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Abstract 

A method for determination of the optimal shape of a loop, moving in a magnetic 
field with a periodic non-sinusoidal structure, is presented. The optimum criterion is 
the maximum of the induced electromotive force (EMF). The equivalent loop shape is 
computed by an iterative solution of an isoperimetric variational problem. The 
necessary conditions for an extremum are introduced by four-dimensional (4-D) 
electromagnetic potentials. Magnetic fields with different non-sinusoidal structure are 
investigated. 
 

1. INTRODUCTION 

   A relative translation movement of a closed loop in a magnetic field with a periodic 

non-sinusoidal structure is considered. The optimal shape of a loop 1, which is related 

to the fixed coordinate system XYZ (Fig.1) and is situated in a plane parallel to YZ, 

has to be found. The magnetic field is connected with the moving coordinate system 

X’Y’Z’. The magnetic flux density 'B (or simply magnetic field) is X’-directed and it 

is constant at Y’-direction while it has a non-sinusoidal piecewise-linear profile at Z’-

direction, as shown in Fig.1. 

Figure 1. The form of the non-sinusoidal magnetic field: 

l - optimal shape of the loop , B’ - magnetic field 
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The magnetic field satisfies the Dirichlet condition. As a consequence of its 

periodicity,  it can be represented by the following Fourier series  
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where  is the amplitude of the k-th harmonic of the magnetic field, kmB τ  is a the step-

size in ' . By using  Fourier analysis with  = 1Т , z 1B
τ
π = 0.78 m-1 ,  we have obtained 

the following approximation, retaining the odd harmonics up to ninth order 
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2. FOUR-DIMENSIONAL ELECTROMAGNETIC POTENTIAL 

   The components of the vector induced electrical field E  in the loop, as a result of 

the moving magnetic field, are obtained by means of a 4-D electromagnetic potential 

in the Minkovski space. The procedure here follows [4]. In this paper a 4-D 

electromagnetic potential is considered in the form  
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   A magnetic vector potential  is used because of the fact that the magnetic field is 

created by a source current [2,6]. The Lorentz transformations of the electromagnetic 

potentials are [1,2,4] 
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as well as Lorentz transformation of the coordinates are 
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The components of the 4-D potential in the moving coordinate system are 
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where 
22 /1

1

cv−
=α   is the relativity factor and  c is the free-space light velocity 

( ). smc /103 8×≈

 

3. INDUCED ELECTRICAL FIELD  

   The components of the electrical field can be associated with the 4-D Maxwell 

tensor  [4-6]. It can be derived from the 4-D potential using the following 

derivatives 

F
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where   are the 4-D coordinates in the Minkovski space, { jctzyxX ,,,=
r

j  is the 

imaginary unit. For the components of the electrical field, induced in the loop, from 

(1) and (7) follows 
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4. NECESSARY CONDITIONS FOR AN EXTREMUM 

   The maximum induced EMF is obtained from the extremum condition of the 

following functional [2] 
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which in a parametric form is  
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It gives for a loop, situated in the YZ - plane the expression 
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where  are the derivates with respect to the parameter zyx &&& ,, τ  and  the values of 0τ  

and  1τ   are related to the beginning and the end of the loop. 

   The functional extremum has to be found at a presence of  an additional restriction 

for the loop perimeter L  - this is an isoperimetric problem 
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   The necessary conditions for an extremum have to be found on the basis of the 

Langrange function [2]  
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where λ  is the Langrange constant. 
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   The necessary conditions for an extremum are derived as a system of differential 

equations (see the Appendix). The equations are obtained on the basis of the Euler 

equations, applying for the loop in a parametric form. The optimal loop’s shape has to 

be found in a plane, parallel to YZ-plane. The additional conditions  

yield 

0,0 == xx &&&
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where  are the derivatives with respect to the parameter  zzyy &&&&&& ,,, τ .  

   The following an explicit equation is obtained  
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   The solution of equation (15) is a necessary condition for an optimal loop’s shape 

finding. 

 

5. SUFFICIENT CONDITIONS FOR AN EXTREMUM 

   The solution of equation (15) is a solution of a Cauchy problem with initial 

conditions:  ( ) ( ) 0, 1010 === == yzyyzy zz && .  

   The curvature of the extremal curve is determined from the right part of equation 

(15). The Lagrange constant is defined with respect of the loop’s parameter. By 

numerical experiments is found that for different values of λ  , using the initial value 

problem (transverse conditions), the same central extremal field is obtained. 

