wave reflected from the 
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inhomogeneity, and  is the reflection coefficient of the electric wave with indexes n 

and s from the cylinder. Here J

ee
nsR

s(x) and  are the first kind Bessel and Hankel func-

tions of the s order, respectively. In (24) the following designation for the radial 

wavenumber in the waveguide is used 
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In analogy the particular solution of the uniform equations (20), (21) and (23) can be 

written as 
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Here we have introduced: ζ0 is the vacuum characteristic impedance equal 120π, Оm 

and the radial wavenumbers 
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The coefficients  and  in the formulas (25)-(26) describe the amplitude of  

electric and magnetic waves, respectively, transmitted into the cylinder. They result from 

transformation of electric waves incident on the cylinder surface.  is the transforma-

tion coefficient of electric waves into magnetic as a result of reflection from the cylinder. 

These coefficients are defined from the boundary conditions on the cylinder surface (14). 

The solution of the applicable equations system yields  
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In the formulas mentioned above for the reflection and transmission coefficients (28)-

(31) we use the denotations: 

      
( )
( )

( )
( )D

J

J

H

Hn
n

s n

s n n

s n

s n

μ μ
β

β

β
μ
β

β

β
= −

⋅ ⋅

1 3

3

1
3

1
3

( )

( )
, 

( )
( )

( )
( )D

J
J

H
Hn

n

n

n

s n

s n n

s n

s n

ε ε
β

β
β

β
β

ε
β

β
β

= −

⋅ ⋅

1

1

2

1

2

2

3

3

1
3

1
3

( )

( )  

  
( )
( )

( )
( )M

J
J

J
Jn

n

n

n

s n

s n n

s n

s n

ε ε
β

β
β

β
β

ε
β

β
β

= −

⋅ ⋅

1

1

2

1

2

2

3

3

3

3

, C
n
k Ln

n n

n n

ε π β β
β β

=
−

0

3
2

1
2

1
2

3
2 , C

n
k Ln

n n

n n

μ π β β
β β

=
−

0

3
2 2

2
3
2 . 

We also assume that  
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Mention should be made that the diffracted electromagnetic fields are completely de-

scribed by potentials  and , i.e. the coefficients  and . To define electro-

magnetic fields inside the cylinder we must use the potentials  and  and the expres-

sions for the transmission coefficients (30), (31). 
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The vertical component of the electric field intensity Ez is of great importance for 

measurements. Using the relations (9), (24) and applying the addition theorem for the cy-

lindrical functions [9] to the expression (24) described the field without the dielectric in-

homogeneity for the outside cylinder region we reduce 
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where  is determined (28), Rns
ee ζ μ μ ε3 3 0 3= / ε 0 is the medium characteristic impedance 

filled the waveguide, and ( )R r a ra= + − −2 2
02 cos ϕ ϕ . 
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It should be noted that in the plane waveguide the electric waves contain «telegraph 

mode» as the fundamental wave ( 0=n ), i.e. ТЕМ-wave. In this case from the relation 

(32) the longitudinal component of the electric field can be easily defined  
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The expression (34) describes the forward wave which is propagated from the source 

to the observation point, and the expression (35) can be interpreted as the diffracted field. 

Using the expression (32) the numerical calculations of the total and reflected electric 

fields intensities inside the waveguide are performed. Figure 2 and 3 show the plots of the 

electric fields normalized to the quantity E
I l

L
k0

0
3 32

= ζ  as functions of the distance 

ϕtgxy 1= , where  and the azimuth angle ϕ ranges from 0° to 80°.  These figures 

conform to the cases of isotropic and anisotropic inhomogeneity, respectively. Here we 

have applied the following lines designations: the solid line is 

31 =x

3=ε  (Figure 2); the dot-

dashed line is 9=ε  (Figure 2) and 31 =ε , 92 =ε  (Figure 3); the dashed line is 30=ε  

(Figure 2) and 31 =ε , 302 =ε  (Figure 3). Note that these lines designations will be here-

after used. 
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In this calculations we use the following values of the nondimensional parameters: 

, , , 10 =bk 30 =ak 60 =Lk ϕcos/0 xrk = , πϕ =0 , 13 =ε . The calculation results have 

shown insignificant effect of the cylinder anisotropic properties on the scattering field 

structure at high values of the permittivity. However this affect comes into particular 

prominence at relatively small values of the permittivity. 

