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Abstract 

In this article a canonical problem of radiation of an infinite dipole antenna placed inside 
a tissue medium is analyzed by using a semi-analytical approach. A Fourier analysis is 
pursued to solve analytically the boundary value while numerical integration algorithm are 
utilized to compute the electrical fields inside the tissue medium. Interesting results clarifying 
the power deposition mechanisms inside the tissue media are observed. 
 

 

1.  INTRODUCTION 

Dipole type insulated antennas are being used in clinical hyperthermia. Several authors in 

the past have analyzed the radiation properties of insulated antennas, at various frequencies, 

irradiating tissue medium. R. W. P. King et al. [1], [2] have analyzed this phenomenon by 

using assumed current distributions, while other authors have used numerical methods [3], 

[4], [5]. In all these works the importance of the “source problem” have been emphasized. 

This problem is associated with the excessive absorption of electromagnetic radiation near 

the dipole antenna feeding point where there is a strong storing of reactive power. In order to 

analyze in detail this phenomenon in this article a canonical model of dipole element 

consisting of an infinite insulated line excited by a voltage gap generator is analyzed. In the 

following analysis an exp(+jωt) time dependence is assumed for the field quantities and is 

suppressed through the analysis. 

 

2.  DEFINITION OF THE PROBLEM  

 Consider a dipole antenna consisting of an infinite length cylindrical conductor lying 

between . The antenna is fed at z=0 point, as shown in figure 1. + ∞ −∞,
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Figure 1. Dipole antenna 

 

In order to describe the field problem, cylindrical co-ordinates ρ,φ,z, will be used, as 

dictated from the cylindrical symmetry. The z axis is chosen to coincide with the symmetry 

axis of the cylinder, having the effect the inside surface of the cylinder to be defined by the 

simple expression ρ=α. For α<ρ<b the antenna is surrounded with cylindrical shaped material 

having relative dielectric permittivity εr and relative magnetic permeability μr.                         

Finally, in the space ρ> b the relative dielectric permittivity is    εr.  The material in space 

α<ρ<b is able to change (e.g. by changing μr ) in order to permit theoretical and experimental 

study of the changes in antenna’s behavior and obtain results. The space for ρ> b simulated 

the human tissue and the relative dielectric permittivity in this space is complex. In the 

following analysis, the biological tissue is considered homogenous and isotropic as for its 

electrical properties. 

 

 

3.  ANALYSIS OF THE STRUCTURE  

 Considering that because of the existing symmetry 
0=

∂φ
∂ , the corresponding field 

equations for this problem are expressed in cylindrical co-ordinates in the form given below: 
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Solving (3) for ez ,  (2) for eρ  and substituting in  (1) : 
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where R,Z are corresponding functions of ρ,z  (4) looks like: 
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where Α is an arbitrary constant ( Α=1 can be considered without impairing generality)  then  

(6) with the help of (7) becomes: 
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The general solution of the above D.E. is written as a combination of Bessel function J1 

and Neumann function Y1. 
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where  

εμω=ki  

Taking into consideration (3),(5),(7),(8) Ηφ, Εz are expressed as follows: 
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Bessel and Neumann functions satisfy the recursive relationships [ 6 ]:            
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Similar relationships exist for Neumman functions. Based on (12),  (11) can be expressed 
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From (11), (12) and (13), (10) for Εz  is expressed as: 
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For ρ>b as the space expands to infinity, the fields should have decaying characteristics. 

In order to achieve this a suitable combination of Bessel and Neumann functions should be 

chosen. 
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This suitable combination is , where  is called 

Hankel function of second type, and the condition Henkel radiation condition [ 7 ].  For this 

region the following expressions for Ηφ,Εz  exist: 
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For ρ=α : 
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 where    ki : is the propagation constant of the dielectric, ε : is the dielectric permittivity of 

the dielectric.           

