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Abstract 

Two-dimensional solution to the Neumann problem is obtained in the 1st kind hy-
persingular integral equation (HSIE) formulation with the aid of Galerkin method of 
moments (GMoM) on the complete orthogonal basis. Convergence of the GMoM and 
uniqueness of the HSIE solution are proved in the Hilbert space of square integrable 
functions ( ) for a smooth closed boundary of a scatterer in the nonresonance case. 
The exact relation between actual and residual errors is also obtained, which permits 
to calculate an actual error by integrating of residual error along the boundary of a 
scatterer.  
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1. INTRODUCTION 

Two-dimensional problem of H-polarized plane wave scattering by an arbitrarily 

shaped metallic cylinder with closed smooth boundary is addressed. As is known, this 

problem can be considered with the aid of different methods. The most convenient, as 

to our opinion, is the integral equation formulation. The known method of the mag-

netic field integral equation (MFIE) solving gives excellent result for thick scatterers, 

but for thin ones and screens, it is not apropos. At the same time, scattering from very 

elongated structures and screens is of paramount importance when investigating radar 

returns from rough surfaces and wing-like scatterers, for example. Such problems can 

be considered in integral equation formulation with the aid of HSIE only. In principle, 

one can solve the HSIE analytically for thick scatterers with smoothed closed bound-

ary [1]. However, in this case the MFIE is more apropos. There are known numerical 

methods, which used approximate evaluation of hypersingular integrals as the finite 

part in the sense of Hadamard [2]. These methods are applicable both for thin scatter-

ers and screens but obtained solution depends on the closeness to the singular point 

and can be scarcely regarded as rigorous. Method solution of the HSIE developed in 

[3] with the aid of numerical evaluation of hypersingular integrals with the use of 

quadrature formulas can be regarded as approximate as well. Theoretically, the exis-

tence and uniqueness of the HSIE solution was considered in [4] for arbitrarily shaped 
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scatterers in full wave formulation making use of energy Sobolev space. However, the 

problem obtaining of mathematically correct solution convenient for practical using is 

not solved to now. This paper will attempt to solve this problem in two dimensions. 

We consider herein the scatterers with closed smooth boundary leaving screens for the 

next paper. The HSIE is solved in this work with the aid of the GMoM in the familiar 

Hilbert space . To this end, the regularization of HSIE is fulfilled with the aid of 

special regularizer, which can be evaluated analytically for basis functions used as the 

finite part in the sense of Hadamard. This one permits us to transform the HSIE to a 

2

2L

nd kind equation in the space of sequences. The convergence of this equation’ solu-

tion is proved in the Hilbert space of sequences for nonresonant case, which proves 

the convergence of the GMoM in . An important problem estimation of an actual 

error’ norm in  is also considered in this paper. The completeness of basis func-

tions used permits us to obtain an analytic relation between actual and residual error 

norms in  space. The obtained result permits one to avoid the using of the more 

complicated Sobolev space when computing actual errors as has been proposed in [4]. 

Besides that, it is worthwhile to point out the practical merits of proposed method so-

lution to the HSIE. It has sufficiently high accuracy and the same total computational 

labor (TCL) as the MFIE with GMoM solver. However, in contrast to the last one the 

new method is valid both for thin scatterers and screens. 

2L

2L
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At last, the new method is compared to the known methods solution to the Neu-

mann problem with the goal of estimating its accuracy and efficiency. Namely, it is 

compared to the Rayleigh solutions for circular cylinder and to the MFIE solutions for 

not very elongated cylinders. The scattering features of very elongated cylinder are 

also considered.  

 
2. GALERKIN METHOD OF MOMENTS 

Let decompose the total field as the sum of incident and scattered fields. The inci-

dent field 

00 cossin
0 )( iikyiikxerH −−=
r  

impinges on the two-dimensional object with incidence angle  counted clockwise 

from the mines Y direction. Here  is the observation point and k is the free 

space wavenumber. The scattered field is sought as a double-layer potential 
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stands for the two-dimensional Green’s function, and )(rrϕ is an unknown function, 

which is proportional to the surface current. The Neumann condition yields the inte-

grodifferential equation 
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with the right-hand side (RHS) 
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Let us take the normal derivative in (2) inside the integral understanding the re-

sulted integral as the finite part in the sense of Hadamard and representing the bound-

ary  in parametric form as D∂ ]2;0[,),( π=ΩΩ∈= ttrr rr
. Then the equation (2) be-

comes 

FP ∫ ∈=
∂∂

∂π

π
2

0

2
]2;0[),(~')'()'(

'
)',( ttFdttLtu

nn
rrG rr

,         (4) 

where  and |)(|)()),(()(~)),(()(
.

