
                                                       D. Kandic and B. Relji                                                        35 
       

 
NONMINIMAL REALISATION OF COMMON-GROUND RLC NETWORKS 

 
 

D. Kandic* and B. Relji** 

 
*Department of Electronics & Electrical Eng., Mechanical Eng. Faculty, 

University of Belgrade, Belgrade, Yugoslavia; 
e-mail: dbkandic@afrodita.rcub.bg.ac.yu

 
** Faculty of Electrical Engg., University of Belgrade, Yugoslavia; 

e-mail: reljinb@etf.bg.ac.yu 
 
 
Abstract 

In the paper a new theorem is presented establishing a set of sufficient conditions for 
(non) minimal realisation of any stable, square, matrix of real rational functions in complex 
frequency, as admittance matrix of passive, transformerless, common-ground RC network, 
having (non) minimal number of capacitors. The obtained result is produced by using 
Howitt linear transformation and can readily be applied to admittance matrix synthesis of 
other types of two-element-kind RLC networks, owing to the possibility of converting their 
synthesis problems to similar ones for the pertinent RC network prototypes. 

 
1. INTRODUCTION 

During the last few decades many papers have appeared dealing with minimal, 

common-ground, transformerless, multiport synthesis of active and passive networks, and 

by now, a broad class of various realisation procedures has been proposed. Many efforts 

were made in trying to formulate a set of necessary and sufficient conditions for general 

network synthesis problem, for which it was believed to have solution that resembles and is 

based on the well-known set of the necessary and sufficient conditions for immitance 

functions of RLC networks. Unfortunately, the complete solution to the last general 

problem has not been accomplished yet. To that purpose, there were made recently several 

successful attempts aiming at finding at least one analytic set of necessary and sufficient 

conditions for the minimal realisation of admittance matrices of passive, transformerless, 

two-element-kind, common-ground multiport networks [1-6]. In this paper we shall present 

a new theorem establishing a set of sufficient conditions for (non) minimal synthesis of any 

admittance matrix of real, rational functions in complex frequency s by a passive, common 

-ground, transformerless, RC network, having (non) minimal number of capacitors. The 

synthesis of other two-element-kind RLC networks is always convertible to synthesis 

problem of convenient RC network prototypes. The main result of paper is presented by 

Theorem 3. An illustrative numerical example provides an outline of the realisation 

procedure proposed. At the outset we shall give some necessary definitions (Definitions 1-

3) and a property (Property 1). 
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• Definition 1: An electrical network is C-connected if it does not have isolated  and/or 

purely capacitive loaded nodes [3, 4]. 

• Definition 2: If Y(s) is any matrix of real, rational functions in complex frequency s, 

having order n and being holomorfic at infinity (s → ∞), then its system realisation, 

Sδ=〈A, B, C, D〉 having dimension δ is any conform quadruple of real matrices A, B, C 

and D that satisfy the following condition, Y(s)=D+C⋅(s⋅Uδ −A)-1⋅B, wherein Uδ is a 

unity matrix of order δ. If δ is minimum possible, then the realisation is said to be 

minimal of order μ=min(δ); otherwise, the realisation will be said to be nonminimal 

having the order δ (δ > μ). 

• Definition 3: For conform pair of real matrices (A, B) it will be said to establish a H-

pair if there exists at least one real, orthogonal matrix Q of order δ, which provides 

hyperdominant† sign-pattern of matrix −QT⋅A⋅Q and nonnegativity of matrix BT⋅Q. H-

parity of matrices A and B we shall denote by H(A, B) and for matrix Q  (which is 

always determined through an appropriate algorithm) it will be said to uncover the 

solution of the pertinent H-problem of order δ ≥ μ. 

 

• Property 1: The admittance matrix  of any RC network (not necessarily common-

ground and transformerless), can always be expressed in the second Foster's form 

 

  ∑
δ

=
∞ +

⋅
+⋅=

0 i

i)(
i ss

sss AAY ;   (s0=0,  0 < s1 < s2 <  ...  < sδ).(1) 

For the admittance matrix of any common-ground, transformerless RC network 

(CGRCT0)  it is necessary that for every σ ∈ [0, ∞) the matrix Y(σ) be hyperdominant *. 

There from, it follows that both matrices A0 and A∞ must be hyperdominant [1, 7]. Now, we 

shall give the main result of paper, which is formulated as Theorem 3. 

 

2. THE MAIN RESULT 

Let Sδ (δ ≥ μ) (Definition 1) be a (non) minimal system realisation of admittance matrix 

Y(s)−s⋅A∞ (Property 1). Suppose that Nδ is some (n+δ)−port electrical network, possibly of 

                                        
†  A  real, square matrix is said to be hyperdominant if all its diagonal entries are nonnegative, off-diagonal 
entries are nonpositive and the sum of each row and/or column entries are nonnegative [1-4,7] 
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the CGRCT0 type, having (n+δ+1) external nodes [provided that the (n+δ+1)−st is 

reference], whose overall admittance matrix must read: 
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wherein is assumed that relation B= −CT holds by virtue of reciprocity of multiport 

CGRCT0 network [2-4]. Now, one can easily prove the following: 

 

• Theorem 1: Let Nδ is the (n+δ)−port, CGRCT0 network, having the admittance matrix 

Yδ given by (2). Let Nδ
* be the n−port, CGRCT0 network generated from Nδ by open-

circuiting its ports (n+1), .... , (n+δ). Then the admittance matrix of network Nδ
* is 

equal to Y(s). 