If the Legendre conditions 0,0
32

≠
∂∂∂

∂
<

∂∂
∂

yyy
L

yy
L  are fulfilled, then the extremum of 

the functional is guaranteed. 

   For values of 0<λ a maximum value of the EMF is ensured.  

   The fulfillment of the sufficient condition (Jacoby condition) is verified by 

numerical experiments. 



AN OPTIMAL SHAPE OF A LOOP, MOVING IN A MAGNETIC FIELD  
WITH A NON-SINUSOIDAL STRUCTURE,  

6

ENSURING MAXIMUM EMF 
 
 
6. NUMERICAL RESULTS AND DISCUSSION 

    A family of characteristics for the parameters 

5.0,402,78.0 1
1 −=== − λ

τ
π smvm  at different moments 

( )TTTTTTTtt ,8
7,8

5,2,8
3,4,8,011 =  is obtained. The numerical solution   

shows the periodic structure of the extremals. Some of the extremals are shown in 

Figure 2. 

 

Figure 2.  Optimal loop’s shapes  for a magnetic field , presented in Fig.1, at different moments  1t

 

The obtained results show the presence of a periodicity (in time) of the computed 

extremals. Since the extremals curvature changes in time an equivalent form of the 

optimum loop have to be introduced. The equivalent form of the optimum loop 

presented in Figure.3 is obtained on the extremals at different moments t1  .   

 

Figure 3. An equivalent optimal loop’s shape 
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 for a magnetic field, presented in Figure 1. 
  

The equivalent form of the optimal loop computed from the solution of the 

variational problem is a smooth and reminds a circle.  

 In order to determine the influence of the other parameters on the shape of the 

optimal loop, numerical experiments are done. 

The results obtained for a high velocity  (close to  ), are of interest.   In Figure 

4. the optimal shape of the loop, ensuring maximum EMF for a sufficiently high 

velocity , is presented. 

v c

smv /18000=

 

Figure 4.  An optimal loop’s  shape for a velocity smv /18000= . 

  

Fig.4. shows a deformation of the loop’s shape in the direction of the movement. 

Investigations of other forms of the traveling magnetic field are also done. Two 

more forms - the trapezoidal form, presented in Fig.5, and also the ideal sinusoidal 

form, are investigated. 

 

Figure 5.  A trapezoidal non-sinusoidal form of the magnetic field. 

The optimal form for a sinusoidal field is very close to a circle. 
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Figure 6 presents optimal forms at different moments when a trapezoidal magnetic  

field is used. 

The equivalent form of the optimal loop represented in Fig.6, is shown in Fig.7. 

 

Figure 6. Optimal loop’s shapes for a magnetic field, shown in Figure 5, at different moments. 

 

 

 

Figure 7. An equivalent optimal loop’s shape for a magnetic field, shown in Figure 5.  

 

7.CONCLUSION  

The results obtained in this paper enable to determine the optimal form of loop,  

ensuring maximum EMF, which is induced by a moving periodic magnetic field, with 

a different non-sinusoidal structure. 

The  algorithm  developed  here  is  based  on  a  solution of a variational problem,  

using  four-dimensional potentials in the Minkovski space. The investigations are 

valid for different velocities. 
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The numerical results obtained in the paper show that for a low velocity ( ) 

the 

cv 〈〈

optimal form of the loop is an invariant with respect to the velocity. For a relativistic 

velocity  ( ) the optimal form of the loop is strongly deformed. cv ≈

For a sinusoidal magnetic field  the equivalent optimal form is very close to a 

circle. For a non-sinusoidal magnetic field the optimal form of the loop differs from a 

circle as it can be seen in Fig.2 and in Fig.6. 

The results obtained here are valid for a time-harmonic magnetic field. The 

investigations may be continued also for other types magnetic fields, using again the 

criterion of a maximum EMF. 

The problem of determination of the optimal loop’s shape, ensuring maximum 

EMF, is in use for electromagnetic systems working with a non-sinusoidal traveling 

magnetic field, by a condition that the velocity is low comparing to c . Such systems 

are the MHD-generators, linear induction motors, liquid metal pumps, etc. Examples 

for a high velocity are the electromagnetic systems for magnetic resonance imaging, 

electromagnetic guns, etc. The approach proposed here may be also used in the case 

of electromagnetic systems with a rotation. 

The obtained results are valid for linear systems, but they can be used in 

combination with other methods for optimization of non-linear systems also. 
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