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Abstract   
Propagation of acoustic waves generated from a source within a laterally 

inhomogeneous layered sea medium is examined using analytical techniques. A two-
step analytical approach is employed. Starting from the computation of response 
function of the stratified medium, integral equation techniques are employed to analyze 
the case of inhomogeneous medium. The use of contour integration techniques allows 
the development of field expressions in terms of normal modes of the stratified sea 
medium with arbitrary number of layers. Field calculation is carried out for a 
sinusoidal lateral inhomogeneous sea medium. Numerical computations are carried out 
and the effects of inhomogeneites are examined. 
 
1. INTRODUCTION 

A commonly used model to analyze the propagation of acoustic waves inside the sea 

is the stratified medium characterized with individual salinity and temperature as shown 

in figure1.  
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Figure 1.  Stratified sea medium 

 

Assuming the seabed and surface to be perfectly planar the propagation of acoustic 

waves emitted by a source could be treated using the separation of variables technique. 
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The analysis shows that the acoustic propagation in thin layered media is realized by 

normal modes associated with the guided waves between the layers. As the oscillation 

frequency increases there are large numbers of propagation modes thus leading into a 

highly dispersive transfer function between source and receiving points. Although the 

study of propagation in this type sea model is highly useful in many instances, there is a 

lateral variation within the layers constituting the sea. Therefore it is necessary to 

develop computational techniques coping with lateral inhomogeneites to determine the 

associated effects in underwater acoustics. 

In figure 2 the acoustic model studied in this article is shown. The refractive index - 

velocity profile of the sea medium is described by the equation: 

n x z n z n x n z n x zx( , ) ( ) cos( ) ( ) ( , )= + = +0 0Δ Ω δ                                  (1) 

where n z0 ( ) is the horizontally stratified medium refractive index while the second term 

represents the disturbance because of the lateral inhomogeneity which is taken to be 

periodic.  
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Figure 2. Inhomogeneous Sea medium 

In equation (1) Ω x  is the angular frequency of the sinusoidal lateral inhomogeneity, 

having units of m−1  and defined as follows: 
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Ω x x x
=

−
2

2 2 1

π
( )

                                                            (2) 

where x1  and x2  are the limits of the lateral sinusoidal disturbance as its shown in 

figure 2. 

In the following, a two-step Green’s function approach is applied to calculate the 

acoustic field inside the sea when an elementary source is oscillating at an arbitrary 

frequency ω. In the first instance the Green’s function of the horizontally stratified 

medium is determined using the Sommerfeld technique. Then an integral equation is 

written to take into account the effects of the lateral inhomogeneity. This equation is 

solved approximately by computing the first order iteration. The corresponding 

integrals are calculated analytically up to some extend and then numerical integration 

techniques are employed. 

 

2. INTEGRAL EQUATION TECHNIQUE 

Consider an elementary continues wave source oscillating at angular frequency ω 

and placed at the point rr0 as shown in figure 1. The pressure wave equation can be 

written as follows: 

( ) ( ) ( )∇ + = − −2 2
0
2

0 0n x z k G r r r r( , ) ,
r r r r rδ                                                  (3) 

where k0 is the reference wavenumber and G r r( , )r r
0 , is the pressure at the observation 

point r x y z( , , )r r r . In writing equation (3) an exp( )− j tω  time dependence is assumed 

silently. 

If the medium is horizontally homogeneous (i.e. Δn = 0  in eq. (1)) then eq. (3) can 

be written as follows: 

( ) ( ) ( )∇ + = − −2
0

2
0
2

0 0 0n z k G r r r r( ) ,
r r r r rδ                                           (4) 

where G r r0 0( , )r r  represents the solution for this case. 

In addition to eqs. (3) and (4), one has to take into account the boundary conditions 

associated with the sea surface, bottom and interface between the medium layers. 