For ρ=b  Ηφ continuous and Ez continuous 

For Ηφ= continuous : 
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 It is known that: 
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Taking this into consideration the expression above can be written as: 
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where the also known property was used: 
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Working similarly with expressions (14) and(16) and for  Ez= continuous: 
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where εrδ  is the relative dielectric permittivity of the dielectric, εri  is the relative dielectric 

permittivity of the tissue 
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and ξ(k) derived from (22α). 

In (22α) and (23) in other words for C(k), ξ(k): 

ko : is the complex propagation constant of the tissue 

kι  : is the propagation constant of the dielectric 

ε   : is the dielectric permitivity of the dielectric ( ε was derived from (17) ). 

Knowing  C(k), Εz and  Ηφ can be calculated from (16) and (15) correspondingly for the 

space region with  ρ>b. 
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In order to calculate Ερ, (2) should be solved for Ερ. 
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In the expression above Ηφ is substituted using (16). 
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and because C(-k)=C(k) the above integral becomes: 
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In (24) , (25) and (26) above : 

ki is the complex propagation constant of the tissue, ε  is the dielectric permittivity of the 

tissue 

 
Having calculated the fields in the various space regions, the complex input admittance of 

the antenna can be calculated. At point ρ=α and z=0 the antenna is fed with voltage V=1Volt.  

Using: 

Η ϕπα2I z =
 

For V=1Volt : 

ΗπαΥ ϕ2
V
I z

in ==
 

In the above expression  Ηφ is substituted from  (9) with   ρ=α . 
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where ki is the propagation constant of the dielectric 

Substituting Α(k) from (20) to (18) : 
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Expression (27) can be written as: 
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where Β(k) is derived from (28) and Α(k) from (20). 

For this problem the following considerations are taken: (a) the space region for ρ>b 

includes the biological tissue and (b) in the space region for α<ρ<b the relative dielectric 

permittivity and the relative magnetic permeability can be changed by changing the material. 

It is of interest to find how the fields Εz(z,ρ) and Ερ(z,ρ) are varied for different values of  

z,ρ inside the biological tissue. The variation of Εz(z,ρ) and Ερ(z,ρ) fields will also be 

examined by increasing the corresponding relative values of the dielectric permittivity and 

the relative magnetic permeability. 
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4.  SOFTWARE DEVELOPMENT  

For the calculation of the integrals of expressions (24) and (26) numerical integration is 

used with the aid of Simpson complex rule.  

A computer software program was developed in Fortran   language. The required input 

data for the program execution are the relative dielectric permittivity of the dielectric år (for 

á<ñ<b) and the relative magnetic permeability ìr (for á<ñ<b) . 

For Εz(z,ρ) calculation, the program calculates function under integration for value of z 

given by the user, with constant ρ  (ρ=4b) and for 12.287 values of k (k is varied with small 

discrete steps). For every k the real and imaginary part of the function is calculated. Results 

are written in a file, the name of which has been given by the user. The integration of the 

function follows using the Simpson’s method, with limits from 0 to 30ko (ko is the 

propagation constant of the dielectric) , while z still has the value set before. For every ρ 

from b to 4b (with step 0,05), the corresponding value of Εz(z,ρ) is obtained. Results are 

again written in a file, the name of which has been given by the user. 

The calculation of the Bessel and Neumman functions the polynomial approach has been 

used [ 8 ]. 

Similarly, values for Ερ(z,ρ) are obtained. 

[1] Program variables values.  

The values of the program variables are chosen carefully, in order to ensure adequate 

precision of the results.   

For space region with ρ>b  (tissue), the electrical characteristics of the biological tissue 

are set according to the complex dielectric permittivity: 

ε=εο(ε΄-jε΄΄)= εο(ε΄-j σ/ω εο )  where 

ω=2πf and f  the frequency (f=432 10-6 HZ) 

ε:  the complex dielectric permittivity (F/m). 

εο : the dielectric constant of free space  [10-9/36π (F/m)]. 

