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Abstract 

The problem of the electromagnetic wave diffraction by a smooth and non-smooth end 
of a planar dielectric waveguide is examined. The analysis is made by several 
techniques, including the finite difference time domain method. The guided-mode 
reflection coefficient as well as the near and far-field distributions are calculated for 
different deformations of the facet surface. 
 

1. INTRODUCTION 

This paper deals with the guided-mode scattering from an ended planar dielectric 

waveguide with a deformed facet surface. The similar problem of mode scattering from 

the perfect facet (with plane surface) has been examined in many works [1-6]. At the 

same time, the study of systems with deformed surface can be a subject of considerable 

interest, for example, to estimate the influence of this surface defects on the reflectivity. 

Besides, structures with deformed ends are promising for optical sensor applications. 

The stated problem is solved by using the Finite Difference Time Domain (FDTD) 

method [7-9]. This method is universal and permits to study both the smooth and non-

smooth (deformed) geometries. Furthermore, the smooth geometry is also studied by the 

Integral Equation Method with Accelerated Parameters (IEMAP) and the Variational 

Technique (VT) [5, 6]. The data obtained by the two last methods are used to check the 

accuracy of the FDTD method. 

In this paper only the TE case is examined. In Section 2 we present a brief 

description of the method used and in Sections 3-4 we give the results for the smooth 

and deformed facets. 

 

2. THE METHODS OF THE ANALYSIS 

Figure 1 shows the geometries of the problem for the case of the perfect (a) and 

imperfect  (b, c) facet surfaces.  
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Figure 1. The facet geometries: (a) perfect guide end; (b) the end with the slab shift; (c) the end with the 

cover shift. 

When the FDTD method is applied, the initial problem of monochromatic wave 

diffraction is replaced by an auxiliary non-stationary one [7-9]. For the system under 

consideration, we set the initial field distribution at the instant of time  as a wave 

packet, which is similar to the guided-mode field limited along the coordinate . Then, 

we apply the usual FD scheme for the simulation of the packet propagation along the 

waveguide and its diffraction by the abrupt termination. Finally, the output 

characteristics of the problem at the specified frequency ω are determined by the Fast 

Fourier analysis of the FDTD solution. Note that the main advantage of this method is 

the explicit form of the solution of the algebraic equations.  

0=t
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Below, we briefly describe the basic equations of this method. For the TE case, 

there are only three nonzero components Ey, Hx and Hz, which obey the following 

equations: 
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These equations should be completed by the material equation, i.e.,  

yy ED ε= ,          ,     (2) vzxn εε ),(2=

where vε  is the permittivity of the vacuum and n is the refractive index.  

To discretise the above equations we introduce the rectangular mesh with the 

coordinate steps Δz and  in the plane  [9, 10]. The coordinates of the mesh 

nodes are , where i and j are integer numbers. We search the values of the 

electric field in the nodes at the discrete instants of time 

xΔ xOz

),( xjzi ΔΔ

tntn Δ=  (  is a time step) 

and the values of the magnetic field in the nodes of the mesh shifted by a half of the 

steps  and  at the instants of time 

tΔ

2/zΔ 2/xΔ tntn Δ−=− )2/1(2/1 . Using the standard 

approach leads to the algebraic equations for the fields values in the nodes of the mesh 

[7-10]: 
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We use the standard denotations [9] for the values of the fields in the node points, 

i.e., . In the discrete form, equation (2) is written as 

follows: . Note that in these equations the order of the 

derivative approximations by the finite differences are ,  and . 

The FDTD algorithm converges under the Courant stability condition, which has the 

form: 

),,(),()( tnxjziEjiE y
n

y ΔΔΔ=

),(/),(),( )1()1( jijiDjiE n
y

n
y ε++ =

)( 2zO Δ )( 2xO Δ )( 2tO Δ

22 )/1()/1()],(min[ xzzxntc Δ+Δ<Δ  (where c is the light velocity). From the 
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above equations it is seen that the values of the fields at the instants of time  and 

 are derived explicitly from the values of the fields in the previous instants; 

therefore, these formulas give the explicit solution of the problem. 

1+nt

2/1+nt

The waveguide structure under consideration is open and in order to model it we 

have to describe the far zone fields or to bound the considered domain with eliminating 

the influence of the boundaries. For this purpose we apply the Perfectly Matched Layers 

(PML) technique [9-12]. The structure in question is placed into a box with "thick" 

walls. The parameters of the walls are chosen so that the reflection of the incident wave 

from the boundary is small, while at the same time the absorption of the wave inside the 

wall is large. In the walls the fields are computed with the finite difference scheme, 

which uses the modified equations and the special medium parameters of the walls. 

These equations and the procedure of the choice of the wall medium parameters are not 

considered here; the reader can find the details in [10-12]. Note that for the geometry 

under consideration the results are slightly depend on the parameters of the walls. 