Specifically at the sea-air interface the pressure is taken to be [1]: 

PS = 0                                                                        (5) 

while on the sea bottom the boundary condition is [2]: 

∂
∂

P
n

B
r = 0                                                                    (6) 
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Furthermore at the interface of the layers in case of horizontally homogeneous 

medium the pressure wave and its normal derivative satisfy the conditions [3]: 

P P1 2=    and     1 1

1

1

2

2

j
P
n j

P
nωρ

∂
∂ ωρ

∂
∂r r=                                         (7) 

respectively, where ρn  is the medium density in the nth layer and ω is the acoustic 

source’s angular frequency. Assuming the solution of eq. (4), G r r0 0( , )r r , subject to 

relevant boundary conditions (eq. (5)-(7)), is known, then by applying the Green’s 

theorem, the following integral equation is derived: 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )

G r r G r r G r r G r r dV

G r r
n

G r r G r r
n

G r r dS

V

S

0
2

0
2

0 0

0 0 0 0

r r r r r r r r

r r
r

r r r r
r

r r

, , , ,

, , , ,

′ ′∇ ′ − ′ ′∇ ′ ′ =

= − ′
′

′ − ′
′

′
⎡

⎣
⎢

⎤

⎦
⎥ ′

∞

∞

∫

∫
∂
∂

∂
∂

                                (8) 

where V∞  is the whole sea medium volume and S∞  is the surface surrounding this 

volume (see fig.2). On substituting eqs. (3) and (4) into (8), taking into account the 

boundary conditions on the sea bottom and surface (eq. (5) and (7)), as well as the 

radiation condition for x → ±∞  and y → ±∞ , eq.(8) results into: 

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

r r r r r r
r r r r r r r r r r r r

r r r r r rG r r G r r
G r r n z k G r r G r r n x z k G r r

G r r n z k G r r
dV

V

, ,
, ( ) , , ( , ) ,

, ( ) ,0 0 0
0 0

2
0
2

0 0 0
2

0

0
2

0
2

0 0

= +
− ′ ′ ′ − ′ ′ ′ ′ +

+ ′ ′ ′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′
∞

∫
δ

                                                                                                                                         (9) 

where rr0  is the position vector of the acoustic source. Interpretation of eq. (9) shows 

that the pressure field at an arbitrary point rr  consists of a superposition of the field 

G r r0 0( , )r r , in the absence of horizontal inhomogeneity and a second term, which is 

associated to scattering phenomena because of the lateral disturbance of the refractive 

index. 

A direct solution of eq.(9) is a highly difficult task, even if taking a simple refractive 

index disturbance like the following: 

δ n x z n x z n z( , ) ( , ) ( )= −2
0
2                                                (10) 

In case of weak disturbance ( ( )δ n 2 1〈〈 ), then eq. (9) could be solved approximately 

by using a first order iteration (Born Approximation), that is by substituting G r r( , )r r
0  

inside the integral with G r r0 0( , )r r  which leads to the following integral equation: 
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G r r G r r n x z G r r G r r dV
V

( , ) ( , ) ( , ) ( , ) ( , )r r r r r r r r
0 0 0 0 0 0= + ′ ′ ′ ′ ′

∞
∫ δ                       (11) 

and since in principle the integral in the right side of eq. (11) is computable the first 

approximation of the acoustic pressure field can be calculated. 

It is evident that in order to use eq. (11), the G r r0 0( , )r r  function must be known 

accurately and in such a format that the three dimensional integral to be computed with 

minimum numerical cost. Therefore it is required to determine G r r0 0( , )r r  in a closed 

form. In the following section an outline of the method used to determine G r r0 0( , )r r  is 

presented. 

 

3. COMPUTATION OF THE FIELD IN THE ABSENCE OF HORIZONTAL 

VARIANCE  

A model structure shown in figure 1 is taken in order to analyze the wave 

propagation in a range independent sea medium. A layered medium is assumed where 

the refractive index is taken to be discrete valued while a three dimensional variation is 

assumed on the layers interface. A realistic three dimensional model of sea medium in 

terms of propagation characteristics is taken through this structure. 