σ:  the electric conductivity of the tissue (S/m). 

ε΄: the relative dielectric constant of the tissue. 
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The conductivity and the dielectric constant depend on the frequency. In the table below 

(Table 1) the values of relative dielectric constant and conductivity are given for two types of 

tissue and for frequency of  432ΜΗΖ. 

Table 1 

Frequency 

(ΜΗΖ) 

relative dielectric 

constant  

Conductivity 

(S/m) 

Tissue type 

 

432 

45 

 

5 

0.60 

 

0.24 

high water concentration 

 

low water concentration 

 

 

In calculations ε΄=41 and ε΄΄ =21 was used. Because σ/ωε΄<<1, the tissue  behavior is a 

dielectric. The magnetic permeability μ (Η/m) for all practical applications is constant within 

the tissue and has the value of free space  [μο=4π10-7 (Η/m)]. The complex propagation 

constant of the tissue ktissue   is:  

μεω ok tissue =
 

For the space region with a<ρ<b, dielectric region, the propagation constant  

μεμεωδιηλ rrook =  

where εr , μr can take values from 1 to 10 respectively, values which are  preset by the user.  

 

5.  NUMERICAL RESULTS  

In the figures given at the end of this paper the electric field Εz(z,ρ) and Ερ(z,ρ) of a dipole 

antenna implanted in a tissue is graphically presented. All diagrams were constructed using 

data from the corresponding output files of the program. 

[1] Variation for Εz(z,ρ) 

For Εz(z,ρ) there are two types of diagrams.  The first refers to the change of the real and 

imaginary parts of the function FUNC(Ez) under integration with k, for various z and for 

ρ=4b. Function FUNC(Ez) (as it is shown from relation 24)  is given as follows:  
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The second type of diagrams show the change of the real, imaginary part and the 

magnitude of the electric field Εz(z,ρ) (as given by relation 24), for various z (entered as 

inputs to the program) with ρ taking values from b up to 10b with step of 0,05. Graphical 

presentations where made for various εr and μr (entered as inputs to the program) for the 

space region for α<ρ< b. 

The variation of function FUNC(Ez)  with k με το k showed  a certain oscillation so an 

increase of the integration span and a decrease in integration step was dictated in order to 

achieve the required accuracy.  

Comparing the diagrams of the function with the same z but with different εr and μr, of the 

space region for α<ρ< b  a change in place of the maxima and minima of the real and 

imaginary parts of the function was observed.  This is expected as the values of k for which 

maxima and minima of the real and imaginary parts of the function occur depends on ko 

which changes in every case, changing also the electrical properties of the dielectric 

(diagrams 1,2).  

Function FUNC(Ez) is even as results from the analytical process and is confirmed by 

comparing diagrams.  

[2] Variation of Εz(z,ρ)  diagrams 

Comparing diagrams with the same εr and μr but different z it was observed that going 

away from the feed-point (z=0) of the antenna the magnitude of the electric Εz(z,ρ) decreases 

as ρ increses.  

In all diagrams the magnitude of the electric field Εz(z,ρ) decreases exponentially as the 

radial distance from the antenna is increases (diagrams 2,3). 

Comparing diagrams having the same εr and μr it was observed that the magnitude of the 

electric field Εz(z,ρ) for  z  equals that for  with  -z, for every corresponding value of ρ.   

Increasing the values of εr or and μr, it was observed that the magnitude of the electric 

field  Εz(z,ρ) also increases for every ρ (comparison of diagrams of the same z) (diagrams 

3,5,6). This is important as it gives the possibility of constructing antennas with high μr value 

and testing them under real conditions, possibly replacing the existing conventional ones. 
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[3] Variation of Ερ(z,ρ) 

For Ερ(z,ρ) there are two types of diagrams.  The first refers to the change of the real and 

imaginary parts of the function FUNC(Eρ) under integration with k, for various z and for 

ρ=4b. Function FUNC(Eρ (as it is shown from relation 26)  is given as follows: 
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The second type of diagrams show the change of the real, imaginary part and the 

magnitude of the electric field Ερ(z,ρ (as given by relation 26), for various z (entered as 

inputs to the program) with ρ taking values from b up to 10b with step of 0,05.  Graphical 

presentations where made for various εr and μr (entered as inputs to the program) for the 

space region for α<ρ< b. 