trtLtrFtFtrtu rrr
===ϕ

.
rr  is a derivative of rr  with re-

spect to parameter t. Adding and subtracting the regularizer  
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on the left-hand side of (4), we obtain the integral equation 
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The auxiliary function )(tξ  needs to be generated so that the kernel (7) would 

have a weak singularity only. For that, we take . With this )(4/1)( 2 tLt πξ = )(tξ , the 

function (7) has only an integrable singularity as ' , viz., tt →
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where 0.5772...=γ is the Euler constant, and )'(/)'()'( 2 tLntrt r&r ⋅=χ  is the curvature 

of ∂D. Let seek a solution to (6) in )(2 ΩL  as a Fourier expansion on a complete or-

thogonal set : 
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Using this representation of unknown function, the formula 
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which is proved in the Appendix, and supposing the absolute convergence of the se-

ries (9) that permits us to change the integration and summation order, we obtain the 

equation 
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Multiplying this one by  and integrating over π2/iqte− ]2;0[ π , we obtain after di-

viding by )0( ≠− qq the following 2nd kind equation 

fAcc =+ ,                     (12) 

for unknown vector c of Fourier coefficients. The matrix operator A corresponds to 

the matrix 
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with 'qqδ  being the Kroneker delta. The RHS vector has the following coordinates: 
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Let prove that obtained equation (12) is Fredholm. To this end, it is sufficient to 

prove that the operator A is compact in the Hilbert space of sequences ( ) and 

. Really, the operator A is compact in  if the matrix (13) is square summable. 

From general properties of Fourier integrals it follows that due to the integrability of 

function  the double integral in (13) decays in any case as  with indexes 

(  and ) growth. Consequently, . Accounting additionally for 

that the matrix (

2l
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0'0 qq δδ ) has only one nonzero element, we can conclude that the ma-

trix (13) is square summable and hence, the operator A is compact in . From the 

same properties of Fourier integral, it follows that integral in (14) decays in any case 

as  with  growth and then, . This proves the needed summability 

of vector f in . All this proves the equation (12) is Fredholm. As has been proved by 

von Koch [5], an equation such (12) has a unique solution if abovementioned condi-

tions fulfill and the determinant of the system is nonzero. Because of the spectrum of 

integral operator in (6) coincides with that of its discretized counterpart in (12) when 

using the Galerkin method [6], the determinant of the system (12) is nonzero in the 

nonresonance case when solution to the Neumann problem exists and is unique [1]. 

Hence, in nonresonance case there exist the unique solution to equation (12), which 

belongs to  [6]. This one ensures the absolute convergence of series (9) and justifies 

the changing of integration and summation order when obtaining the equation (12). 

An approximate solution 
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of truncated equation 
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converges in this case to an exact solution of integral equation (6) in L2 if . ∞→N
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3. ACTUAL ERROR 

One of the main points of the Neumann problem solving procedure in integral 

equation formulation is the estimation of an actual error of a solution with the aid of 

residual error computed in . The latter stands for the boundary condition error and 

can be easily computed in practice. This problem was considered in [4] in the energy 

Sobolev space. We consider this problem in the familiar  space. The completeness 

of basis functions used permits us to obtain a rigorous relation between actual and re-

sidual errors. To this end, let write down an actual error of the approximate solution to 

the equation (6) as a function 

2L
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Function (17) satisfies the equation 
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that is the same as (6), but with another RHS, which is now the discrepancy of equa-

tion (6) for approximate solution (15): 
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Hence, we can use the abovementioned technique to obtain a convergent GMoM 

solution for error function (17) making use of its Fourier representation 
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in . As is clear from (12), the corresponding solution in  can be written then as 2L 2l
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Analogously to the above, the obtained solution (21) yields the convergent ap-

proximate solution (20) if the right-hand side vector b will be square summable. This 

