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Abstract 
A new method of direct integration (DIM) is proposed for evaluating integrals with 

integrable singularity. This method is applied for solving for 2-D E-scattering from metallic 
cylinders both for resonant and non-resonant cases. The Galerkin MoM with DIM is considered 
and compared to that of with singularity extraction approach. Applying DIM, a stable and 
effective solution to electric field integral equation (EFIE) is obtained for any scatterer 
configurations including thin elongated structures. A combined field integral equation (CFIE) is 
also considered with DIM. Making use of DIM and vectorized filling of MoM matrix in the 
MATLAB programming area, a high effective MoM solution to CFIE is obtained. 
 
1.   INTRODUCTION  

The wide known work of Harrington [1] has made the MoM one of the most popular methods 

to numerical solution of integral equations in electromagnetics. However, the additional 

integration, in contrast to the collocation method, increases substantially the computational 

expenses of traditional MoM. When solving an EFIE, the cost of computations is increased 

additionally due to measures for suppressing the excessive sensibility of solutions to the 

meshing. The unstable behavior of an EFIE solution is caused by incorrect evaluation of 

logarithmically singular integral in this equation upon using quadrature formulas. This is 

connected with dependence of residual error on meshing length. Such an error to reduce, one has 

to increase the meshing density that results in additional computational cost. This problem to 

solve one may use the traditional method of singularity extraction [2], which is also known as 

the method of analytical regularization (AR). However, a sufficiently accurate evaluation of 

remained regular integral in AR takes much computational labor. In [3], this problem was 

considered in tree dimensions. In this paper, a new version of solving this problem in two 

dimensions is presented. For this purpose, a new method (DIM) is used, which permits to obtain 

a stable and effective solution to the Dirichlet problem. We consider here both the EFIE, which 

may be contaminated with interior-region resonances, and the CFIE, which have a unique 

solution. The latter equation results from the combined-field method [4,5]. Besides that, we 

consider the optimization problem to the Galerkin method of moments (GMoM) for solving 

both EFIE and CFIE in the MATLAB programming area. The vectorized filling of GMoM 

matrix coupled with high efficiency of DIM permits to obtain a numerical algorithm for CFIE 
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solver, which is more effective than that of point-matching (PM) solution to the magnetic field 

integral equation (MFIE). 

 The organization of the paper is as follows. In section II, the main equations are 

considered, which are solved in this paper with DIM, and the main approximate quantities are 

derived. In section III, the computational peculiarities are given. In section IV, the CFIE 

parameter is investigated with respect to accuracy and efficiency of GMoM solutions. In section 

V, the scattering from thick, thin, and very thin structures are investigated using elliptical 

cylinder with different axial ratios as a model. The solutions obtained with different methods are 

compared to investigate their accuracy and efficiency. 

 

2. TWO-DIMENSIONAL DIRICHLET PROBLEM 

Consider 2-D scattering of an E-polarized plane wave having only the z-component 

tjyjkxjkeyxE ω−−−= 21),(0                  (1) 

where , 01 sin ikk = 02 cos ikk = , and  is the incident angle counted clockwise from the 

negative y-axis. The time dependence is henceforth omitted. The wave  (1) falls on a metallic 

cylinder of arbitrary cross section D having a smooth boundary 

0i

D∂ . The total electric field is 

decomposed further into the incident and scattered fields as follows: 

scEEE += 0  

The scattered field  must obey the scalar Helmholtz equation, radiation condition, and 

boundary condition 

scE

D
EEsc ∂

−= |0  

The scattered field is sought as a linear combination of the single- and double-layer potential 

with some parameter η  as in [4,5] 

∫∫
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∂
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to prevent the resonant contamination of solutions of the CFIE 
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Here G stands for the Green’s function of the infinite space of wavenumber k. Because of the 

integral operators in (3) are compact on the space of continuous functions, the CFIE is a 

Fredholm second kind equation. The unicity of the solution of (3) was proved in [4] for 0>η  in 

tree dimensions but this proof is valid in two dimensions as well. We consider in this paper the 

numerical solution to (3) with the aid of GMoM on the set of  for the basis and test 

functions. We use further the natural parameterization of the boundary line 

∞
−∞=n

jnte }{

],0[),(),( )()( Lssyysxx nn ∈==                           (4) 

where L is the length of the boundary curve. Then we pass to the unitless variable Lst /2π= , 

