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Abstract 

A novel numerical method for the right angle dielectric wedge (RADW) boundary 
value problem (BVP) solving in full wave formulation is presented. This one uses a 
Sommerfeld-like integral representation of scattered fields inside and outside a wedge 
and matching these fields on the boundaries. This procedure yields a six-order system 
of 1st kind integral equations, which is correct in functional meaning only for a cylin-
drical incident wave. Laplace transform casts this system in equivalent form more 
suitable for numerical treating. After discretization, one obtains a very ill-conditioned 
matrix equation (ME). To solve such equations, a new iterative method is proposed. 
 
 
1. INTRODUCTION 

The diffraction of an E-polarized plane wave by a RADW has been treated by a 

number of authors; see for example [1-5]. The aim of these authors was to obtain an 

exact closed form solution to the 2-D Fredholm IE of electromagnetics, first obtained 

in [6]. However, the rigorous solution that is valid for numerical analysis is not avail-

able to date. Some approximate solutions are also known. Rawlins [7] obtained a 

Neumann series solution and calculated the first term in the series, which is valid for 

small dielectric constants. Berntsen [8] dealt with this problem with the Fredholm IE 

for unknown surface field and solved it iteratively for limited values of dielectric con-

stants ( 10<ε ). An asymptotic solution to this problem was obtained in [9]. A scat-

tered far field was built as a geometric-optical field and a cylindrical wave diffracted 

from the edge. In all mentioned papers, far fields were obtained approximately, but 

there were no backscattered fields in these works. However, it is important to know 

the field behavior in the vicinity of the tip of the wedge and backscattered far fields. 

 One of principal difficulties posed in the problem of a plane wave scattering by a 

dielectric wedge is, to our opinion, the absence of a simple form of solution inside and 

outside the wedge because we cannot represent such a solution as a linear combina-

tion of plane and cylindrical waves. This situation changes for a cylindrical incident 

 24



wave. In this case, we have cylindrical waves only that permits us to use simple inte-

gral representations for inside and outside fields and to satisfy the boundary condi-

tions along the whole dielectric interface.  

Using a cylindrical incident wave permits us to obtain in presented paper an ana-

lytical form of approximate solution and to compute the EM fields at any observation 

point. An asymptotic approximation of obtained solution gives the far field in any di-

rection. 

A canonical method of fields matching on the boundaries is used in this paper. 

Fields inside and outside the wedge are represented in integral form in the right-angle 

coordinates. Then, the boundary conditions lead to a set of IE of the 1st kind for six 

spectral functions. These equations have a continuous integrable solution for a cylin-

drical incident wave. The Laplace transform of the obtained IE results in an ill-

conditioned matrix equation (ME) obtained with the aid of point-matching method. 

The main problem of solving mentioned boundary-value problem with the aid of such 

canonical method is to obtain an adequate solution to very ill-conditioned ME resulted 

from corresponding IE set. An appropriate iterative scheme was proposed in [10, 11] 

for this purpose, since the known iterative methods do not work for very large condi-

tion numbers. However, the iterative algorithm derived in [10, 11] has only a numeri-

cal convergence. In this work, we develop a new iterative scheme, which gives a con-

vergent solution practically for any conditioning. This new iterative algorithm has 

very fast convergence. This prevents usually observable accumulation of rounding 

errors when solving an ill-conditioned ME. 

 
2. BOUNDARY-VALUE PROBLEM 

It is assumed that the dielectric body with a relative permittivity ε  occupies the 1st 

quadrant ( ). The permittivity of the wedge will be a complex constant 

value 

0,0 ≥≥ yx

''' εεε j+=  with 0'' <ε . Outside the wedge, the relative permittivity is de-

noted by 1ε . We consider a cylindrical incident wave with only z-component of elec-

tric field incoming from a source point ( 000000 cos,sin iyix ρρ −=−= ). 

( ) tjeyyxxkaHyxE ω2
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2
00

)2(
00 )()(),( −+−=                      (1) 
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We assume that 0ρ  is asymptotically large, and  is the incident angle counted 

clockwise from the negative y-axis. We denote here 

0i

ck /10 εω=  and omit hence-

forth the time dependence. To solve this BVP for the 2-D wave equation, a total elec-

tric field inside the wedge ( ) is represented as the sum of Witteker’s integrals: 1D

∫∫
∞

∞−

−
∞

∞−

− −− += hdeAhdeAyxE yjxjhyjhxj /)(/)(),( 211 ξξξξ ξξ .                    (2) 

