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Abstract 

The paper presents a continuous wavelet analysis as an approach to the under-
standing of solutions the nonlinear equations of Duffing type. The wavelet transfor-
mation has been used for local analysis of ferroresonance system’s behavior. Some of 
Wavelet Toolbox Matlab properties have been demonstrated. 
 

 
1. INTRODUCTION 

Ferroresonance is an interesting subject that many engineers find difficult to ana-

lyze. The results are sometimes unpredictable and certainly arduous to visualize. Re-

cently there has been a renewal of the interest for this problem both from theoretical 

and experimental point of view. 

One of the systems that generates chaotic oscillations is a dynamic system de-

scribed with a Duffing equation [2, 10]. Examples of that system can be observed in 

the power electronics. Such are the nonlinear phenomena, due to the ferromagnetic 

properties of iron core choke (transformer) and radio – electronics these are radio – 

electronic systems such as ferro – electric resonators, ferromagnetic circuits, etc. 

 
2. A FERRORESONANCE SYSTEM GENERATING CHAOTIC OSCILLA-
TIONS 

One of the numerous existing systems generating chaotic oscillations considered 

here is presents a series RLC circuit with nonlinear inductance scheme to which har-

monic voltage E (t) has been applied (see Fig. 1). The inductive voltage can be found 

from the following equation:  

 
   )()()()( tEtUtUtU RCL =++       (1) 

where : 

  )sin()( tEtE ω=   - the outer source voltage, 
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dt
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Figure 1. Simple series RLC circuit for explaining ferroresonance. 

 
Leakage inductance  and active losses are neglected (1). The magnetic flow SL

)( tψ  can be given by the following cubic approximation :  
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A detailed description of ferroresonance is shown in [9]. Inductance voltage 

)(tUv L= , as shown in Figure 1 is  

 
)()()()( tUEtRItUEtv CC −≅−−==ψ& .   (3)     

 
It is obvious that the analytic expression is more complex: 

 

  t3Ec
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3tEc
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−+==    (4) 

 
The equation that described flux in a series RLC circuit with nonlinear inductance 

can be written as follow: 

 
       (5) t3E1t2t 2

0 ωαψψωψδψ cos)()()( =+++ &&&

where : 

0ω  – resonance system’s frequency ( 0→ψ ), 
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α  – coefficient of nonlinearity, 

E  – outer source amplitude, 

ω  – outer source frequency. 
 

Fig. 2 below shows a diagram of the process of ferroresonance chaotic oscillations 

occurrence. If we increase the voltage slightly (see Fig. 2), the capacitor line will 

move upwards, eliminating the solution at intersection point 1. The solution would 

then jump to the third quadrant. The resulting current will be so strong that it will 

make the voltage drop again and the solution point will start to fluctuate between 

points 1 and 3. Actually, phenomena like this can be observed when there is ferroreso-

nance. The voltage and current appear to vary randomly and unpredictably [9]. 

More detailed theoretical descriptions can be found in a number of reference books 

[2], [9]. 

 

 
 

Figure 2 Graphic presentation of ferroresonance 
 
 

3. DUFFING’S EQUATION  
In 1918 G. Duffing described some fundamental results of his research of nonlinear 

second order equations (with nonlinear restoration force) in his paper [6]. A table, 

summarizing the above mentioned results concerning autonomous and forced oscilla-

tions is shown in [2], p. 121. 
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It is well – known that an analytical solution of Duffing’s equation (6) does not ex-

ist [2], [3]. 

txxxx ωγδ sin3 =−++ &&&  ,                 (6) 
 

where ωγδ ,,  - const. 

 
An alternative expression of the equation is presented by the following system of 

equations (a nonlinear oscillator): 

 

 
   .              (7) 

)sin(
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δ
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=
   
 
 

The following characteristics of nonlinear fluxional equations are known: 

- excitation of high harmonics (angular frequencies K,, ωω 32 ),  

- invalidity of the superposition rule, 

- appearance of different solutions depending on the initial conditions.  

Different asymptotic methods can be used to study the nonlinear system behavior, 

e. g. the small parameter method, the harmonic balance method, etc. 