]2,0[ π∈t . The unknown function ϕ  is sought then as the Fourier expansion 

∑
∞

−∞=
=

n

jnt
neat)(ϕ                   (5) 

Standard treating yields the GMoM matrix equation 

∑
∞

−∞=
±==+

n
mnmnm mFaKa ,...1,0, ,               (6) 

where 
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ππ

π
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22 ))'()(())'()(()',( tytytxtxttR −+−=  

and 

]2,0[),(),( π∈== ttyytxx  

D∂is the parametric equation of the boundary . We also denote here the right-hand side as 

∫ −−−−=
π

π

2

0

)()( 211 dteF tyjktxjkjmt
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and the Green’s function as 
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4
1)( )2(

0 kRH
j

kRG =                 (10) 
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Due to the compactness of integral operators in (3), both the matrix (7) and the right-hand 

side (9) are square summable in that ensures the existence and uniqueness of the solution to 

equation (6) and convergence of the approximate solution 

2l

∑
−=

=
N

Nn

jnt
nN eat)(ϕ                 (11) 

of its truncated counterpart 

NmFaKa
N

Nn
mnmnm ±±==+ ∑

−=
,,...1,0,              (12) 

to the exact solution of integral equation (3) in Hilbert space of continuous functions. Let 

decompose the GMoM matrix (7) into two parts related to the MFIE and EFIE, respectively, 

)()( E
mn

M
mnmn KjKK η−=                 (13) 

where 
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π

2

0
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2

0
2

)( '
2

dtGedteLK jntjmtE
mn               (15) 

Then, one can write down the discretized counterpart of EFIE using the same notation 

               (16) ∑
∞

−∞=
±==

n
mn

E
mn mFaK ,...1,0,)(

At the same time, the analogous equation for the MFIE can be written as 

∑
∞

−∞=
±==+

n
mn

M
mnm mFaKa ,...1,0,)(              (17) 

The equations (6), (16), and (17) are used for solving the same scattering problem but have 

different application ranges and numerical peculiarities. Optimization of their numerical 

algorithms and comparison of their solutions obtained with different techniques is the main goal 

of this work. An adequate and accurate solution to such an equation to obtain, one has to 

evaluate the matrix elements with high precision. Computation of  with the aid of simplest 

quadrature formula ensures a sufficient accuracy. As for , the magnitudes of these elements 

)(M
mnK

)(E
mnK
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are highly dependent on the method of computing the singular integral (15). Computational 

errors of these elements are crucial for the scattering problem solved. The diminishing of these 

errors with minimal growth of the total computational labor (TCL) is the main goal of our 

findings.  Matrix elements  to evaluate, we use the Bogolyubov-Krylov method [6] of 

integrals discretization. Let represent (15) as 

)(E
mnK
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           (18) 

and apply the abovementioned method. Then, 
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Mdh /22 π==We use here the uniform subdividing of [0,2π ] by M parts of the length . 

The remained integral is evaluated in the simplest manner if sp ≠ , and then we can write 
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where 

∫
+

−

=
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Evaluation of this integral is the main point of our investigation. Along with this integral, we 

consider also its approximation 

∫
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dt
p
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p
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to which one can apply the AR. The auxiliary function, which we use, is . Adding 

and subtracting this function from integrand in (22), we obtain 

|)'|ln( ttka p −
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The simplest approximation to this integral, which provides a minimal TCL, is 

{ })/)2/ln(2/21(2/))ln((4~ πππκ kakjjCddkaddje p
jnt
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where , and C is the Euler’s constant. This approach yields in some cases an 

incorrect solution because of lack of accuracy, as will be demonstrated further. However, a more 

accurate analytical evaluation of the regular integral in (23) increases significantly the TCL. To 

overcome this problem, a new method of evaluating the integrals with integrable singularities 

was proposed in [3] for tree dimensional problems. In two dimensions, we propose the DIM for 

this purpose. In this method, an original singular integral is substituted by its nonsingular 

counterpart, which permits to apply a numerical (direct) integration. Let consider the integral 

(22). Its singularity to elimination, we use the analogous integrand for a circular cylinder. Then,  

2/122 )( ppp yx && −=Λ
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The integrand in second integral is smoothly varying function and then it can be evaluated 

using the simplest quadrature formula. Then, 

⎭
⎬
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Numerical investigations show a high accuracy of such an approach in contrast to the 

traditional AR (23, 24). Then, the main problem is in accurate evaluation of the remained 

integral in (26). Because this magnitude does not depend on index p, one needs to evaluate this 

integral only once. This may be done with the aid of different methods. In this work, we use 