      Proof: It is straightforward and is left to reader. 

Since both matrices Gδ and Cδ, in general case, are not hyperdominant, then the matrix 

Yδ can not be realised by a CGRCT0 network. In endeavouring to achieve this last goal, we 

shall apply the Howitt linear transformation to matrix Yδ, producing therewith the 

admittance matrix 
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wherein by now V is an arbitrarily assumed real, regular matrix of order δ and L is an 

arbitrary δ × n real matrix. Let we denote with NδH
* the network which is to realise the 

admittance matrix Yδ
*. Since, in general, the degrees of matrices Yδ and Yδ

* are different 

[8], then networks Nδ and NδH
* must have different number of capacitors. Furthermore, 

application of Howitt transformation does not enable generation of complete set of 

equivalent realisations for the class of lossy network structures [8]. Bearing this in mind we 

make for the fact that the main theorem will provide only a set of sufficient conditions for 

CGRCT0 networks. From (2) and (3), for s=0, we identify the following network 

realisation matrices: 
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Now, owing to the following fact relating to the inversion of regular lower triangular 

matrix [9]: 
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we can prove the following theorem. 

• Theorem 2:  Let NδH
* is a (n+δ)-port CGRCT0 network having the admittance matrix 

represented by equations (3) and (4). Let NδH
** be the n-port CGRCT0 network 

generated by open-circuiting (and thus eliminating=impressing) nodes of the last δ 

ports of network NδH
*. Then both networks NδH

** and Nδ
* realise the same admittance 

matrix Y(s).  

         Proof: It is straightforward and is left to the reader. 

 

• Theorem 3: Let the admittance matrix, )(sY =Y(s)−s⋅A∞ of order n be holomorfic at 

infinity and let the set of all its system (non) minimal realisations is, Sδ=〈A, B, C, D), 

having dimension δ ≥ μ [μ−order of system minimal realisation of Y(s)]. Sufficient 

conditions for realisation of Y(s) by a passive, C−connected, CGRCT0 network without 

the internal nodes are: 

(i) Y(s) is a matrix of real, rational functions in complex frequency s=σ+jω (j= 1− ), 

whose all diagonal entries are the input admittances of passive RC networks. 

(ii) Y(s) has only simple poles on negative part of real axis. At origin Y(s) must not have 

pole. 
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(iii) Residuals at poles of Y(s)/s are real, symmetric and positive definite, or positive 

semidefinite matrices and Re{Y(jω)} is symmetric, positive definite, or positive 

semidefinite matrix. 

(iv) Matrices Y(0) and A∞ are both symmetric and hyperdominant, whereas the matrix 

)(∞Y  must be symmetric and strictly hyperdominant. 

(v) The overall passive realisation network has not less than n+rank{B} accessible, 

internal nodes, loaded both capacitive and resistively. 

(vi) There exists δ × n [δ ≥ max(2n+1, μ)] conform matrix F having orthonormal 

columns, which satisfy the conditions: (1) BT⋅F=0n,n and (2) matrix −FT⋅A⋅F has 

hyperdominant sign-pattern. 

(vii) There exists at least one diagonal matrix Δ with positive diagonal entries such that 

substitution of L=F⋅Δ into matrices A0−(B−A⋅L)TA-1(B−A⋅L) and A∞+LT⋅L produces 

these matrices as strictly hyperdominant. 

(viii) Matrices A and ( )[ uBLLAB ]⋅−⋅−  establish a H-pair, wherein u is n-

dimensional column vector whose entries are equal to unity. 

 

Proof: Conditions (i)−(iii) represent the well-known general necessary and sufficient 

conditions for admittance matrices of RC networks [8]. They are also sufficient for 

calculation of infinitely many algebraically equivalent realisations Sδ of order δ ≥ μ [3]. It 

is evident that condition (iv) is both necessary and sufficient for C−connected CGRCT0 

networks and is being used in developing of algorithms for synthesis of pure resistive and 

capacitive common-ground, transformerless multiport networks [1, 2], which rely on 

solution of inverse eigenvalue problem of real, symmetric, hyperdominant matrices [2, 7]. 

The sufficiency of conditions (v)−(viii) can be justified through formulation of a 

constructive proof, i. e. the steps of the appropriate algorithm, which assures the existence 

of at least one realisation network. In the sequel, we shall not give detailed explanation of 

the algorithm proposed, but instead we shall rather describe its main steps and ideas behind. 

Algorithm has three main phases (i. e. groups of steps) (α), (β) and (γ). 