Outside the wedge we use analogous representation to the scattered field in the 2nd 

quadrant ( ): 2D

∫∫
∞

∞−

−∞

∞−

−

+= 04032 /)(/)(),( 00 hdeAhdeAyxE
yjhxjyjxjh
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               (3) 

and in the lower half-space ( ): 3D

∫∫
∞

∞−

∞

∞−

++−
+= 06053 /)(/)(),( 00 hdeAhdeAyxE

yjhxjyjhxj
ξξξξ
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            (4) 

where 22 ξ−= kh , 2
0

222
00 kjkh −−=−= ξξ , ck /εω= . Functions (2-4) 

satisfy the corresponding wave equations and radiation conditions inside and outside 

the wedge for arbitrary integrable in  function 1R )(ξiA . These representations have 

the meaning of plane wave decompositions and must account for all waves of a physi-

cal problem. It is clear that it is so for a right angle wedge. The boundary conditions 

for the electric and magnetic fields are the following: 

)0,()0,()0,( 031 xExExE =−                                                       (5a) 

0,)0,()0,()0,( 031 ≥
∂
∂

=
∂
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−
∂
∂ xxE

y
xE

y
xE
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                              (5b) 

),0(),0(),0( 021 yEyEyE =−                                                     (5c) 

0,),0(),0(),0( 021 ≥
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∂

=
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∂
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∂
∂ yyE

x
yE

x
yE

x
                                (5d) 

0)0,()0,( 32 =− xExE                                                                  (5e) 
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0)0,()0,( 32 =
∂
∂

−
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∂ xE

y
xE

y
,                      0≤x                             (5f) 

If Eqs. (1), and (2-4) are substituted into Eqs. (5), we obtain the set of six IE of the 

first kind. It is important to clear up a solvability of this system. The equation (5) may 

be considered as the Fourier representation of the right-hand side (RHS). Such a rep-

resentation exists if the RHS tends to zero at infinity. This condition is true for a cy-

lindrical incident wave. As the Hankel function (1) oscillates with the wave number 

 and its amplitude decreases monotonously to zero at infinity, its Fourier spectral 

function has only two points of discontinuity at 

0k

0k±=ξ . At other points its spectral 

function is continuous [12]. These two singular points are accounted for in the field 

representation (2-4) that permits us to find the unknown functions )(ξiA in the class 

of integrable continuous functions . To find the solution in the whole space, we 

apply the Laplace transformation to the set (5) and obtain the equivalent new set:  
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This set is solved with the aid of collocation method using quadratures formulae 

while performing discretization. We denote here 1',' Rj ∈+= νσνν and 

00

00 )4/exp(2
ρ

πρ
π k

jjk
ab

+
= . 
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The Laplace transformations to the Hankel functions in the RHS of (5) are derived 

asymptotically by assuming that ∞→0ρ  and using the stationary–phase method. We 

henceforth put |b|=1 for brevity. 

 The set (6) is more suitable for numerical solution because of having a square in-

tegrable RHS. Hence, the corresponding matrix equation which is obtained while dis-

cretization also has a square summable RHS that is necessary for an existing solution 

in the infinite-dimensional vector space  with 1-norm 1l

∑
∞

=

∞<=
1

1 ||||||
i

iAA .                                                            (7) 

The obtained ME has a very ill-conditioned matrix. Its condition number is about 

. Because of very large condition number of the main matrix, the known iterative 

techniques, such as gradient methods, do not work in this case. Therefore, a new itera-

tive scheme developed by the author in [10, 11] for such systems solving. In this 

work, in contrast to the previous work [11], we propose a convergent and very fast 

iterative algorithm, which permits one to avoid practically the undesirable accumula-

tion of rounding errors when solving very ill-conditioned MEs. 
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3. ITERATIVE TECHNIQUE 

Consider a common ME 

fKx =                       (8) 

where K is a square nonsingular matrix of m-th order, x and f are vectors. Let consider 

further the equivalent equation 

uKxK =*                    (9) 

where *K is the Hermitian adjoint matrix and . One can transform this equa-

tion to the iterative form adding 

fKu *=

xα  on both sides as 

xuxKKI αα +=+ )( *               (10) 

with 0>α  and I being the m-th order identity matrix. Let denote the i-th eigenvalue 

of K as )(Kiλ  and corresponding singular number as 
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iii KKK σλσ ≡= )()( * .             (11) 

Accounting for , one can see that the matrix 

 has a unique inverse one, viz., , which permits one to re-

write the equation (10) in the iterative form 

0)( 2* >+=+ ασαλ ii IKK

IKK α+* 1* )( −+ IKK α

Gxbx +=                  (12) 

where  and uIKKb 1* )( −+= α

1* )( −+= IKKG αα .               (13) 

To the equation (12) corresponds the simple iterative scheme 

1−+= nn Gxbx                      (14) 

which converges if and only if the spectral radius )(Gρ  of the matrix G is less than 1, 

namely, 

1|)(|max)( <= GG i
i

λρ .                (15) 