In order to treat the problem of calculating the acoustic field distribution originating 

from an elementary source at a point A (see figure 1), at an arbitrary point B having 

corresponding co-ordinates (xB0 B,yB0 B,zB0 B) and (x,y,z), respectively, a Green’s function 

formulation is proposed. Then the Green’s function for this medium is calculated using 

the standard separation of variables technique as described briefly in the following [4]. 

Assuming the elementary source point being inside the ith layer, the field inside the 

sea medium is obtained by taking into account the primary field generated from the 

elementary source and the secondary field induced inside each layer. The 

implementation of the Green’s theory for an elementary source at a point ( )r x y z0 0 0 0, ,  

suggests that the Green’s function at a point r(x,y,z) represents the pressure field derived 

from the source at that point [5]. The Helmholtz equation satisfied within the source 

layer is written as follows [5]: 

( ) ( ) ( )∇ + = − −2 2 2
0 0n k G r r r ri i p

r r r r r/ δ    ,  n c ci i= 0 /     ,    k c f c0 0 0 02= =ω π/ /          (12) 

where the ( )r r rG r rp / 0  function represents the primary field; nBi B and cBi B are the refractive 

index and the sound speed in the ith layer respectively; cB0 B is the reference sound speed 
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and f Bo B is the acoustic source frequency. Furthermore the homogeneous Helmholtz 

equation satisfied in the other layers, is: 

( ) ( )∇ + = = ≠2 2 2
0 0 1n k G r r n N n in n sn

r r r/ , ,..., ,                         (13) 

where ( )r r rG r rsn / 0  represents the secondary field in the nth layer and N is the layers 

number [6]. The composition of eqs (12) and (13) leads to the following general 

expression for the Green’s function ( )r r rG r r0 0/ : 

( ) ( ) ( )
( )

r r r
r r r r r r

r r rG r r
G r r G r r n i

G r r n i

p sn

sn
0 0

0 0

0

/
/ / ,

/ ,
=

+ =

≠

⎧
⎨
⎪

⎩⎪
                                 (14) 

Applying the spatial Fourier transformation and after integration of the kBz B-component 

the GBp B and the GBsn B functions are written as follows [7], [8]: 

( ) ( ) ( )[ ]r r rG r r dk dk jk x x jk y y
z z

p x y x y
i

i

/ exp
exp( )

0 2 0 0
01

8
= − − + −

−

−∞

+∞

−∞

+∞

∫∫π
μ
μ

            (15) 

( )
( )

( ) ( )[ ] ( ) ( )
( ) ( )

r r rG r r dk dk jk x x jk y y
A k k z

B k k z
sn x y x y

n x y n

n x y n

/ exp
, exp

, exp
0 2 0 0

1
2

= − + −
− +

+

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−∞

+∞

−∞

+∞

∫∫π

μ

μ
  

                                                                                                                                      (16) 

 

where              μn x y nk k k n= + −2 2
0
2 2                                                                         (17) 

The calculation of the scalar coefficients ABn B and BBn B of eq.(16) is obtained from the 

application of the boundary conditions on the sea layers, surface, and bottom (eq. (5)-

(7)).  

The latter results into a recursive equation which includes all the information 

concerning the propagation model characteristics and is written as follows [9]: 

( ) ( )M n n m M n n m m
A
Bn n n

n

n
+ + = + + =

⎡

⎣
⎢

⎤

⎦
⎥+ +1 1 1 21 2, , ,                  (18) 

( )
( )

( )

( )

( )
M t s

h

h

h

h

t s

s t
s t

t s

s t
s t

t s

s t
s t

t s

s t
s t

,
exp

exp

exp

exp
=

+
⎛
⎝
⎜

⎞
⎠
⎟ −

−
⎛
⎝
⎜

⎞
⎠
⎟ −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

−
⎛
⎝
⎜

⎞
⎠
⎟

+
⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
2 2

1
2 2

1
2 2

1
2 2

ρ μ
ρ μ

μ

ρ μ
ρ μ

μ

ρ μ
ρ μ

μ

ρ μ
ρ μ

μ
                    (19) 
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Equation (18) is valid for all the layers with the exception of the source layer. If the 

latter is the ith layer then it is bounded from the z hi= −1  and z hi=  surfaces (see 

figure1). The application of the boundary conditions on these two surfaces leads to the 

following equations: 