DIM in which a singular integrand is substituted by its nonsingular counterpart, viz., 

ςεςςς dkaHdkaH
dd

∫∫ +≈
0

)2(
0

0

)2(
0 )|

2
sin|2(|)

2
sin|2(             (27) 

with very small ε . One can rigorously prove, using the finite part (FP) of a hyper-singular 

integral that absolute error of such a substitution may be estimated as . This error is 

negligible for used in this work magnitude of 

2/1−hε

ε  ( ) supposing any reasonable meshing 

length h. The resulted integrand is quite appropriate for numerical evaluation. The computing 

rate of integration code, which evaluates (27) in the GMoM, has strongly effected on the 

efficiency of the whole algorithm. Then, a special high-speed iterative integration routine has 

been done using the 14-point Gauss quadrature formula and vectorized operations in the 

MATLAB programming area. This code supports automatically a given tolerance level 

independently of the range of integration that eliminates completely the excessive sensibility of 

a solution to the meshing, and permits to obtain a stable and adequate solution to scattering 

1210−=ε
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problem without enlarging the TCL when compared to the traditional AR with (24). The last 

point is the main advantage of the proposed method (DIM) and permits to increase drastically 

the efficiency of GMoM algorithm. 

Worth mentioning is that the DIM may be implemented for solving not only the EFIE but 

also any other integral equations with weak singularity. In principle, there were no visible 

shortcomings for applying of this method in tree dimensions as well. 

The proposed method (DIM) is used in this paper for solving both the EFIE and CFIE (3). In 

the first case, we investigate several solvers to the EFIE with DIM, and compare their accuracy 

and efficiency. In the second case, the main goal of our findings is the optimization of GMoM 

algorithm with DIM, and investigation of the applicability of CFIE for scattering from structures 

with thin cross section. 

 
3. COMPUTATIONAL FEATURES 
 

All computations have been done in the MATLAB programming area. The uniform meshing 

has been used in all discretization schemes according to the Bogolyubov-Krylov method [6]. 

The number of subintervals (n) was derived on the basis of  subintervals (points) per 

wavelength. The quantity  we call as ‘meshing factor’ and use throughout all computations 

while estimating the accuracy of numerical solutions comparing with the wide used rule of ten 

points (subintervals) per wavelength ( =10).  

fm

fm

fm

As the main feature of a numerical solution to the boundary value problem, we use a relative 

error of boundary conditions. Because the CFIE is a Fredholm second kind equation, the 

diminishing of discrepancy of an approximate solution indicates the approaching of a numerical 

solution to the exact one and may be used as a boundary condition error. Hence, we compute 

this error as 

20
2

0 ||||\''
'2

1 EEdsGjds
n
Ge

D
N

D
NNN ∫∫

∂∂

+−
∂
∂

+= ϕηϕϕ            (28) 

where Nϕ  is the (2N+1)-term approximation to an exact solution, and denotes the 

Euclidian norm. Such an error was computed on doubled meshing the maximal errors in 

midpoints to account. For the EFIE and MFIE the boundary condition errors were computed in 

analogous manner. The scattering cross section was used in unitless form as follows: 

2|||| o
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E
Ek sc ==

∞→
             (29) 

where )(φF  is the scattering amplitude function. The monostatic scattering cross section 

(MRCS) was computed as usually, viz., )2/( 0 πσσ −−= ib . Because of comparing the 

approximate solutions for scattering from circular cylinders with the exact Rayleigh solutions in 

the far zone, we compute the corresponding matching error as 

22 ||)(||/||)()(|| φφφ RRR FFFe −=               (30) 

)(φRFwhere  is the scattering amplitude function of a Rayleigh solution. This error has been 

computed on uniform subdividing of interval ]2,0[ π by 2000 parts. In all computations, we put 

the number of accounted Fourier harmonics equals to ]4/[nN = , where brackets denote an 

integer part of a number, and n is the number of subintervals according to  points per 

wavelength. Such value of N is optimal, as to our investigation, to meeting the combined 

challenge of the speed and accuracy of computations. The most important feature of 

computations provided is the using of vectorized operations while filling GMoM matrices. Very 

high speed of vector procedures in the MATLAB programming area permits to diminish the 