The FDTD algorithm gives the time solution , which describes the wave 

packet diffraction process. Then, applying the Fourier transformation to the solution we 

can calculate the reflection coefficient at the specified frequency ω. The electric field 

 in the waveguide part of the domain (

),,( tzxE y

),,( tzxEE y= 0<z ) can be expressed as a 

Fourier integral of the waveguide eigenmodes expansion [13-15]: 
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where  and  denote the complex amplitude of the forward and backward 

guided mode, respectively, 

)(
0
+E )(

0
−E

)(0 ωβ  is the propagation constant of the forward mode, 

 and  are the decomposition coefficients, )(
0
+C )(

0
−C ),,( ωzxER  is the complex amplitude 

of the radiation field. For the dielectric waveguide with the constant profile of the 

refractive index the guided modes can be calculated with the analytical expressions 

given in [15, 16]. The complex amplitudes  can be written as the integrals of the 

fields of the continuous spectrum modes. Using the orthogonality relations [13-15] of 

the waveguide eigenmodes and calculating the inverse Fourier transformation, we 

derive the expression of the guided modes amplitudes: 

RE
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where  is the norm of the guided mode [13], 0N vvv εμζ =  is the impedance of the 

free space, ck /ω=  is the free-space wave number; and the auxiliary parameter α  

labels the forward and backward modes ( ±=α ). From equation (7) we derive the 

formula for the reflection coefficient of the guided mode at the termination plane 

( ) at the frequency 0=z ω : 

)()()( )(
0

)(
0 ωωω +−= CCR .  (8) 

The above procedure permits to separate the radiation waves and the guided modes 

from the solution . The other characteristics of the problem could be found in 

a similar manner. 

),,( tzxE y

The smooth geometry of the problem (with planar termination surface) can be also 

examined by the IEMAP and approximate VT (see above). Note that these approaches 

are only applicable to the analysis of the monochromatic wave diffraction processes. 

For the structure under examination the unknown electric field  on the 

terminal plane  (Fig. 1) obeys the integral equation, which can be written in the 

following symbolic form [5,6]: 

)0,(xEE y=

0=z

0EEe =Ξ
)

     (9) 

where eΞ
)

 is an integral operator and )0,(00 xEE y=  is the electric field of the dominant 

incident guided mode; the time dependence )exp( tiω−  is omitted in all equations. In 

order to solve equation (9) we employ an improved iteration technique, which is a 

variant of the semi-inversion approach [6]. According to this approach, the integral 

operator eΞ
)

 of (9) is divided into “dominant” and “small” parts, sde KK
)))

+=Ξ . Then, 

the dominant part of the operator dK
)

, which has a simple form, is inversed and the new 

equation transformed (containing small operator) is solved by the iteration technique. 

The solution obtained has the form of the Neumann series [5, 6]. With the help of the 

auxiliary parameters, which are introduced into operators, the norm of the small 

operator sK
)

 can be decreased to accelerate the iteration convergency. The tests have 

demonstrated that several first iterations give precise results for the problem in question 
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[6]. It also permits to apply this method to a wide class of discontinuity problems, 

including strongly asymmetrical systems, where the weak guidance condition is invalid. 

The variational solution of the problem is also derived from (9). The details of this 

technique are described in [5, 6] and they are not discussed here. 

 

3. THE SMOOTH GEOMETRIES 

At first, we consider the smooth system, where the termination at  is a planar 

surface (see Fig. 1a). We assume that the refractive index of the dielectric slab ( ) 

is , while the refractive indices of the substrate (

0=z

dx <||

2n dx −< ) and cover ( ) are  

and , respectively, with 

dx > 1n

3n 213 nnn <≤ . In all the examples considered below we 

suppose that the free-space wavelength 86.0=λ μm, the refractive index of the slab is 

 and the index of the right semi-space ( ) is 6.32 =n 0>z 10 =n . The dominant guided-

mode TE0 is assumed to propagate from −∞=z  to the terminal plane . 0=z

In Fig. 2 we present the dependency of the reflected power  on the slab 

thickness . The other problem parameters are 

2|| R

d2 24.331 == nn  (symmetrical 

waveguide). The solid curve is constructed by the FDTD method, the squares by the 

IEMAP and the dashed line by the VT. To calculate the data presented above, we used a 

box with sizes 4 μm and 1.5 μm along the coordinate axes Oz  and Ox , respectively, 

and the waveguide portion length was 1.4 μm. The sizes of the square mesh were 

 μm and the time step was  s. The reflection of the 

partial rays from the wall box was of the order of .  

01.0=Δ=Δ zx 1710667.0 −⋅=Δt
4104 −⋅
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Figure 2. The reflected power versus the slab thickness for the symmetrical waveguide system. 