M i i m M i i m n i i z hi i i( , ) ( , ) ( , ) ,− − = − + − =− −1 1 1 11 1                                 (20) 

n i i M i i m M i i m z hi i i( , ) ( , ) ( , ) ,+ = + =+1 1                                  (21) 

where  

( )

( )
( )

n t s
sign h z

sign h z

h zt
t s

s t

t
t s

s t

s t

s

( , )
exp

=

− −

+ −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
1
2 2
1
2 2

8

0

0

0
2

ρ μ
ρ μ
ρ μ
ρ μ

μ
π μ

                             (22) 

where zB0 B shows the source position on the z-axis and the sign h zt( )− 0  function is 

defined as follows: 

sign h z
h z
h z
h z

t

t

t

t

( )
,
,
,

− =
+ >

=
− <

⎧

⎨
⎪

⎩
⎪

0

0

0

0

1
0

1
 

Following the calculation of ABn B and BBn B coefficients from eqs. (18),(20),(21) the 

Green’s function is obtained from eqs.(15) and (16). The calculation of the integrals in 

eq.(16) has been carried out by means of Complex Contour Integration techniques. The 

above described method is leading to an expression for the Green’s function and thus 

for the pressure field of an exponential form: 

 
G f r e r esk

N
j r j r= +

=

−

=

∞
−∑ ∑l

l
l

l

l l

1 1

0

( ) ( )β γφ                                        (23) 

where the f l  and the φl  represent the contribution of the different normal modes and 

evanescent modes respectively, to the pressure field, while the βl  and the γ l  are the 

real and imaginary poles of eq.(16) respectively and finally r is the range from the 

acoustic source [10 ]. 

In the above summation (eq. 23) the propagating modes are of finite number while 

an infinite number of evanescent waves are encountered, having a purely imaginary 

propagation number. The latter exhibits a series with highly convergent rate. 

These non-propagating modes represent the energy stored in the vicinity of the 

acoustic source. 
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4. COMPUTATION OF GREEN’S FUNCTION IN CASE OF A LATERALLY 

INHOMOGENEITY 

In order to compute the Green’s function in case of a sinusoidal lateral 

inhomogeneity the G r r0 0( , )r r  function, in the format determined in the previous section, 

is substituted into eq. (11). Then after a lengthy procedure based on the following steps 

the G r r( , )r r
0  function is computed. These steps are: 

a)  The G r r0 0( , )r r  Green’s function is expressed in terms of it’s Fourier representation 

and is substituted into eq.(11) resulting into [11] : 

 

( ) ( )
( )

r r r r r rG r r G r r
k

dx dy dz

dk dk e k k Q k k

dk dk e k k Q k k

n x
x

x x y x y x y

x y x y x y

h

x/ /

( , ) ( , )

( , ) ( , )

cos0 0 0
0
2

4

1 1

2 2
02

1

2

= + ′ ′ ′

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

⋅ ′ ′ ′ ′ ′ ′
⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

′∫ ∫
∫∫

∫∫
∫

−∞

+∞
−∞

+∞

−∞

+∞

−∞

+∞

−∞

+∞π
Δ Ω

                                                                                                                                       (24) 

where 

 

e k k jk x x jk y yx y x y1 ( , ) exp[ ( ) ( )]= − ′ + − ′                                                                (25a) 

e k k jk x x jk y yx y x y2 0 0( , ) exp[ ( ) ( )]′ ′ = ′ ′ − + ′ ′ −                                                            (25b) 

Q k k A k k k k z B k k k k zx y n x y n x y n x y n x y1 ( , ) ( , ) exp[ ( , ) ] ( , ) exp[ ( , ) ]= ⋅ − ⋅ + ⋅ ⋅μ μ         (25c) 