TCL of GMoM algorithm so much that it approaches the one of collocation method. It is 

worthwhile to point out that using of natural parameterization while solving the MFIE both with 

MoM and collocation method reduces the computation cost by roughly a factor of 2. 

fm

We compare in this work several numerical methods solution of the Dirichlet problem in 

terms of efficiency and TCL. To more or less adequately comparison of different numerical 

algorithms, we use some particular definitions to such notions as the TCL and efficiency. To 

estimate the TCL independently from the computation power of a computer, we use a relative 

CPU time of computations 

),(/ Nkatttcl RCPU=                                                  (31) 

wherein a computation period is expressed in terms of the CPU time of a standard numeric 

algorithm. As such an algorithm, we use a well known procedure of the Rayleigh solution for 

the scattering of an E-polarized plane wave by a metallic circular cylinder with the same electric 

size ka that is used in considered problem, a being the radius of the minimum circumference that 

contains the scatterer, and with some definite number N of harmonics used in exact solution. 

The last quantity (N) is chosen so that the corresponding Rayleigh solution yields a boundary 

condition relative error of the order of . In our investigations, we take N = 40 for ka = 10, 1310−
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N = 100 for ka = 50, N = 200 for ka = 100, and N = 250 for ka = 150. The corresponding values 

of the MRCS are the following: 14.9957, 21.9622, 24.9718, and 26.7325.  

To estimate the efficiency of a numerical algorithm, we use the following quantity: 

1)( −⋅= tcleeff N                 (32) 

because it is clear from general considerations that the efficiency grows with the accuracy 

increasing and falls with the total computational labor increasing. 

 
 
4. OPTIMIZATION OF THE CFIE 

 
Utilization of both single- and double-layer potentials to prevent the irregular behavior of 

boundary value problem solutions due to spurious resonances of interior region was proposed by 

several authors at the same time (see [4]). In [4], the unicity of CFIE solutions was proved for 

0>η . At the same time, in [7] such a proof have been done for any complex η . To solve the 

CFIE numerically, one must give some definite value to this parameter. It is clear a priori that η  

must not be chosen too small to prevent the contaminations from the MFIE eigen solutions. 

From the other side, η  must not be chosen too large to prevent the contaminations from the 

EFIE eigen solutions. Besides that, the accuracy of MFIE solvers is substantially higher than 

that of EFIE with DIM for the same regarding nonresonant cases. Because of that, high 

accuracy of CFIE solver to achieve 

fm

η  must be taken as small as possible. It is convenient to 

perform this parameter as ap /=η , where a is a half of maximal size of a scatterer. Such 

representation for η  permits to find some optimal value of p independently of the scatterer size. 

The existence of optimal value of the CFIE parameter p is demonstrated in Table 1, where the 

boundary condition errors ( ) of approximate solutions to the CFIE (3) for the circular 

cylinder of resonant electrical size, ka = 3.8317151, are tabulated for different values of p 

together with the errors in the far zone ( ), MRCSs (

Ne

Re bσ ), and GMoM matrix condition 

numbers (cond) for moderate value of meshing factor, =15.  The correspondent patterns in 

the far zone are shown in Figure 1, where we can see that, in general, we can diminish the 

parameter p to 0.004 without any response in the scattered field even in resonant points. To  

meeting  the  combined  challenge  of  the  accuracy  in  resonant and non-resonant regions, one 

can take p = 0.01 for scatterers with thick cross sections, and p = 0.4 for elongated structures.  

fm
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 Table 1 GMoM solutions with DIM to the CFIE for regressively smaller parameter p in 
 the resonance case (ka = 3.8317151) for circular cylinder with =15 (n = 57) fm
 

p 1 0.5 0.4 0.3 0.2 0.1 0.05 0.01  
0.0063 0.0052 0.0049 0.0046 0.0043 0.0041 0.0041 0.0091 

Ne   
 0.0066 0.0056 0.0053 0.0051 0.0049 0.0048 0.0051 0.0109 

Re  
10.8810 10.9241 10.9359 10.4883 10.9607 10.9739 10.9851 11.0481 

bσ , dB 
cond 3.9 7.8 9.7 13.0 19.5 39.1 78.3 398.0 

 

-2 -1 0 1 2 3 4 5 6
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1 (thik) -GMoM solution  to CFIE      
              with p=0.4-0.004 and    
              exact Rayleigh solution 

2 - p=0.0004  
3 - p=0 (MFIE)

 
Figure 1. Far-field patterns for circular cylinder of resonant size resulted from solutions to the CFIE for various 

values of parameter p compared to the exact Rayleigh solution (thick curve). 
 