 
In Fig. 3 we show the far-zone pattern for the problem in question. All the refractive 

indices are the same as for Fig. 2 and the slab thickness is 25.02 =d μm. The solid 

curve is constructed by the FDTD method and the squares correspond to the data 

calculated by the IEMAP. The sense of the dashed line will be explained below. Note 

that the far-zone pattern was computed with a larger vertical box size (  μm). 43÷

Fig. 4 shows the dependency  on the slab thickness  for the strongly 

asymmetrical system with  and 

2|| R d2

24.31 =n 0.13 =n . The dominant guided mode of the 

asymmetrical waveguide has a cutoff; therefore the curve starts from the point with 

value , where the reflection coefficient is 022 >= cdd )/()( 01010 nnnnR +−= . In this 

figure  is calculated by the FDTD method (solid curve), IEMAP (squares) and VT 

(dashed line). 

2|| R
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Figure 3. The far-zone pattern for the smooth facet (the solid curve and squares) and for the facet with the 

cover shift (lc=-0.5 μm, the dashed line). 

 

Figure 4. This figure is similar to Fig. 2, but it constructed for the strongly asymmetrical waveguide. 

 
In all these cases the results obtained by the FDTD and IEMAP are in a good 

agreement. On the other hand, the data calculated by the approximate VT agree well 

with the results mentioned above, only if the WGC is valid (see Fig. 2). For the strongly 
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asymmetrical systems (Fig. 4) there is a small difference between the data computed by 

the VT and the other two methods. The difference is explained by the effect of the wave 

diffraction by the upper dielectric corner, which is not taken into account with the 

version of the VT used here. 

 

4. THE DEFORMED (NON-SMOOTH) GEOMETRIES 

Next we consider systems with perturbed facet surfaces. The examples of such 

systems are given in Figs. 1b and 1c. First, we examine the waveguide end where the 

right slab boundary is shifted (Fig. 1b). Fig. 5 presents the reflected power  as a 

function of the coordinate  of this boundary. The indices of the media are 

. The data are calculated by the FDTD method only. The change of  

is explained by the interference of the waves excited by the two discontinuities appeared 

at the slab waveguide termination surface. 

2|| R

slz =

24.331 == nn 2|| R

 

Figure 5. The reflected power versus the coordinate of the shifted slab. sl

 9



WAVE SCATTERING BY THE DEFORMED FACET OF A DIELECTRIC SLAB 10
WAVEGUIDE 

 

 

Figure 6. The field distributions for the system with the slab shift at t = nΔt: (a) n = 310 and (b) n = 740. 
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Fig. 6 shows the field distributions  at two instants of time |),,(| tzxEy tntn Δ⋅= , 

with s,  for the upper picture (Fig. 6a) and 17102 −⋅=Δt 310=n 740=n  for the lower 

picture (Fig. 6b). The shifted slab coordinate is 25.0−=sl μm and other parameters are 

the same as for Fig. 4. The degree of the black points is proportional to the module of 

the field magnitude . For the system under consideration the radiation to the 

substrate and to the cover is seen to be sufficiently large. 

|),,(| tzxEy

In Fig. 7 we present the variation of  with the coordinate  of the shifted 

cover. The geometry of the system is shown in Fig. 1c. The problem parameters are the 

same as for Fig. 2. In this case the mode reflection is also changed due to the 

interference of the waves excited by the discontinuity appeared at the termination plane. 

The far-zone pattern for the problem with the cover shift is plotted in Fig. 3 (dashed 

line). In this case the cover coordinate is 

2|| R clz =

5.0−=cl  μm. This perturbation of the 

waveguide end surface is seen to rotate the pattern (compare all the curves in this 

figure). 

 
Figure 7. The reflected power versus the coordinate of the shifted cover. cl

Finally, we consider the facet deformation of the strongly asymmetrical waveguide 

structure. Fig. 8 presents the dependency  on the slab shift  for such a system 2|| R sl
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with indices  and  (the guide without the cover). The other parameters 

are the same, as for Fig. 4. 

24.31 =n 0.13 =n

 
Figure 8. The power reflection coefficient versus the coordinate of the shifted slab for the strongly 

asymmetrical system. 

sl

 

5. CONCLUSION 

We study the influence of the facet deformation of the planar dielectric waveguide 

end on the scattering characteristics. The numerical simulations have demonstrated that 

the facet deformations change both the guided-mode reflection coefficient and the field 

distributions. In particular, the shift of the slab or cover surface radically affects the near 

zone field distributions, giving the enhanced broadside radiation (to the substrate and 

cover) and rotates the far-zone pattern. All the effects are explained by the interference 

of the waves excited by the discontinuities appeared at the termination plane. Such 

effects seem to be useful for many applications including the design of optical sensors 

or elements of integrated optics. 
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