Accounting for ||||)( GG ≤ρ  with |||| ⋅  being a spectral norm, let prove that 

 for any 1|||| <G 0>α . Really, let account for  and that 

the spectral norm of a matrix equals to its maximum singular value. Then, 

||)(|||||| 1* −+= IKKG αα

))((max|||| 1* −+= IKKG i
i

ασα .             (16) 

Noting  and accounting for IKKD α+= * 2* DDD = , one can derive that 

 and then, ασσ += 22 )( ii D

ασ
α

+
= 2min

||||
i

i

G                 (17) 

if using the known relation . Because of  for nonsin-

gular matrix K, we obtain from (17) that 

)(/1)( 1 DD ii σσ =− 0min 2 >i
i
σ

1|||| <G  and hence the iterative algorithm 

(14) converges. In this case, the approximate solution  tends to an exact solution of 

equation (12), which can be represented as 

nx
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∑
∞

=

−==
0

1

n
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with the inverse matrix  

∑
∞

=

− +=
0

**1 )(
n

n KIKKGK α                 (19) 

Considering 1−K  as a matrix operator in a finite linear space, we can easily see 

that it is continuous and hence, the solution x (18) is stable in the sense of Hadamard. 

 There are many iterative algorithms derived to now. All these differ only by a to-

tal computational labor for well-conditioned ME. However, for ill-conditioned ME 

the convergence rate decreases and needed accuracy is achieved for greater iteration 

number N. This issue leads to accumulation of rounding errors as was noted in [13]. 

As a result, a theoretically convergent iterative solution can tend to some other solu-

tion. This issue depends only on the number (N) of needed iterations and the latter de-

pends on the rate of convergence and may lead to an inadequate solution in the case of 

ill-posedness. The adequacy of an iterative solution to verify, one can check the valid-

ity of approximate inverse matrix  

∑
=

− +=
N

n

n
N KIKKGK

0

**1 )( α               (20) 

obtained as a result of N iterations. The inadequacy error can be then estimated as 

1|||| 1 −= −
NNN KKe                 (21) 

For very ill-conditioned ME with condition number  there exists an optimal 

iterations number  which minimizes the error (21). Practically, an iterative solu-

tion can be regarded as adequate if the error (21) is less than  and relative resid-

ual error of an ME solution is of the same order or less. All numerical results obtained 

in this paper when solving the RADW BVP problem are in the range of such accu-

racy.  

1910~
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 It is worthwhile to point out that proposed iterative algorithm is drastically faster 

than that of derived in [11]. The new method achieved mentioned accuracy by ap-

proximately 10 iterations in contrast to about 1000 in [11]. Such a convergence rate 

prevents primarily the accumulation of rounding errors and permits one to obtain es-
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sentially adequate solution to any ill-conditioned ME, which is good arranged. The 

last issue is related with preconditioning procedure and determines the existence of a 

solution. In this paper, we use the Laplace transform of the integral equations in (5) as 

a preconditioning procedure. 

 
4. NUMERICAL RESULTS 

A collocation method was used in this paper for the IE set (6) for solving in the 

class of continuous integrable functions with the aid of discretization by the quadra-

tures. The integration range was reduced to a finite one due to the physical considera-

tions that permit us to assume that the spectral functions )(ξiA  are concentrated not 

far from geometric-optical points and numerical investigations prove that. In Fig. 1 

the 1st (from six) solution is shown for 10=ε  and incidence angle . We can 

see here the integrability of the solution and its independence of the integration range. 

We put =1 and use the same meshing for 

o450 =i

0k ξ  and 'ν . The range ]8,8[', −∈νξ  was 

used during integration in Eqs. (6), for dielectric constant less than 60. The interval 

]1,1[−∈ξ  was sampled at 0.1051 and the rest of the range was sampled at 0.3684. 

Enlarging the integration range up to [-20, 20] was tested and the solution did not 

change. For permittivity greater then 60 the integration range must be enlarged. Pa-

rameter σ  in (6) was varied in the range 0.5 – 0.9, to find a minimal discrepancy. The 

mentioned discretization produces the matrix K of the size 462×462 with the condi-

tion number about of . The CPU time to the ME solving with the aid of iterative 

scheme (14), having tolerance level equals to , was about 30 sec on a PC Pentium 

Pro 200 MHz (with the code written in MATLAB). For the mentioned parameters, the 

boundary condition matching relative error in the vicinity of the edge was less then 

0.5%.  

1910
310−

The spectral functions )(2,1 ξA  determine the total field inside the wedge using Eq. 