will be so if the discrepancy function E(t) will be integrable over ]2,0[ π . Let show 

that it is so. The function )(~ tF  is obviously integrable. Using (10) and (15), one can 

easily obtain 
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The last expression shows that the first expression in (23) is continuous and hence 

integrable for any N. The last term in (19) is continuous and integrable because K(t,t’) 

is integrable. All this proves the convergence of GMoM solution to the equation (18) 

and permits us to use the Parseval equality 

22
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which gives one the possibility to relate actual and residual errors in the form 
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The actual error of the (2N+1)-term approximation  to the exact solution 

 of the initial solution (4) one can estimate then as follows: 
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4. COMPUTATIONAL FEATURES 

The relative boundary error  is computed as the Euclidean norm of residual er-

ror for (2N+1)-terms approximation to an exact solution divided by  versus 

progressively greater value of the grid resolution 

Ne

20 |||| H

hgr /λ=  (a number of subintervals 

or points per wavelength) with h the grid spacing. The latter parameter, , has been 

proposed in [7] instead of the number of subintervals (n) and has, to our opinion, an 

insightful physical meaning. Because of comparing the approximate solutions for 

scattering from circular cylinders with the exact Rayleigh solutions in the far zone, we 

compute the corresponding matching error as 

rg
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where )(φRF  is the scattering amplitude function resulted from the Rayleigh solution 

and )(φF  is the corresponding scattering amplitude function resulted from the con-

sidered method. This error is computed on uniform subdividing of interval ]2,0[ π  by 

2000 parts. When using the GMoM, the truncation number N is related with n as 

, to support the needed accuracy when evaluating the peripheral MoM ma-

trix elements. The number (n) of subintervals, which are used for approximate evalua-

tion of the MoM matrix elements, is derived from the formula: 
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where  is the boundary length and || D∂ ][⋅  is the integer part of a number. To com-

pare different numerical algorithms in terms of total computational labor (TCL), we 

estimate this notion as a numeric quantity. The TCL can be estimated as the ratio of 

CPU time, , of tested algorithm enacted on given meshing (n) to that of 

any standard numerical one with the same meshing. As such a standard algorithm, we 

use the (2N+1)-terms approximation to the MFIE solution with the aid of GMoM for 

scattering of an H-polarized plane wave by a circular metallic cylinder of the same 

electric size (ka). The CPU time of this standard algorithm we denote as . 

Then, the TCL can be estimated numerically as 
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Such an estimation of the main characteristic of an algorithm, permits one to com-

pare different numerical methods independently from their machinery realization. Be-

sides this characteristic, we also use a monostatic RCS (MRCS) in unitless form 

)||/||2(lim 2
0

2 HHk scb ρπσ
ρ ∞→

= .                  (29) 

The Fourier coefficients ( ) for approximate solution (15) were derived from 

(16) with matrix elements  evaluated in the Bogolyubov-Krylov approach [8] as 
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with . An improvement of this approach is possible, in principle, but leads to 

significant increasing in computational labor and in fact is not effective. At last, the 

upper estimation of relative actual error was computed as  
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5. NUMERICAL ANALYSIS 

Because of a rigorous solution to the HSIE with GMoM has not been obtained be-

fore now, as to authors’ knowledge, we provide in this work a detailed comparison of 

obtained HSIE solutions with that of the MFIE for the Neumann problem. The main 

scattering characteristics for circular cylinder of ka = 100 obtained with the new 

method solution of the HSIE are collected in Table 1. They show a sufficiently high 

accuracy of the new method ( ) with the same computational cost as for 

MFIE solutions (tcl ~ 1). The comparison of scattering amplitude functions for HSIE 

and Rayleigh solutions by evaluating the matching error (27) confirms the high accu-

racy and adequacy of used algorithm. Both actual and residual errors are decreasing 

with  growing, as is also the condition number of the matrix equation. The corre-

sponding characteristics obtained by solving the MFIE are listed in Table 2. As can be 

supposed, the solutions to the MFIE are more accurate than that of to the HSIE. The 

4)( 10~, −ψ
NN ee
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both tables show the tendency of MRCS ( bσ ) to the exact value ( 9712.24=Rσ dB) 

obtained with the aid of high accurate Rayleigh solution (with relative error ~ ).  
1410−

 