Q k k A k k k k z B k k k k zx y n x y n x y n x y n x y2 ( , ) ( , ) exp[ ( , ) ] ( , ) exp[ ( , ) ]′ ′ = ′ ′ ⋅ − ′ ′ ⋅ ′ + ′ ′ ⋅ ′ ′ ⋅ ′μ μ      (25d) 

b) The definite ′x , ′y  and ′z  integrals appearing in eq.(24) are computed analytically 

by using the indefinite integrals [12]: 

e bx dx
e a bx b bx

a b
x

x
α

α

cos( )
[ cos( ) sin( )]

=
+

+∫ 2 2                                                                (26a) 

e dx
e
a

ax
ax

∫ =                                                                                                                (26b) 

and the definite integral [12]: 

1
2π

δe dx ajax

−∞

+∞

∫ = ( )                                                                                                      (26c) 
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c)  A ( )δ ′ −k ky y  behavior is obtained because of the homogeneity of the sea medium 

with respect to the y axis, thus the resulting four dimensional integrals are reduced to 

three dimensions. 

These three dimensional spectral domain integrals, resulting, from the previous steps,  

have the general form : 

( )[ ]dk e dk e e
Q k k
P k k

dk
k e

k k k k

Q k k
P k ky

jk y y
x

jk x x k k z x y

x y
x

x
jk x x

n x y x x x

x y

x y

y x i n x y
x i

( ) ( ) ( , )
( )( , )

( , ) ( , )

( , )
( , )

− − − ⋅

−∞

+∞

−∞

+∞

−∞

+∞ ′ − ′

∫∫ ∫ ′
′

′ − ′ −

′

′
0

2 2
μ

μ Ω

                                                                                                                                      (27) 

where  

x x or xi = 1 2     (see fig.1) 

Ω x  is the disturbance frequency (see eq.2) 

Q/P are the Green’s function Fourier transformation coefficients ( An  or Bn ) 

μn  is defined with eq.16 

d) The next step involves the computation of the ′k x  integral of eq. (27), which is 

performed by using Complex Contour Integration techniques. As already mentioned the 

poles on the imaginary axis have diminishing contribution at the far field and therefore 

are neglected in computing the received field. Thus on computing the residue 

contribution of the real poles, the field strength is computed. These real poles include 

the N poles of the G r r0 0( , )r r  Green’s function (see section 3), plus two other poles 

resulting from the term (Ω x x xk k2 2− ′ −( ) )  of eq.(27). Specifically the real poles of the 

′k x  integral are: 

λ
λ
λ

k

N x x

N x x

k N
k
k

, ,=
= +
= −

+

+

1

1

2

Ω
Ω

                                                         (28) 

e)  The remaining two integrals with respect to the k x  and k y  variables are transformed 

from spectral to polar coordinates as follows: 

    

k
k

x

y

=
=
λ ϕ
λ ϕ

λ

λ

cos
sin                                                             (29) 

Furthermore the spatial coordinates describing the relative source-receiver positions 

are also expressed in terms of spherical coordinates: 
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ρ =
=

R
z R

cos
sin

Ψ
Ψ

                                                             (30) 

At the same time the x and y variables appearing at eq. (27) are expressed in terms of 

polar coordinates: 

x
y
=
=
ρ ϕ
ρ ϕ

cos
sin                                                                (31) 

Considering the oscillatory behavior of the exponential terms resulting from the 

above transformations, which have the form: 

exp[ ( cos cos( ) sin )]R j nΨ Ψϕ ϕ μλ− +                                       (32) 

when R → +∞  the λ - integration is carried out by applying the stationary phase 

technique [13]. Thus the result is obtained by using the stationary phase formula  

 

f x e g d g
x h

j xhjxh

a

b

sp

sp

sp( ) ( ) ( )
( )

exp ( ( ) )( )

/

= ≅
′′

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

±
⎡
⎣⎢

⎤
⎦⎥∫ λ λ λ λ

π

λ
λ

π2
4

1 2

                      (33) 

where λsp  are the roots of the equation ′ =h ( )λ 0 , while ′h ( )λ  and ′ ′h ( )λ  are 

standing for the first and the second derivative of the h( )λ  function respectively. The 

sign in the exponential of the eq. (33) depends on the sign of the ′′h sp( )λ  function. 