Figure 4-7 illustrate varying of a scattering indicatrix for the isotropic (Figure 4, 6) 

and anisotropic (Figure 5, 7) inhomogeneity depending on the distance to the observation 

point  (Figure 4, 5) and 40 =rk 100 =rk  (Figure 6, 7). Here we also assume 00 =ϕ . At 

high values of the permittivity the scattering indicatrixes for the isotropic and anisotropic 

cylinders (Figure 4, 5 or Figure 6, 7) agree in type while they differ noticeably at small 

values of the permittivity. 

In Figure 8-11 (by analogy with Figure 4-7) the azimuth dependencies of total electric 

fields intensities are demonstrated. It should be mentioned that the cylinder anisotropy is 

not a factor.   

 

4. ASYMPTOTIC APPROCHES 

The expressions obtained for the z-components of electric field intensity (32-35) are 

rather complex that makes their analysis difficult. Therefor consider two limit cases:  

long and short wave approximations. 

a) The Relay  approximation. 

The wavelength in the waveguide is assumed to be much less in comparison with the 

cylinder radius, i.e. 
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We will also use the approximated expressions of the cylindrical functions for the 

small values of the arguments х << 1  [9] 
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 Figure 6. Scattering indicatrixes for an isotropic inhomogeneity at  100 =rk

 

 Figure 7. Scattering indicatrixes for an anisotropic inhomogeneity at  100 =rk
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Figure 8. Azimuth diagrams of  total - component for an isotropic inhomogeneity at  zE 40 =rk
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Figure 10. Azimuth diagrams of  total - component for an isotropic inhomogeneity at  zE 100 =rk
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 Figure 11. Azimuth diagrams of  total - component for an anisotropic inhomogeneity at  zE 100 =rk

 
 

As a result substitution of (37) into (34) and (35) yields the following formula for the 

z-components of electric field intensity inside the waveguide   

        
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

E
I l

L
k k R i A H H k

B H H k r

z3
0

3 3 3
3

0
1

3 1
1

3

3
2

1
1

3 1
1

3 0

4 2

2

= − +
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⎝⎜

⎞
⎠⎟ −

−
⎛
⎝⎜

⎞
⎠⎟ −

ζ π
β

α

β
α ϕ ϕ

{ [
]}

0
(1)H

cos

r
                 (38) 

where the coefficients A and B are as follows  

( )
( )

( )
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A
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J

J

J
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2

3

1
1

0 2

1 2

3
3 3

1

1

3

0 2

1 2

Λ

Λ

ε
ε
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β

β

β γ
β ε

ε
β
β

β

β
ln

;  

( )
( )

( )
( )

B

J

J

J

J

=

− −
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

+

⋅

⋅

1 1
2

1

3

1

1

3
2

3
2

1 2

1 2

3

1

1

3
2

1 2

1 2

Λ

Λ

ε
ε

β
β

β β

β

ε
ε

β
β

β

β

. 

When the wavelength inside the cylindrical inhomogeneity is also much less in 

comparison with the cylinder radius, i.e. 

                                                          k b2 1<< .                                               (39) 

the simplified expression for the electric field can be written in the form   

                  
( )

( ) ( ) ( ) ( ) ( )[ ]

E
I l

L
k H k R i

H H k r H H k r s

z3
0

3 3 0
1

3
3 1 3

3

0
1

3 0
1

3
3

1
1

3 1
1

3 0

4 2

1
2 2

= − +
⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝
⎜

⎞
⎠
⎟ ×

× +
⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢

⎤

⎦
⎥

ζ π
β ε ε

ε

α
β

α ϕ ϕ

{
}

( )

( ) ( ) ( ) ( ) cos

Λ
Λ       (40) 

It is worth noting that in the Relay approximation for a perfectly conducting cylindrical 

inhomogeneity the similar expression for the vector potential was obtained in the paper 

[6]. 

b) The ray approximation. 

There is another limit case which allows to obtain the simplified problem solution. It is 

the ray approximation. The cylinder radius is suggested to be much less in comparison 

with the wavelength inside and outside the waveguide, i.e.  

                                                                     k b2 1>>                                                (41) 

                                                            k b3 1>> . 
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In this case it is convenient to use the Watson transformation [10] which allows to 

transform the formula (35) into the series fast converged. For this purpose transform the 

series of the form 

( )[ ]S A i mm
m

= −
=−∞

∞

∑ exp ϕ ϕ0  

into the contour integral 

( )[ ]
( )S

i i
A d=

− −
∫2

0exp

sin

ν ϕ ϕ π

νπ
νν . 

Moreover we shall use the Debay asymptotic expansion for the Hankel functions [9] 

( ) ( )H z
z

e ei i z
ν

π γ γ γ

π γ
( ) / sin cos

sin
1

2
42

≈ − −  

( ) ( )H z
z

e ei i z
ν

π γ γ γ

π γ
( ) / sin cos

sin
2

2
42

≈ − − − . 