Table 1. HSIE. Circular cylinder,  ka = 100,   o450 =i

rg (n) 5 (500) 6  (600) 7  (700) 8  (800) 9  (900) 10 
(1000) 

11 
(1100) 

N 250 300 350 400 450 500 550 

Ne 410⋅  0.26 0.21 0.18 0.16 0.14 0.12 0.10 

)(ψ
Ne 410⋅  2.1 1.2 1.5 1.4 1.2 1.0 0.9 

Re 310⋅  5.4 5.6 5.3 4.9 4.5 4.1 3.8 

bσ , dB 24.9332 24.9280 24.9330 24.9395 24.9453 24.9499 24.9535 

cond  310−⋅ 7.1 7.2 6.9 6.6 6.4 6.2 6.0 

tcl 1.11 0.93 0.91 0.88 0.83 0.85 0.87 

 

Table 2. MFIE. Circular cylinder, ka = 100,   o450 =i

rg (n) 5 (500) 6  (600) 7  (700) 8  (800) 9  (900) 10 
(1000) 

11 
(1100) 

Ne 710⋅  5.52 2.41 1.23 0.69 0.42 0.27 0.18 

)(ψ
Ne 610⋅  7.74 3.45 1.78 1.02 0.62 0.40 0.27 

Re 310⋅  1.31 0.72 0.44 0.29 0.20 0.15 0.11 

bσ , dB 24.9668 24.9683 24.9693 24.9699 24.9703 24.9705 24.9707 

cond 183.8 183.8 183.8 183.8 183.8 183.8 183.8 

  
With diminishing of thickness of a scatterer both HSIE and MFIE solutions be-

come less accurate. Scattering characteristics obtained with these equations for not 

very elongated elliptic cylinder of ka = 100 and b/a = 0.1 are listed in Table 3 and 4 

consequently. We can see in these tables some diminishing in accuracy for both meth-

ods. 

 

Table 3. HSIE. Elongated cylinder, ka = 100,  , b/a = 0.1. o450 =i

rg (n) 5  (323) 6  (388) 7  (453) 8  (517) 9  (582) 10 (647) 11 (711) 

N 162 194 227 259 291 324 356 

Ne 410⋅  0.97 0.35 0.24 0.22 0.20 0.18 0.16 

)(ψ
Ne 410⋅  2.7 1.2 1.1 1.1 1.0 0.8 0.8 

bσ , dB 8.3102 8.3139 8.3131 8.3098 8.3060 8.3023 8.2991 

cond  410−⋅ 5.9 1.5 0.8 0.8 0.8 0.8 0.8 

tcl 1.30 1.33 1.18 1.13 1.13 1.07 1.05 
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Table 4. MFIE. Elongated cylinder, ka = 100,  , b/a = 0.1. o450 =i

rg (n) 5 
(323) 

6 
(388) 

7 
(453) 

8 
(517) 

9 
(582) 

10 
(647) 

11 
(711) 

Ne 710⋅  3.65 1.48 0.73 0.41 0.25 0.16 0.11 

)(ψ
Ne 710⋅  18.8 8.4 4.3 2.5 1.5 1.0 0.7 

bσ , dB 8.2669 8.2677 8.2681 8.2682 8.2683 8.2684 8.2684 

cond 64.5 64.5 64.5 64.5 64.5 64.5 64.5 

tcl 1.02 1.12 1.12 1.10 1.11 1.11 1.11 

 
Numerical investigation shows small diminishing in accuracy for b/a being in the 

range from 1 to 0.1, but for b/a < 0.1 the accuracy decreases very rapidly with b/a. A 

MFIE solution may be incorrect at all for b/a less than 0.05. A HSIE solution remains 

correct in any case for . However, the accuracy of a solution for such a thin 

scatterer is not very high. The scattering characteristics for very elongated elliptic cyl-

inder with b/a = 0.01 are collected in Table 5. Note that condition number increases  

01.0/ ≥ab

 

Table5. HSIE. Elongated cylinder, ka = 100, , b/a = 0.01. o450 =i

rg (n) 6 
(382) 

7 
(446) 

8 
(255) 

9 
(573) 

10 
(637) 

11 
(700) 

12 
(764) 

13 
(828) 

14 
(892) 

