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Abstract 

The reflectivity of a guided mode from the facet of a dielectric waveguide is examined 
by the finite element method in scalar and vector formulations. The three dimensional 
problem is reduced to the two dimensional one using a variational formula for the 
reflection coefficient. Numerical tests are provided. 
 

1. INTRODUCTION 

The information about facet reflectivity of the dielectric waguides is important in the 

design of the antennas on dielectric waveguides, integral optic devices, elements for the 

output of the light from the fibers and others. The complexity of the problem is 

conditioned by two factors. Firstly, if the dielectric waveguide has noncircular cross 

section, then the task becomes essentially three dimensional. Second factor is that the 

dielectric waveguide is an open structure, and it is necessary to take into account the 

radiating modes of continuous spectrum during the modelling. Direct three dimensional 

modelling of the problem is very expensive in the sense of CPU time and memory. Here 

we propose another approach, that allows to reduce the problem to the two dimensional 

one. Our approach is based on the combination of  a variational formula for the 

reflection coefficient of a guided mode from the facet of a dielectric waveguide and two 

dimensional finite element method. 

In Section 2 we present the variational formulas for the reflection coefficient in 

vector case and in scalar case. In Section 3 some questions of the practical 

implementation of the algorithm  in both vector and scalar cases will be discussed. In 

Section 4 the numerical results of the computation using our approach will be presented 

and discussed. 
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2. FORMULAS FOR THE REFLECTION COEFFICIENT 

The geometry of the problem under consideration is shown in Fig. 1.  There is a 

dielectric waveguide with arbitrary shape of its cross section. The refractive indeces of 

the core and the envelope are  and  respectively. In the plane 1n 2n 0=z  the waveguide 

abruptly ends and the refractive index of the right semi-space is denoted as . 0n

Fig. 1. Abrupt end of a dielectric waveguide: geometry of the problem 
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Guided mode of the dielectric waveguide is propagating from the left side to the 

facet, and then scattering on the facet. The wave partially radiates to the right semi-

space, partially reflects back to the waveguide, and partially radiates to the envelope of 

the waveguide. The aim of our analysis is to find the reflection coefficient of the guided 

mode from the facet. 

Full electric field on the left from the facet 0≤z  can be expressed as following 
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mode, ρ is the reflection coefficient, )1(,
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 are the fields of radiating modes of 

continuous spectrum,  and  are the amplitude coefficients. Full electric field on 

the right from the facet  is a sum of only radiating modes 
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At the plane 0=z  both expressions (1) and (2) must be equal to each other and from 

this condition we can obtain the following expression [1] 
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where ∫∫
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,  are the electric and magnetic fields of 

incident guided mode, )0(
κmH

r
 is the magnetic field of radiating mode of right semi-space, 

 is the norm coefficient for the mode )()0( κmD )0(
κmH

r
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For the calculation of the reflection coefficient ρ using formula (3) it is necessary to 

know the fields of the guided mode in the cross section of the waveguide. All other 

values in (3) can be computed analytically. The field of guided mode can be computed 

numerically using two dimensional vector formulation of the finite element method. 

If the problem under consideration is analyzed under weak guidance condition 

, then the field of guided mode has almost linear polarization in the cross 

section of the waveguide and can be described by one scalar function of the transverse 

coordinates 

121 || nnn <<−

yx, . It is convenient to choose the electric field in the cross section of the 

waveguide  for this scalar function.  ),( yxE

Under conditions ,  121 || nnn <<− 101 || nnn <<−  formula (3) becomes the 

following 
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where λπ /2=k ,   is propagation constant of guided mode, h 2
2

22 nkhp −=  is 

transverse wavenumber in the envelope,  is the norm of the 

surface mode, 
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of the radiating mode of continuous spectrum, )(κmD  is norm of the radiating mode of 

continuous spectrum. In the expression (4) all values except the electric field of guided 
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mode  can be computed analytically. The field  can be calculated 

numerically using the finite element method in two dimensional scalar formulation. 

),( yxE ),( yxE

3. PRACTICAL IMPLEMENTATION OF THE ALGORITHM 

Now consider some questions of practical implementation of the reflection 

coefficient computation algorithm using formulas (3) and (4). 
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Fig. 2. Types of finite element used. (a) mixed order triangular element, 

(b) nodal triangular element 
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Fig. 3. Boundary conditions used. (a) metall walls for the vector cases, 

(b) impedance boundary condition for the scalar cases. 

 

The first point is the type of finite elements used. For the vector cases, when the 

refractive indeces of the core, envelope, and right semi-space differ significantly, we 

used mixed order triangular elements (see Fig. 2 (a)). The field in the cross section of 

the waveguide is decomposed on vector functions, associated with the edges of the 
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mesh, and the longitudinal component of the field is decomposed on scalar functions, 

associated with the nodes of the mesh  

∑
<

⊥ =

ji
ji

jiji weE
,

,,
rr

,   ∑=
i

iziz eE λ                                  (5) 

For the scalar cases when the weak guidance condition is satisfied we used nodal 

triangular elements (see Fig. 2 (b)) 

∑=
i

iieE λ .                                             (6) 

The second point is the boundary condition on the outer boundary of the 

computational domain. For the vector cases we set simply metallic walls as an outer 

boundary (see Fig. 3 (a)). For the scalar cases we used impedance boundary conditions 

[2], taking into account the eigenmode field distribution on the outer boundary (see Fig. 