At last, we briefly consider the influence of imaginary part of the CFIE parameter η  upon 

accuracy of the GMoM solution to mentioned equation. Numerical investigations provided show 

the dependence of accuracy of a solution on the sign of imaginary part. Errors are greater for the 

negative one. In the contrary case, errors are the same as for real η  if their absolute values are 

equal. 

 
5. COMPARISON OF METHODS 

This section has focused on GMoM solutions both to the EFIE itself with the traditional 

method of AR and with new one (DIM), and to the CFIE (3) with DIM. As was noted above, the 

utilization of AR with (24) in EFIE solvers can produce an unstable solution due to the lack of 

accuracy. Such case is considered in the first section (from above) of Table 2 for scattering from 
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circular cylinder of moderate electrical size (ka = 100) for progressively greater meshing factor. 

In the second section of Table 2, the solution of the same problem with DIM is given making 

use the approach (27). We see the solution become stable with respect to all main factors. Worth 

noting is that the implementation of direct integration (DIM) for improving the approach (24) 

does not increase practically the computational period when compared to AR with (24), which is 

the main advantage of a new method. Comparison with the exact Rayleigh solution in the far 

zone indicates the adequacy of GMoM solution to the EFIE with DIM .  

Consider now the implementation of DIM in the CFIE solver with GMoM. We shall now 

show that using both DIM and vectorized filling of GMoM matrix in the MATLAB 

programming area permits to obtain a high effective GMoM solver for the CFIE, which is more 

effective than the point-matching (PM) algorithm for the MFIE. In Table 3 we compare this 

solution to the analogous solution of the MFIE with PM. Because of the scatterer has thick cross 

section, we use the CFIE with p = 0.01. It is clear that the TCL of CFIE with GMoM must be 

greater than that of MFIE with PM for the same  but the exceeding is not large as we can see 

from Table 3. At the same time, the accuracy of CFIE solver with GMoM is substantially higher 

than that of MFIE with PM, that provides a substantially higher efficiency of GMoM with DIM. 

fm

 
 

Table 2 GMoM solutions to the EFIE with AR and DIM for circular cylinder of ka = 100 
4 (400) 5 (500) 6 (600) 7 (700) 8 (800) 9 (900) 10 (1000) )(nm f  

Ne  0.0232 0.0298 0.0741 0.0322 0.0286 0.0740 0.0198 GMoM 

Re  0.0266 0.0307 0.0667 0.0307 0.0331 0.0800 0.0216 
with 

bσ , dB 24.7125 24.5189 24.0653 24.4378 24.4324 25.5477 25.0456 
AR 

cond 1.0·103 2.9·103 1.0·104 3.5·103 3.0·103 1.1·103 2.4·103

tcl 3.3 5.3 8.6 12.6 18.1 23.9 31.1 
eff 13.1 6.3 1.6 2.5 1.9 0.56 1.6 

Ne  0.0486 0.0372 0.0314 0.0260 0.0235 0.0248 0.0256 GMoM 

Re  0.0553 0.0417 0.0347 0.0286 0.0253 0.0257 0.0274 
with 
DIM 

25.2103 25.0693 24.8578 24.8522 24.8680 24.7335 24.6864 
bσ , dB 

cond 168 352 441 602 1101 1725 2600 
tcl 3.6 5.8 8.7 13.4 16.7 23.8 33.6 
eff 5.7 4.6 3.7 2.9 2.6 1.7 1.2 
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Table 3 GMoM solutions with DIM to the CFIE (p = 0.01) and PM solutions to the MFIE 
 via meshing factor for circular cylinder of ka = 100 

4 (400) 5 (500) 6 (600) 7 (700) 8 (800) 9 (900) 10 (1000) )(nm f  

Ne 410⋅  11.00 1.98 0.188 0.172 0.157 0.144 0.132 CFIE, 

Re 410⋅  12.02 5.67 3.15 1.94 1.29 0.90 0.657 
GMoM 

with 

bσ , dB 24.9785 24.9753 24.9738 24.9730 24.9726 24.9723 24.9722 DIM 
 

cond 41.3175 41.3186 41.3186 41.3184 41.3182 41.3180 41.3178 
tcl 6.6 10.2 16.1 23.0 33.3 45.4 57.5 
eff 137.7 495.2 3303.8 2527.8 1912.7 1529.6 1317.5 