Specifically it is plus for a positive value, while it is minus for a negative value of 

′′h sp( )λ . 

The ultimate result is computed in the following form (see eq. 11)  

G r r G r r p r r( , ) ( , ) ( , )r r r r r r
0 0 0 0= + δ                                                (34) 

where δ p r r( , )r r
0 is the resulting one dimensional integral, having the general form 

δ ϕ ϕλ λ

π

p r r d f Ri
i

( , ) ( , )r r
0

01

48

=
⎡

⎣
⎢

⎤

⎦
⎥∫∑

=

                                             (35) 

where 

f R F Ri k
k

( , ) ( , )ϕ ϕλ λ=
=
∑

1

3

                                                   (36) 

At equation (36) F Rk ( , )ϕλ  are the resulting functions from the above described 

procedure (steps a-e), having the following formulation: 
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F R k e C E L e

F R
j k e Q

P P
E L e

F R
j k e Q

n

j

sp
d

n

j

n N x

sp

sp N

d

n
j

n N x

sp

1
2 4

1

2

3 4

1

2

1
2

3

3 4

2

2

1

2

( , ) ( ) ( ) ( )

( , )
( )

( )
( ) ( )

( ) ( )

( , )
( )

(

( )

( )

ϕ λ ϕ ϕ

ϕ
π

μ λ
λ

λ λ
ϕ ϕ

ϕ
π

μ λ
λ

λ

π

λ λ
ϕ

λ

π

λ λ
ϕ

λ

π

λ

λ

= − ⋅ ⋅ ⋅ ⋅

=
⋅

⋅
⋅

⋅ ⋅ ⋅

= −
⋅

⋅

±

±

+ +

±

+

Ω

Ω
)

( ) ( )
( ) ( ) ( )

P P
E L e

sp N

d

λ λ
ϕ ϕλ λ

ϕλ

⋅
⋅ ⋅ ⋅

+2
2

2

              (37) 

where 

[ ]

[ ]

C j
Q
P
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The final integration of eq. (35) is carried out by means of numerical integration 

techniques, and specifically by applying the Simpson numerical integration technique 

[14]. 

 

5. NUMERICAL COMPUTATIONS 

Numerical computations have been carried out for several cases of sea layer 

distributions while real data from different places of the Aegean sea have been used for 

the model characteristics. The frequency region of 1-1000 Hz with emphasis to 

frequencies up to 200 Hz was used while there were no limitations to range properties. 

The examples that are presented here are referred to a specific area of the Aegean 

Sea with known acoustic medium characteristics having a depth of 281 m. In figure 3 

the sound speed and the medium’s density profiles are presented for the specific area.  
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As it can be observed from figure 3 the sound speed profile includes sharp changes 

especially near the surface leading to a very complex sound propagation medium. 

Noticeable changes are also being observed and at the density profile in the same figure. 

Taking into account the above specific profiles the medium is divided into seven 

layers in order to simulate as well as possible its acoustic characteristics. The result is 

shown in figure 4. 

For this specific environment numerical calculations have been carried out for 

different frequencies, source and receiver positions as well as for both the cases of the 

range independent and range dependent medium with interesting results.  

 

In the following some of these results are briefly presented.  

Starting with figures 5 and 6 the acoustic field with the distance from the source is 

being studied for frequencies 10 and 150 Hz respectively. Note that in these cases both 

the source and the observation layer are within the same layer so both the primary and 

the secondary fields are present. The range is varying from 1 to 200 Km. Except of the 

obvious decrease of the field with the distance from the source the most important 

remark here has to do with the domination of the primary field over the secondary 

fields. Of course the total field will be constituted only of secondary fields in the cases 

were the observation point is in a different layer than the one of the source. 