As the result substitution these relations into the formula (35) reduces the following 

expression for the vertical component of the electric field intensity 

                                               ( ) ( ) ( )E
I l

L
k f F ez

m

iФ
3

2 0
3 3

04
( ) = ⊥

=

∞

∫∑ζ ν ν ν dν ,                     (42)     

where 

( ) ( ) ( )f F k ab b

b b
a r⊥

−
=

−
+

=ν r
ζ γ ζ γ
ζ γ ζ γ

ν π γ γ1 3 3 1

1 3 3 1
3 3 3

1
2

sin sin
sin sin

; sin sin ;  

( ) ( ) ( )
( ) ( )[ ]

Ф k a k r

k b m
a a a r r r

b b b

ν γ γ γ γ γ γ

γ γ γ ν ϕ ϕ π

= − + −

− − + − + ⋅

3 3 3 3 3 3 3 3

3 3 3 3 02 2

sin cos sin cos

sin cos ;

−

2
 

ν γ γ γ= = =k a k r k ba r3 3 3 3 3cos cos cos b3 . 

The rays geometry is shown in Figure 12.  To calculate the integrals included in the 

formula (42) we apply the stationary phase method [10]. The stationary phase point 

 is defined from the equality to zero of a derivative of the function Ф(ν) which can 

be written as follows  

ν ν= *

                                                    
( )γ γ γ ϕ ϕ

γ θ
3 3 3 0

3 3

2a r b

b

+ − = −

=sin cos
                                   (43) 
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                    P (observation point) 
 
 
 
 
                                         θ i   
                                                              b                           bbbbb       
                                         θ i
 
 
 
                        Q (source point) 
 

 
Figure 12. Physical interpretation of the ray approximation. 

 
Figure 12 shows that the stationary phase point is the reflection point of the spherical 

wave incident on the cylinder from its surface. Hence, the angle 3θ  is the angle of a wave 

incidence on the cylindrical inhomogeneity surface. 

As a result we have obtained the following expression for the vertical component of 

the electric field of the wave reflected from the inhomogeneity  

                                                         .                                   (44) ( )E E R f ez
i k R

3
2

0
3( ) * '

= ⊥ G3

Here E0(R) describes the field of a wave incident on the cylindrical inhomogeneity 

( ) ( )
E R

I l
L

k
i k R

k R0
0

3 3
3

32
4

2
=

−
ζ

π
π

exp /
. 

The quantity  is the Frenel coefficient of the plane wave from the anisotropic dielectric f⊥
*

f⊥ =
−
+

* cos cos
cos cos

Λ
Λ
ζ θ ζ θ
ζ θ ζ θ

1 3 3

1 3 3

1

1
. 

It should be marked that having passed to the case of isotropic inhomogeneity we deduce 

the expression for Frenel coefficient presented in [10]. 

The multiplier G3 is the ray tube divergence  

( )G
b

R R R b3
3

32 1
=

+ +
cos

/ cos' '

θ
θ

, 

and the distances R and R′  are defined by the formulas  

r3γ  

b3γ  

a3γ  

0ϕϕ −  
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R a b
R r b

a b

r b

= −

= −

sin sin
sin sin'

γ γ

γ γ
3 3

3 3

. 

 

5. CONCLUSION 

In this paper the excitation problem of electromagnetic waves by a vertical electric vi-

brator inside a plane waveguide with perfectly conducting walls in the presence of an 

anisotropic cylindrical inhomogeneity and the diffraction problem of normal waves on 

this inhomogeneity has been considered. Using the expansion of sources and fields in 

terms of the normal waves of the plane waveguide together with the variable separation 

method yields the exact solution of the diffraction and excitation problem by the extrane-

ous source of the inhomogeneity in the anisotropic circular cylinder form. This solution is 

presented in the double sums form over the eigenfunctions of the perfect plane waveguide 

and the azimuth eigenfunctions of the cylinder what is very convenient for numerical cal-

culations. The anisotropy affect on the field diffracted in the waveguide has been 

analysed. It is shown that due to the mutual transformation of TE and TM modes the ver-

tical electric dipole excites both electric and magnetic waves. 

The numerical results of the scattering indicatrix and the total field structure inside the 

waveguide have also been performed. The two important particular cases have been 

considered in detail: diffraction on the thin cylinder (the Relay approximation) and 

diffraction on the cylinder of a large electric radius (the ray approximation).  
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