Ne 410⋅  12.03 5.51 3.05 1.86 1.23 0.851 0.615 MFIE 

Re 410⋅  12.31 5.72 3.15 1.93 1.28 0.887 0.642 
with 
PM 

24.9786 24.9754 24.9739 24.9731 24.9727 24.9724 24.9722 
bσ , dB 

cond 41.3136 41.3150 41.3155 41.3157 41.3158 41.3159 41.3159 
tcl 3.6 6.6 10.6 16.3 24.3 34.0 42.3 
eff 231.5 275.5 304.3 329.8 334.6 346.0 384.3 

  
 

Let consider now scattering from elongated structures. For example, consider an elliptical 

cylinder of moderate electrical size, ka = 100, with axial ratio b/a = 0.01. In this case, the MFIE 

itself gives no correct solutions but the CFIE with p = 0.4 gives still quite correct ones. GMoM 

solutions with DIM to the CFIE for mentioned scatterer are given in the first section (from 

above) of Table 4 for oblique incidence ( ). We can see here that the efficiency of 

GMoM solver for the CFIE is substantially lower with p = 0.4 then that of with p = 0,01.In the 

second sections of the same table, we give GMoM solutions to the EFIE with DIM. The 

comparison of solutions indicates the adequacy of EFIE solvers because of solutions to the CFIE 

have a guaranteed convergence. In spite of the less accuracy of GMoM solution to the EFIE 

when compared to that of the CFIE, the corresponding scattering amplitude functions are not 

distinguishable for used in Table 4 magnitudes of  if using p = 0.4. 

o450 =i

fm

Some discrepancy between solutions to demonstrate, we show in Figure 2 solutions of the 

CFIE intentionally with not optimal value of p (p = 0.1) compared to analogous solutions to the 

EFIE, all with DIM, for the same scattering problem and small meshing factor ( = 6). 

Diminution of parameter p in the CFIE causes the instability of solutions for thin scatterers. 

Such incipient instability we can see in Figure 1 (a, d) near observation direction of 

fm

πφ = . 

However, in general, the overlapping of solutions is rather good even for this bad case. 
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Figure 2. Far-field patterns for scattering from the elliptical cylinder of ka = 100 with axial ratio b/a = 0.01 obtained 
by solving the CFIE with intentionally small p = 0.1 that is not optimal in this case and the EFIE, both with DIM. 

We can see the incipient instability of CFIE solver (curves 1) for this p near observation direction of πφ = . For p 
= 0.4, these two solutions give identical patterns. 

 
 
 
 
 
 
 

Table 4. GMoM solutions with DIM to the CFIE and EFIE for elongated elliptical 
 cylinder with axial ratio b/a = 0.01 (oblique incidence, i0=45º) 

7 (444) 8 (508) 9 (572) 10 (636) 11 (700) 12 (764) )(nm f  

Ne ·104 4.17 3.85 3.54 3.26 3.01 2.79 CFIE, 

bσ , dB 1.6003 1.5843 1.5793 1.5774 1.5766 1.5760 
GMoM 

with 
cond 19.6955 19.6712 19.6625 19.6585 19.6560 19.6542 DIM 

tcl 9.6 13.5 17.6 24.4 31.9 41.9  
eff 249.8 192.4 160.5 125.7 104.2 85.5 

Ne  0.0250 0.0219 0.0194 0.0173 0.0157 0.0143 EFIE, 

bσ , dB 1.6179 1.6119 1.6072 1.6035 1.6004 1.5979 
GMoM 

with 
cond 50 57 64 71 78 85 DIM 
tcl 3.8 5.2 7.0 10.1 12.4 16.3 
eff 10.5 8.8 7.4 5.7 5.2 4.3 
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Table 5. GMoM solutions with DIM to the EFIE for elliptical cylinder of ka = 100 
 and axial ratio b/a = 0.001 (oblique incidence, i0=45º) 

10 (636) 11 (700) 12 (762) 13 (826) 14 (890) 15 (954) )(nm f  

Ne  0.0601 0.0332 0.0242 0.0194 0.0164 0.0144 EFIE, 

bσ , dB 0.2682 0.2239 0.2105 0.2049 0.2024 0.2011 
GMoM 

with 
cond 2000 761 515 411 358 326 DIM 
tcl 9.8 13.4 17.2 19.9 26.0 32.4 
eff 1.7 2.3 2.4 2.6 2.4 2.2 