3 (b)) 
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Next question is the calculation of the sum and integral in the formulas (3), (4) for 

the reflection coefficient. The sum is calculated upon the radiating modes of continuous 

spectrum. The index is changed from 0 to m ∞ . Integrating is performed upon the 

transverse wavenumber κ  from 0 to ∞ . In practice for the high order radiating modes 

the integral is close to zero and its value decreases with increasing of the index . 

Therefore we can bound the sum by some value  

m

maxm
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The expression under integral is reducing rapidly with increasing of κ. Therefore for the 

practical calculations we can set some finite value maxκ  as an up limit of the integral 
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The values  and maxm maxκ , sufficient to obtain desired precision, we determined from 

the numerical experiments. 

 

4. NUMERICAL RESULTS 
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Consider some numerical results of the guided mode reflection coefficient 

calculation using our approach in scalar and vector problems. 

1. The first case is the abrupt end of the dielectric waveguide with elliptical cross 

section (see Fig. 4 (a)). Refractive indeces of core 5.11 =n , envelope , 

and right semi-space  are close to each other so the weak guidance 

condition is valid and scalar formula (4) is applicable. Wavelength is 

455.12 =n

455.10 =n

3.1=λ μm, 

and axis ratio is . The reflection coefficient versus the size of large semi-

axis  of the ellipse is presented in Fig. 4 (b). Solid line is constructed using finite 

element method. Circles correspond to the results obtained by integral equation 

method [3]. Due to the application of the impedance boundary condition at the 

outer boundary of the computational domain the finite element method provides 

high accuracy for all values of the parameter . 
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Fig. 4. Abrupt end of the dielectric waveguide with elliptical cross section.(a) geometry of the waveguide 

cross section, (b) reflection coefficient versus large semi-axis 
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                           (a)                                                                              (b) 

Fig. 5. Abrupt end of the dielectric waveguide with super ellipse cross section.  

(a) geometry of the waveguide cross section, (b) reflection coefficient versus large semi-axis 

2. The second case is the abrupt end of the dielectric waveguide with the super ellipse 

shape (see Fig. 5 (a)) 

1)/()/( 22 =+ NN byax ,    2/ =ba ,    4=N ,    3.1=λ μm. 

Refractive indeces are ,  5.11 =n 455.12 =n ,  495.10 =n . This problem also was 

solved in scalar formulation. The results obtained by the finite element method 

(solid line) and the integral equation method (circles) are presented in Fig. 5 (b). 
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10 =n

mμλ 3.1=

 
Fig. 6. Abrupt end of the dielectric waveguide with circular cross section.  

3. The third case was the test problem for the vector modification of the method. 

Consider the abrupt end of the dielectric waveguide with the circular cross section 

(Fig. 6). Refractive indeces of the core 46.11 =n  and envelope  are 

close to each other, but the refractive index of semi-space 

45562.12 =n

10 =n . Wavelength is 

3.1=λ μm. The results obtained by the finite element method in vector formulation 

and results, calculated using formula (3) with substituting of the analytical 

expressions for the eigenmode field in it are presented in the Table 1. Relative error 

in the last column of the Table 1 was calculated according to the formula  

%100)(/))()(( ⋅−= analyticalanalyticalFEM ρρρδ . 

a , μm ρ  (FEM) ρ  (analytical) δ, % 

3.0 0.18740 0.18710 0.1403 

3.5 0.18709 0.18720 -0.0555 

4.0 0.18716 0.18725 -0.0459 

4.5 0.18731 0.18727 0.0213 

5.0 0.18726 0.18727 -0.0042 

6.0 0.18741 0.18725 0.0871 
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7.0 0.18742 0.18723 0.1036 

8.0 0.18741 0.18721 0.1047 

Table 1 

 

4. The forth case is the abrupt end of the dielectric waveguide with rectangular cross 

section  and significantly differed refractive indeces of core 5.11 =n  and envelope 

 (see Fig. 7 (a)). Refractive index of semi-space is 12 =n 10 =n , and the sizes of the 

waveguide are cm. This problem cannot be solved in scalar formulation, 

so we should use vector formula (3) and vector modification of the finite element 

method. The reflection coefficient versus the wavenumber 

2== ba

λπ /2=k  is presented 

in Fig. 7 (b). 
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Fig. 7. Abrupt end of the dielectric waveguide with rectangular cross section.  

(a) geometry of the waveguide cross section, (b) reflection coefficient versus wavenumber 

 

5. CONCLUSION 

We have proposed a new method for the calculation of scattering parameters of the 

guided mode on the facet of a dielectric waveguide with arbitrary shape of its cross 

section. The method is based on the combination of the variational formula and two 

dimensional finite element method. There are two variants of the method: for vector 

cases and for scalar cases. 
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Scalar modification of the algorithm works only under conditions ,  

. The method allows to compute the waveguides even near cut-off 

frequency due to the application of the impedance boundary condition. 

121 || nnn <<−

101 || nnn <<−

Vector variant of the algorithm works with arbitrary values of the refractive indeces 

of core and envelope of the waveguide andof the semi-space after the facet. 
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