In figure 7 the dependence of acoustic field with depth is examined.  The depth of 

the source is again 170 meters, the frequency is 150 Hz and the distance of the 

observation point is 15 km. The later is moving from layer to layer. In this figure the 

influence of the primary field is clear when the receiving point is in the same layer with 

the source. The contribution of the secondary field becomes dominant in the layers 

outside the source layer while its importance increases with the frequency. 

This group of results closes with figures 8 and 9 were a 3D representation of the 

acoustic field is given. More specifically in figure 8 the acoustic field inside the source 

layer is given while in figure 9 the field in the separation between the source layer and 

the next layer can be observed. In the later the contribution of the primary field to the 

total acoustic field is clear. 

 

 
Figure 3.  Sound speed and density profiles 
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Figure 4 

 

At the next group of figures the differences at the pressure filed because of the 

inserted disturbance (see figure 2) will be examined. This difference Pdiff  is expressed 

in dB.  

These figures are related with a disturbance having as dimensions x Km1 10=  και 

x Km2 30=  (see figure 2). These dimensions are satisfying also the assumption for 

very large x1  και x2 . The amplitude of the disturbance was calculated in relation with 

the change of the refractive index at the layers separation surfaces. It is obvious that Δn  

should be at least one order of value smaller than the differences between the values of 

the refractive index of successive layers.  
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Figure 5. Acoustic field versus distance for a frequency of 10 Hz. 
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Figure 6.  Acoustic field versus distance for a frequency of 150 Hz. 
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Figure 7. Acoustic field versus depth for a frequency of 60 Hz. 
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Figure 8. Acoustic field in the source layer for a transmission frequency of 10 Hz. 
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Figure 9. Acoustic field at the separation layer between source layer and the next layer for a frequency of 

10 Hz. 

 
In figure 10 the disturbance in the acoustic field is presented versus frequency when 

the receiver is within the source layer and in a distance of 50 km from the source. The 

same situation, but for a distance of 200 km is presented in figure 11. 
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Figure 10. Acoustic field variation with respect to the frequency when the receiver's distance from the 

source is 50 km and is positioned at the same layer with it.  
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From figures 10 and 11 it is clear that the disturbance in the acoustic field in 

increasing with frequency while the same is true also with the distance of the receiver 

from the source. The later can be explained from the fact that as the distance is 

increasing the effect of the primary field to the total field is decreasing and the 

disturbances at the secondary fields are becoming more important for the acoustic field.  

Another interesting remark has to do with the existence of some frequencies within the 

range of 0-200 Hz were a kind of resonance is noticed resulting in larger disturbances 

for the acoustic field. 

Figure 12 presents the disturbance of the acoustic field versus the distance of the 

receiver from the source for a frequency of 150 Hz. The most interesting remark here, 

except of course from the expected increase of the disturbance with the distance, has to 

do with the presence of a periodic variation of the disturbance with the distance. This 

phenomenon may be a result of the usage of a periodic function for the description of 

the medium disturbance.  
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Figure 11. Acoustic field variation with respect to the frequency when the receiver's distance from the 

source is 200 km and is positioned at the same layer with it.  
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Figure 12. Acoustic field variation with respect to the source receiver distance for a frequency of 150 Hz  

 
Finally this group of results will be concluded with figure 13 were the acoustic field 

with the disturbance is presented. What is really interesting in this figure is the diffusion 

of the acoustic energy within the different layers because of the presence of the medium 

disturbance. The difference becomes more clear If we compare this figure with figure 9 

were the difference in the acoustic field from the source layer to the next layer is much 

more clear than in the case of figure 13.  
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Figure 13.  Acoustic field at the surface between the source layer and the next layer at a frequency of 

70Hz. 
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6. CONCLUSIONS 

An efficient method to calculate acoustic waves propagation has been developed for 

horizontally layered mediums as well as for horizontally varying medium. The method 

provides a tractable transfer function for the sea propagation medium permitting a 

transfer function description that could be easily used for signal source estimation and 

identification. At the same time the effects of inhomogeneities of the propagation 

medium are examined through numerical results which show significant alterations of 

the acoustic field. 
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