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Abstract 
A method for determining of the magnetization direction in thin one-domain films 

with uniaxial anisotropy in the film plane has been introduced. It is based on the 
Stoner–Wohlfarth model and propounds mathematical procedure, leading to 
polynomial representation in the angle of magnetization. Bearing in mind that the 
analytical methods are rather cumbrous than handy, the proposed method could be 
useful with its good numerical correctness and its clear relation with the physical 
behavior of the system. Propositions about extensions of the method for more 
complicated cases are made.  

 
 
1.  INTRODUCTION 

The reaction of magnetization in certain medium as function of the applied external 

magnetic field gives basic information either about the crystal and magnetic structure, 

or about the macro effects as a magnetoresistance, Hall effect and so on. In the thin 

films with one-domain structure the magnetization lies in the film plain and its 

behavior is described by various methods, based on Stoner–Wohlfarth model [1,2,3]. 

According this model the full energy E per unit volume is the sum of the anisotropy 

energy Ek, needed to divert the vector of magnetization Ms to some angle ϕ from the 

easy axis, and the energy of interaction EH between the magnetization and the external 

field H. 

    E = Ek  +  ЕH  =  Κ sin2 ϕ − Ms . H,      (1) 

where K is the constant of the magnetic anisotropy, H and θ are the magnitude and the 

angle with respect to the easy axis of the external field. The vector of magnetization is 

supposed to have fixed size, depending on the material structure and corresponding to 

the anisotropy field Ha = 2K/Ms. Therefore the aim is to determine the angle 

ϕ between the magnetization vector and the easy axis. It could be found from the 
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conditions for local minimum of the full energy, i.e. for stable stationary position of 

the magnetization: 

0=
∂ϕ
∂E

       (2) 

     02
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(3)  

It is convenient to express H in non–dimensional parameters h = H/Ha . Than Eq. 

(3) turns to [3,4] 

 

 h sinθ cos ϕ − h cosθ sin ϕ − sin ϕ cos ϕ = 0.     (4) 

From Eq. (4) without difficulties the relation θ(ϕ) could be obtained, i.e. the angle 

of the external field could be found, under which the magnetization takes given 

direction. It comes out to be 
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These equations are solutions of the problem, which is opposite to the main goal – 

to find ϕ(θ). Doubling of the direction of magnetization for fields with h < 1 is well 

known physical effect. It follows from (2) and (3), because when h < 1 the total energy 

stands to have two local minima for θ varying over (0,π/2) [3,4,5]. For such files, the 

angular momentum of anisotropy, which trends the domain towards the easy axis, and 

the angular momentum of the dipole magnetic interaction, are compensated in stable 

stationary at two positions of ϕ. Further only fields, situated in I quadrant will be 

considered, because of the evident symmetry the situation possess. Due to the 

mentioned doubling, some supplementary condition θ0 = θ(ϕ0) must be known for to 

point which of two possible values of magnetization is realized in regarded system, 

and so to have an ability to define inverse relation ϕ(θ). 

 

2.  THEORETICAL BACKGROUND 
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Algebraic treating of Eq. (4) leads to quatric equation in cos ϕ, with some 

additional restrictions. A general solution is possible [5], but it appears to be not only 

very troublesome to derive, but also, the obtained result would be not adapted for 

convenient numerical calculations. By reason of this ϕ(θ) has been expressed in a 

Taylor series about given (initial) point θ0, at which related value ϕ0 is known. As it 

was said above, such condition is also necessary for the system to be uniquely 

determined, i.e. to be acquainted whether (5a) or (5b) holds. It must be kept in mind, 

that there might be discontinuances in the relations (5), and extending around such 

meanings should be avoided. Physically this may be determined from history of  the 

magnetization process [4]. Here it is assumed to be (5a), which also has been 

expanded in Taylor series. Thus, when both θ(ϕ) and ϕ(θ) are represented in local 

terms, the relation between their Taylor coefficients will be find. So 
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The main idea is to express the Taylor coefficients of ϕ(θ) in terms of θ(ϕ), 

applying rules for differentiating of the composite functions. Representing ϕ(θ) as 