[4] FUNC(Eρ)  diagrams 

If  in the function FUNC(Eρ) z is set to zero (z=0) , then the function also goes to zero. 

Function FUNC(Eρ) is odd as results from the analytical process and is confirmed by 

comparing the appropriate diagrams.  In all the rest, the same things apply for FUNC(Eρ) as 

for FUNC(Ez). 

 For Ερ(z,ρ) diagrams, similar observations were made as for  Εz(z,ρ).  

 

 k 
Diagram  1. 
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Diagram  2. 
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Diagram  3 
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Diagram  4 

 

 

 

 

 

 
Diagram  5. 
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Diagram  6 

 

6.  CALCULATION OF PENETRATION OF THE ELECTRIC FIELDS  Εz(z,ρ),  
Ερ(z,ρ) 

A Fortran program was developed to calculate the inclination of Εz(z,ρ) at the points 

0.5Εο and 0.7Εο, where Εο is the value of Εz(z,ρ) for z=0 and ρ=b. The inclination of the 

field Εz(z,ρ) is calculated by the program taking into account about 250 points around 0.5Εο 

and 0.7Εο for ρ varying with step 0.0002. User is asked to input to the program εr, μr and z. 

Results are kept in a file.  Exactly the same process is followed for Ερ(z,ρ).  Results are 

shown in tables  2 and 3. 

                                               Table  2. Inclination of Εz(z,ρ) field 

 εr μr z (cm) field inclination 0.5Εο Εz(z,ρ) at 0.7Εο points 

15 2 0 1.532Ε+04 2.720Ε+04 

15 5 0 2.124Ε+04 3.836Ε+04 

15 10 0 2.533Ε+04 4.555Ε+04 

15 15 0 2.708Ε+04 4.862Ε+04 

 
                                              Table  3. Inclination of Ερ(z,ρ) field 

 εr μr z (cm) field inclination 0.5Εο Ερ(z,ρ) at 0.7Εο points 

15 2 1 1.408E+04 2.337E+04 

15 5 1 1.671E+04 2.614E+04 

15 10 1 3.281E+04 5.399E+04 

15 15 1 6.135E+04 8.676E+04 
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From tables 2, 3 it is observed that as μr increases, so does the inclination of the fields 

Εz(z,ρ) and Ερ(z,ρ), which means that their penetration is decreasing, 

[1] Antenna Complex Input Admittance  

Finally the complex input admittance of the dipole antenna has to be calculated.  In order 

to calculate the integral (expression 29) numerical integration is used (Simpson complex 

rule). The required input data for the program execution are the relative dielectric permitivity 

of the dielectric εr and the relative magnetic permeability of the dielectric μr  

Results of the magnitude of the complex input admittance of the dipole antenna implanted              

in a tissue for various εr , μr are shown in table 4. 

Table 4.  Complex input admittance of the antenna 
εr (dielectric) μr (dielectric) Υin=G+jB 

15 15 0.928137Ε-3-j0.320848E-2 

15 10 0.848461Ε-3-j0.380694E-2 

15 2 0.204005Ε-3-j0.683924E-2 

10 5 0.383646Ε-3-j0.422465E-2 

 

 

7.  CONCLUSIONS 

The radiation of an infinite length dipole placed inside a lossy medium has been studied 

theoretically using an analytically approach. It is shown that the penetration depth of the 

radiation inside the tissue medium could be increased by using a high magnetic permeability 

sleeve placed around the dipole element antenna. 
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