(2). Functions )(4,3 ξA  and )(6,5 ξA  determine the scattered field in the 2nd quadrant 

and in the lower half-space, if using Eqs. (3 and 4), respectively. The far field was 

evaluated asymptotically from Eqs. (2-4) according to [14]: 

ρϑϑρ
ρ

0/)(),( 0 keFE
njk−

=                                      (22) 
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Figure 1. Typical solution of the BVP. Real and imaginary part of the first (from six) spectral func-

tion )(1 ξA  for ε =10 and . o450 =i
 
with 
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⎨

⎧
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1,0180),cos()cos(
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ϑϑϑ
ϑϑϑ

εϑϑϑ
πϑ π  

for the  total field inside the wedge ( ) and for the scattered fields in the 

2

oo 900 ≤≤ϑ
nd quadrant and in the lower half-space . The far-field amplitude patterns |)(| ϑF  are 

shown in Fig. 2 for the nose illumination ( ) and for various permittivities. 

Here we can see the focusing effect of Rawlins [7] in Fig. 2(a) for small dielectric 

constants (

o450 =i

ε =1.5, 2). This effect vanishes rapidly with permittivity growth and the 

total field concentrates near verges for ε =50 (curve 6). The scattering in the lower 

half-space for the same cases is shown in Fig. 2(b). We can see here the main maxi-

mum approximately in geometric-optical direction and backscattered field maximum 

( ) for each pattern. Some asymmetry that we can see here is caused by the 

lack of accuracy.  

o135−≈ϑ

For the negative incidence angle ( 00 ≤i ) we use another field representation in the 

2nd quadrant. In this case  in Eq. (3) will be a total field.  ),(2 yxE
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Figure 2 (a) Total far-field patterns inside the wedge for nose illumination 
( ) and o450 =i ε =1.5, 2, 3, 5, 20, 50 (curves 1-6). (b) Scattered far-field 

patterns in the lower half-space for the same parameters. 
 

The scattered far-field patterns for ε =50 and oblique incidence ( , curve 

1, and , curve 2) are compared in Fig. 3 with frontal incidence pattern 

( , curve 3). We see approximately the same patterns for  and 

with two symmetric maxima ( ) in the forward direction, one 

maximum ( ) for the side scattering, and one maximum ( ) in the 

back direction. When increasing  to zero the main maximum occur at  (the 

backscattering) as is shown in Fig. 3(a), curve 3. In the 2

o850 −=i

o700 −=i

o00 =i o850 −=i

o700 −=i o145±≈ϑ

o90−≈ϑ o45−≈ϑ

0i
o90−≈ϑ

nd quadrant we can see in Fig. 

3(b) the total field increasing for  (curve 3) in the forward direction, as it must 

be from general considerations.  

o00 =i

The backscattering estimation that becomes possible due to the proposed method 

using gives the opportunity to calculate the dimensionless monostatic RCS (MRCS) 

according to formulae  

2
0

2
0 |)0,0(|/||2lim EEk sρπσ

ρ ∞→
=                                     (20) 

for the nose illumination of the wedge ( ) with the incident wave normaliza-

tion: . In this case, the backscattered field is the field scattered by the 

o450 =i

1|)0,0(| 0 =E
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edge only. It is important to investigate the backscattering from the edge for some real 

absorbers.  
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Figure 3. (a) Total far-field patterns in the 2nd quadrant for negative incident angles 

( , curve 1, and , curve 2) compared with the normal incidence 

( , curve 3) for 

o850 −=i o700 −=i
o00 =i ε =50. (b) Scattered far-field patterns in the lower half-space for the 

same parameters. 
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Figure 4. (a) MRCS via real permittivity value for nose illumination ( ). (b) 
MRCS via imaginary part of permittivity for some absorbers with 

o450 =i
ε =1.4, 1.6, 2, 2.5, 

3.45 (curves 1-5). 
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Fig. 4(a) shows the MRCS dependence via real permittivity in the range of 1.4-50. 

Fig. 4(b) shows the analogous dependence of MRCS via imaginary part of permittiv-

ity ( "ε ) for some absorbers (ε =1.4, 1.6, 2, 2.5, 3.45). With the aid of such calcula-

tions we can estimate the effectiveness of a wedge-like covering.  

 
5. CONCLUSION 

A full-wave rigorous numerical method to a RADW BVP solving in integral for-

mulation is presented in this paper. The unknown spectral functions )(ξiA  are ob-

tained approximately as a solution of the 1st kind IE set in the  function class. The 

point-matching method is used for discretization this IE set, which yields very ill-

conditioned ME. A new convergent iterative method is proposed to obtain a unique 

normal solution for such a ME that is stable in the sense of Hadamard and immune to 

the sampling variations. The obtained solution ensures the boundary conditions 

matching error less than 0.5% in the vicinity of the edge. The analytical form (2-4) of 

the BVP solution permits to compute fields and their derivatives at any point without 

complicated calculations. The far-field amplitude patterns are presented and an essen-

tial difference is shown compared with the geometric-optical approximation. The fo-

cusing effect of Rawlins is confirmed and backscattered far fields are estimated for 

small and large permittivities. 
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