(α) Here we construct the matrix L. If rows of symmetric matrix 

BABAY ⋅⋅−=∞ −1T

0)( are strictly hyperdominant and/or exist zero-hyperdominant rows 

for which columns of B with the same numbers are columns of zeros, then we can assume 
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L=0δ, n. Let we now write V=Q⋅K1/2 (Q −orthogonal matrix of order δ and K1/2 − positive 

definite diagonal matrix). Then from (4) we obtain the following expressions for 

conductance and capacitance matrices, which for CGRCT0 networks both must be, 

hyperdominant: 
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Demand for hyperdominancy of Gδ
* can be completely fulfilled by using the algorithm 

already  proposed in [3]. The obtained form of capacitance matrix suggests that the 

capacitors are connected between the nodes labelled with 1, 2, ... , n and/or the reference 

node and that the same holds for nodes labelled with n+1, n+2, ... , (n+δ), whereas between 

any pair of nodes in these groups there does not exist any capacitate connection. From now 

on it will be supposed that symmetric matrix )(∞Y is strictly hyperdominant. Subset of 

algebraically equivalent, non- minimal network realisations of Y(s) for which L ≠ 0n, δ is 

established through the following sequence of steps. 

(10) Select any system realisation Sδ of n−th order matrix 

)(sY having dimension δ ≥ max(2n+1, μ) > n+rank{B}. 

(20) Form δ × n matrix L=F⋅Δ, wherein it is: Δ − positive definite n−th order diagonal 

matrix and F − δ × n matrix having orthonormal columns, satisfying the condition 

BT⋅F=0n,n, and producing −FT⋅A⋅F with hyperdominant sign-pattern. Exact proof of the last 

claim comes out of the extent of our consideration and relies on fact that the columns of δ × 

n matrix B can always be represented by a linear combination of rank{B} arbitrary 

orthonormal, δ−dimensional column-vectors. The set of [δ−rank{B}]  orthonormal, 

δ−dimensional column-vectors, which complement the previous orthonormal set to 

orthogonal matrix, establish the sought matrix F satisfying the condition BT⋅F=0n,n. 

Hyperdominant sign-pattern of −FT⋅A⋅F is to be achieved in finite number of steps by use 

of  algorithms [2, 3]. Since, A0 − (B−A⋅L)T⋅A-1⋅(B−A⋅L)= Δ⋅⋅⋅−⋅Δ+∞ )()( T FAFY , then 

the positive diagonal entries of diagonal matrix Δ can always be determined so as to 

provide arbitrarily large hyperdominancy margin for the previous symmetric matrix. Since 

we have LT⋅L=Δ2, then (1,1) block in matrix Cδ
* is strictly hyperdominant. Let we now 
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define the column-vectors, a=(B−A⋅L)⋅u and b=B⋅u,where u is δ-dimensional column-

vector of unites. 

(β) In this phase we take V=Q⋅K1/2 and construct the orthogonal, δ−dimensional matrix Q 

through finite-step iteration procedure so as to provide hyperdominant sign-pattern of 

both matrices Gδ
* and Cδ

* [2, 3].  

(γ) In this phase we determine the diagonal matrix K so that both Gδ
* and Cδ

* are 

hyperdominant. The sought K must simultaneously satisfy the following two conditions: 

 

  col(K1/2 )= −QT⋅A-1⋅Q⋅αG⋅QT⋅a,  col(K1/2 )= −αC⋅QT⋅L⋅u,(7) 

 

where αG  and αC are δ−th order diagonal matrices of entries being not less than unity. If we 

assume αC=Uδ, then the hiperdominancy margin of the last δ columns (rows) of  Cδ
* will be 

equal to zero and in the realisation network there will not be present capacitors connecting 

δ−group of nodes to the reference (common-ground). Then, by using (7) we finally obtain: 

 

  col(αG)=col(Uδ) − [diag(QT⋅a)]-1⋅QT⋅b, 

(8) 

  K=[diag(QT⋅F⋅Δ⋅u)]2, 

 

ascertaining herewith existence of linear Howitt transformation which provides 

hyperdominancy of both matrices Gδ
* and Cδ

* and their network realisation. This completes 

the outline of proof of the stated new theorem. 

 

3. A NUMERICAL EXAMPLE 

We shall realise the admittance matrix Y(s), given in [1], by CGRCT0 network with δ=5 

nodes (3 of them are internal nodes): 
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A nonminimal realisation Sδ=〈A, B, C, D〉 of  )(sY reads: 
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An "orthogonal transformer" [2, 3] is found to be Q=  and the 

only three capacitances connected between the internal nodes labelled by 3, 4 and 5 and 

ground are respectively given in real parametric form with maximum possible number 

degrees of  freedom [k
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i ≥ 0 (i=1,2,3,4); k1+k2+k3+k4 > 0]: 
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If we assume, k2=k3=k4=0 and k1 > 0, then we obtain G5 and C5 in the form which 

enables immediate network realisation: 
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In the overall network realisation (Fig. 1) are denoted values of RC parameters, 

normalised both in frequency and impedance level and hence are pure numbers. 
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Figure. 1 
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