N 191 223 255 287 319 350 382 414 446 

Ne 310⋅  185.0 183.1 258.8 102.7 67.9 50.4 39.5 31.4 24.9 

)(ψ
Ne 310⋅  50.6 68.7 130.6 29.6 12.9 5.7 3.6 2.4 1.8 

bσ , dB -
2.9451 

-
2.0331 

-
1.7699 

-
1.7918 

-
1.8340 

-
1.8770 

-
1.9151 

-
1.9453 

-
1.9678 

cond 1  510⋅ 6  510⋅ 1  610⋅ 8  510⋅ 6  510⋅ 3  510⋅ 3  510⋅ 3  510⋅ 3  510⋅
tcl 1.32 1.20 1.17 1.18 1.10 1.08 1.03 0.96 1.01 

 

with the thickness of a scatterer diminishing and for b/a = 0.01 it is about of . The 

increasing of condition number observed in Table 5 for small  is caused by the lack 

of accuracy when evaluating matrix elements. For larger  the condition number 

becomes less and decreases to some level. In that range of , where the condition 

number increases, a solution may be inadequate and we have to enlarge  to obtain 

an adequate solution. In general, the accuracy of GMoM solution to the HSIE in-

creases with ka growth for given  as is shown in Table 6 for = 10, ka = 100, and 

. It should be interesting to demonstrate a difference in scattering amplitude 

510

rg

rg

rg

rg

rg rg

o450 =i
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functions obtained by solving the HSIE and MFIE but they are completely overlap-

ping for all  as one can conclude from Tables 1-4. Because of that, we show in 

Figure 1 the scattering amplitude functions for elongated cylinder of ka = 100 and 

 obtained by solving the HSIE only for different axial ratios (b/a = 0.1, 0.05, 

0.01). Here we can see the scattering amplitude functions approaching some hypo-

thetical symmetric pattern of a strip. In Figure 2, a magnified part of the central area 

of Figure 1 is shown, in which we can see specific features of scattering from elon-

gated cylinder. We can see herein the substantial changing of backward scattering 

with b/a diminishing and practically unchanged forward scattering. 

5≥rg

o450 =i

 

Table 6. HSIE. Elliptic cylinder of ka = 100, b/a = 0.1 ( ). o450 =i
ka (n) 10 (65) 30 (194) 50 (323) 70 (453) 90 (582) 110 (711) 

)(ψ
Ne 410⋅  98.1 2.7 4.5 1.0 0.7 0.3 

bσ , dB 2.5417 4.2498 6.2102 7.3491 8.2985 9.2206 

cond 557 6220 3390 4710 9820 8800 
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Figure 1. Scattering amplitude functions for elongated cylinders of ka = 100 

and oblique incidence ( ) for different axial ratios (b/a = 0.1, 0.05, 0.01). o450 =i
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Figure 2. The magnified part of the central area of Figure 1. 

 
 
6. CONCLUSIONS 

In the present work, the convergence of the Galerkin MoM has been proved in  

for the hypersingular 1st kind integral equation of Neumann problem for two-

dimensional object with a smooth boundary in the nonresonance case. Practically 

convenient Fredholm 2nd kind equation in the space of sequences has also been ob-

tained for Fourier coefficients of the HSIE solution. To this end, the method of ana-

lytical regularization has been used with exact evaluation of hypersingular integrals 

over basis functions as the finite part in the sense of Hadamard. The proved conver-

gence of GMoM on a complete set of basis functions permitted us to obtain an exact 

relation between actual and residual errors in . This, in turn, permits one to calcu-

late an actual error simply by integration of residual error along the boundary.  

2L

2L

The Neumann problem solutions derived with proposed method have been com-

pared both with exact Rayleigh solutions for circular cylinder and GMoM solutions to 

the MFIE for circular and elongated cylinders. The Neumann problem solution for 

very elongated elliptic cylinder has been also considered. The obtained results are also 
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applicable for solving the combined field integral equation [1]. These one will be con-

sidered in the next work. 

 
APPENDIX 

Let  is a )(tu π2 -periodic function, which derivative is Lipshitz, and there exist 

the following integral 
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as a finite part in the sense of Hadamard. Making use of integrating by parts in 
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With the use of known Hilbert transform of )exp()( iqttu = , viz., 
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we can easily obtain from (A2) the needed formula: 
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