 
 

Table 6. GMoM solutions with DIM to the EFIE for elliptical cylinder of 
 ka = 50 with axial ratio b/a = 0.001 (oblique incidence, i0=45º) 

20 (636) 21 (668) 22 (700) 23 (732) 24 (762) 25 (794) )(nm f  

0.0256 0.0189 0.0152 0.0129 0.0114 0.0102 
Ne  

3.0315 3.0312 3.0314 3.0317 3.0321 3.0325 
bσ , dB 

cond 1621 1049 805 671 591 532 
tcl 9.3 10.6 12.0 12.8 14.6 16.3 
eff 4.2 4.5 5.5 6.1 6.0 6.0 

 
 

Table 7. GMoM solutions with DIM to the EFIE for elliptical cylinder of 
 ka = 150 with axial ratio b/a = 0.001 (oblique incidence, i0=45º) 

6 (572) 7 (668) 8 (762) 9 (858) 10 (954) 11 (1050) )(nm f  

Ne  9.5·103 0.0701 0.0382 0.0276 0.0223 0.0189 

83.6507 3.0362 3.0355 3.0365 3.0374 3.0381 
bσ , dB 

cond 2.3·108 635 353 271 236 217 
tcl 7.3 10.2 14.3 19.8 27.5 34.8 
eff      - 1.4 1.8 1.8 1.6 1.5 

  
 

At last, we consider a scattering from very thin structures using an elliptical scatterer with 

axial ratio equal to 0.001 as a model. Such problems arise, for example, in investigations 

connected with radar returns from rough surfaces. The main scattering features for this case 

resulted from solutions to the EFIE with DIM are listed in Table 5 for ka = 100 and . 

With the meshing factor progressively increasing, the condition number increases to sufficiently 

high value, as it is usual for the EFIE solutions, but then it exhibits a monotonously decrease. 

We show such decreasing in Table 5 for the GMoM solution to the EFIE. The same decreasing 

was also revealed in analogous solution with the Galerkin collocation, which is not given here 

for brevity. Because of high interest of this effect, as to our mind, we give here another two 

GMoM solutions with DIM via  for elliptical scatterers with the same b/a = 0.001 but with 

others electrical sizes: for ka = 50, in Table 6 and for ka = 150, in Table 7. The analogous 

behavior of the condition number of GMoM matrix while solving the EFIE with DIM was 

revealed for b/a = 0.0001 as well. This effect permits to consider the obtained solutions as good 

o450 =i

fm
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candidates to exact solutions. In any case, the diminishing of condition number ensures the 

approaching of approximate solution to an exact one if the corresponding discrepancy of the 

matrix equation diminishes. This point is of principle significance if we solve an integral 

equation of the first kind. The revealed behavior of GMoM solution to the EFIE for very thin 

structures permits to simulate large areas of rough surfaces and obtain stable solutions to 

corresponding Dirichlet problems. 

 
 
6. CONCLUSIONS 
 

A new method of direct integration (DIM) has been presented and applied to solve the EFIE 

and CFIE with the Galerkin method of moments (GMoM). When compared to the simplest 

version of analytical regularization (AR), which is also called as “singularity extraction”, DIM 

gives much more accurate solution with the same computational labor. GMoM solver with DIM 

permits to obtain a stable, adequate, and high effective solution to the EFIE for any scatterer 

configuration. Analyzing scattering from very elongated elliptical cylinders, which axial ratios 

are less or equal to 0.001, a new effect has been revealed: the condition number of GMoM 

matrix decreases with the meshing density increasing. Such falling of the condition number is 

unusual for the EFIE solvers. However, wide numerical investigations have been confirmed the 

existence of this effect in all investigated scattering problems connected with very thin 

structures. Such a behavior of the condition number while solving the EFIE ensures approaching 

of an approximate solution to the exact one if the matrix equation discrepancy recedes to zero.  

Employing DIM and using vectorized operations in the Matlab programming area while 

filling GMoM matrices when solving the CFIE, a high effective numerical algorithm has been 

obtained, which is more effective than that of the MFIE with point matching. The obtained 

algorithm is valid for thin structures as well, if the minimal to maximal size ratio of a scatterer is 

more or equal to 0.01. 
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