 
3. SIMULATION OF DUFFING’S EQUATION 

 
In this section a nonlinear oscillator has been simulated in Simulink, Matlab.  

3.1. Duffing equation simulation (one harmonic) 

 The nonlinear nonautonomous system, described by equation (6) was simulated to 

produce a chaotic oscillation array, using a standard Simulink blocks 
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Figure 3. The block – diagram of the Duffing oscillator as it modeled in Simulink, Matlab. 

 

Fig. 4, 5 represent calculated chaotic oscillations from a Duffing equation simula-

tion and phase portraits for concrete initial conditions ( ). Simula-

tion time is set to: t = 100 (Fig. 5 a) and t = 10000 (Fig. 5 b), respectively. The integra-

tion method has a variable step fourth order Runge – Kutta, Dormand – Prince 

(RK

10x10x −=−= )(,)(
.

[4,5]). 
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x1 - 2 - nd integrator

x2 - 1 - st integrator

Figure 4. Calculated chaotic oscillations of Duffing equation simulation 
 

 

3.2. Duffing – like equation simulation (polyharmonic) 

The nonlinear system with polyharmonic forced function can be described by the 

following equation [2]:  

 
       (8) .coscos ttxxxx 2211

3 ωγωγδ +=−++ &&&

 
We assume that sec/sec,/ rad2rad1 21 == ωω . In Fig. 6. the block – diagram of 

the Duffing – like oscillator model for concrete initial conditions is presented 

( 1). The integration method is variable step is RK)0(,1)0( −=−=
•

xx (4,5) i.e.“ode45” in 

Matlab. 
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b) 

a) 

Figure 5. Phase portraits of the simulated system for initial conditions,  10x10x −=−=
•

)(,)(
(а) simulation time t = 100, (b) t = 10000. Integration method: RK(4,5) i.e.ode45 in Simulink. 
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Figure 6. The block – diagram of the Duffing – like oscillator 
 

Calculated waveforms and phase portrait of this polyharmonic force model are pre-

sented in Fig. 7. ( See boxes labeled Scope XY Graph Phase plot in Fig. 6.).  

 
Figure 7. Waveforms (Scope) and phase portrait (XY Graph) of Duffing – like equation simula-

tion. 
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 Fig. 8 illustrates the Fast Fourier Transform (FFT) spectra with Hanning window, 

the point of scope 1 and signal  in model Fig. 6. As seen from Fig. 8 b) two har-

monics were transformed in chaotic peaks. 

1x

 

Figure 8 a). FFT spectra of forced signal from Duffing – like equation simulation – “Scope1” 

 

Figure 8 b). FFT spectra of signal x1 from Duffing – like equation simulation, “buffered FFT 

scope 1” 
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4. WAVELET ANALYSIS 
Fundamentally, wavelets are a new type of functions which provide an excellent or-

thonormal basis for functions of one or more variables. They form a local basis and 

can represent any square – integral functions ( ) in a locally finite manner.  )(RLf 2∈∀

Some of the basic concepts of the wavelets theory used in this paper are listed be-

low [1], [4], [6]: 

· Each wavelet system is generated from a scaling function and a wavelet function 

by rescaling and translations, and the wavelet system is an orthonormal basis.  

· Original time series can be reconstructed exactly from the averaged time series 

and the coefficients, generated by an orthogonal (orthonormal) wavelet transforma-

tions. 

· Each element in a given system has compact support in the time and frequency 

domain. 

· There are fast algorithms for computing the coefficients of wavelet transforma-

tions. 

4.1. Continuous wavelet transform (CWT)  

The spaces  consist of continuous wavelets. Here values of parameters - 

scale of transformation and 

)(RL2 s

τ - shift state are arbitrary real numbers: 

 

    ⎟
⎠
⎞

⎜
⎝
⎛ −

= −

s
tss 2

1 τψτψ ),( ,     (9) 

 
where Rs∈,τ , . )(RL2∈ψ

 
 Taking into account this expression, the continuous wavelet transform (CWT) can 

be written as follows [6]: 

 

   dt
s

ttxssCWT 2
1

x ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

= − τψτψ *)(),(              (10) 
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This transformation shows how a function of the x(t) type can be expanded into its 

components combined with basic functions, named wavelets. Variables s and τ from 

formula (9), are the scale and shift respectively and they may be connected with Short 

– Time Fourier Transformation (STFT) parameters. For additional information, con-

cerning this analysis method see references [1], [3], [7]. 