implicit ( ) ϕ=ϕϕ )(θ  and starting with the trivial 

 θ′
=ϕ′ 1

 
(7) 

differentiating with respect to ϕ both sides, stage by stage it has been found 
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Here sign  to each parameter ϕ or θ, means derivative of it with respect to the 

other one. This way recurrently the n-th derivative could be obtained. In the adopted 

denotations 

′( )
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Thus  is found to be ( )IVϕ
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and so on. Now derivatives of θ with respect to ϕ should be found from (5a). It is 

ordinary explicit function, so consecutively differentiating gives 
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and so on. It is important, that here it is taken an interest meanings of this expressions 

only at point ϕ0, which corresponds to center θ0 of series (6). Thus, knowing the 

direction of the magnetization for given direction of the field, to describe the 

magnetization behavior when the field varies round, get able. In resumption, the steps 

to be followed are: calculating from the relations (12) the derivatives  in θ( )n...θθ′ 0, 

replacing them in (8), (9), (10)...for to find ′ϕ , ′′ϕ ... ( )nϕ  and then to put them as 

coefficients in power series (6). 

We applied the method to estimate the magnetization angle ϕ as a function of the 

angle θ of the magnetic field near the zero, when at the initial physical state the 

magnetization and the magnetic field are disposed in parallel. This is the condition, 
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which points out that from relations (5a) and (5a) must be chosen (5a), because it gives 

θ = 0 in ϕ = 0. If the field and the magnetization were antiparallel at the initial state, 

we had to choose (5b) [4]. Computing θ(n) from formulae (12) at ϕ = 0, we obtained 

h
11 +=θ′(0) , further 0=θ ′′ (0)  0=θ ′′′ (0)  ( )IVθ  = 0  (13) 

up to θ(V)(0) , which is 0≠

         θ(V)(0) = 5

42 16409
h

hh +− ,               (14)  

and θ(VI)(0) = 0 again. Now we could compute ϕ(n) from (8), (9)...(11) 
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( ) 0=ϕ VI  

With a precision of sixth order the angle of magnetization ϕ depends on the angle 

of the external field θ as 
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This formula gives a possibility to observe the behavior of the magnetization when 

the external field rotates. We were interested to trace back how the nonlinear term 

depends on the relative value h of the magnetic field. Fig.1 gives the relative weight of 

the coefficients in two terms in (16) for 0 ≤ h ≤ 4 (which are common physical values). 

Fig.1a presents the behavior of the linear term and fig.1b – for the fifth order term. It 

was found that the contribution of the fifth order term may be neglect in comparison 

with the linear term. Thus for a magnetic field, applied on the small angle about the 

easy axis, the angle of magnetization depends on the angle of the field near linearly. 
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Figure 1. The relative weights of the coefficients for a)linear terms and b) fifth order term in (16). 

 

For h < 1, or θ < 57о, the contribution of the terms with higher orders is very small, 

taking into account of the coefficient 1/n! . For the relatively wide interval of θ the 

formula (16) determines the magnetization direction with a good precision if the 

magnetization and the applied field are collinear in the initial state. 

Such technique could be used in large area of physical topics for to find inverse 

relations in local measures, when it is difficult to express them explicitly. The 

attention should be paid to the intervals of varying and the power, to which the Taylor 

series is truncated, for it to match out the original function closely enough.  

 

3. CONCLUSIONS 

One domain model plays a basic part in the description of the magnetic behavior in 

more complicated crystal structures. For the massive magnetic bodies the 

magnetization position is determined from two angles but to find them on use the same 

relations (2) and (3). The appearance of new physical objects (domain wall, oblique 

anisotropy etc.) modifies the energy of the anisotropy and the new components are 

present at a superposition with the components of the one domain model. One might 

say that the details of the complicated models are built on the base of the one domain 

model. Therefore to find the dependence of the magnetization as a function of the 

applied magnetic field is the basic problem in the magnetic investigations. The general 

methods are very complicated and abstract [5]. The essential priority of the obtained 
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formulae is the possibility to compute (with determined accuracy) the angle of 

magnetization when the applied field rotates and in the other hand they give a 

possibility to trace out the qualitative reaction of the system at the defined field 

parameters. 
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