Analogically to the Fourier transformation, expansion coefficients kjkj xc ,, ,ψ=  

of the function in the wavelet series, have been determined with integral wavelet 

transform: 

)(tx

 

    ),(, jjxkj
2
k

2
1CWTc ψ=               (11) 

 
One of the typical examples of orthogonal wavelets is the Haar function [6]. When 

analyzing the structure of the signals, it is convenient to represent it as a CWT [7], and 

to use scalograms together with local maxima.  

 
4.2. Advantages and disadvantages of the wavelet analysis 

There are different variants of algorithms for wavelet analysis, including Haar 

wavelets [8], Daubechies wavelets [4], Morlet wavelets [7], Gauss wavelets[7], etc. 

The last two algorithms have the advantage of possessing better solution options for 

relatively proportionally changing temporary rows. Of all the above mentioned algo-

rithms Haar wavelets require comparatively few calculations in respect to Morlet and 

Gauss algorithms.  

Basis scalograms developed through complex wavelets and particularly Gauss 

wavelets, are especially expressive. They represent the transformation amplitude: 

 

   [ ] [ ]22 sCWTsCWT ),(Im),(Re ττ +  .             (12)
  
Since Gauss (Morlet) wavelets are products of natural and imaginary exponents, the 

resulting scales can be represented by whole numbers as well as by fractions.  

A conclusion can be made that the wavelet analysis locates excellently the scale 

variations of the amplitude of the signal. 
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4.3. CWT analysis of numerical solution of Duffing equation  
 

With the help of the Simulink model, two vectors have been determined - ‘cosout’ 

and ‘duffout’ - standing for the output signal ‘sine wave’, and for the second integrator 

output signal (x2), respectively ( see Fig. 3 and the Matlab Toolbox commands). In 

fact, ‘duffout’ is the numerical expression of the equation solution (6). 

 Scalograms and local maxima coefficients of the above mentioned vectors have 

been determined as Step 2, using the continuous wavelet transformation at Matlab 

Wavelet Toolbox. Figures 9 and 10 show the resulting skeletons of local maxima for 

‘cosout’ and ‘duffout’ respectively. The local characteristics of the ’duffout’ signal can 

be clearly seen. 

 
Figure 9. Local maximum coefficients (Gauss basis) for ‘cosout’ array. 
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Figure 10. Local maximum coefficients (Gauss basis) for array ‘duffout’. 

 
 

Analogically, for the case of the polyharmonic force model (see Fig. 6) the vectors 

‘cosout_p’ and ‘ss4’ have been saved - standing for the output signal ‘sine wave’, and 

for the second integrator output signal (x2), respectively. Figures 11 and 12 show the 

resulting scalogram and skeletons of local maxima for the Duffing – like oscillator 

(polyharmonic). 
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Figure 11. Local maximum coefficients (Gauss basis) for ‘cosout_p’ array. 
 

As it seen from Figure 12 the resulting scalogram present subharmonic’s local be-

havior . 
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Figure 12. Local maximum coefficients (Gauss basis) for array ‘ss4’. 

 
5. CONCLUSIONS 

 
The numerical experiments prove the potentialities of wavelet analysis to reveal the 

local peculiarities of chaotic oscillations in singularity points, which create problems 

for the traditional harmonic analysis. 

As a result of the numerical experiments carried out, a conclusion is drawn that 

simulation of nonlinear equations initiating chaotic oscillations can be analyzed suc-

cessfully through the various methods of wavelet analysis using a Wavelet Toolbox 

and Simulink from the Matlab package.  

Wavelet techniques are suitable for studying periodic and chaotic behavior of 

highly nonlinear dynamic system models. 

They facilitate the study of the process of transition of the oscillation system from 

regular to chaotic oscillations in order to determine the zones for efficient work of the 

respective ferroresonance system. 
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In the future the focus will shift to the cases when the system represents a more 

complex forced function. 
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