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Abstract

A new method evaluation the electric field integral equation integral is proposed that is
based on analytic evaluation of this integral in the vicinity of singular point. This new method
is compared to the traditional method of singularity extraction in terms of accuracy and
efficiency for solving the Dirichlet problem in the integral equation formulation making use of
the Galerkin method of moments. A high accuracy and efficiency of the new method is
demonstrated both for the combined field integral equation and electric field integral
equation solvers.

1. INTRODUCTION

In this work, a new method evaluation of singular electric field integral equation (EFIE)
integral is proposed substantially more accurate than that of the traditional singularity
extraction (SE) method [1]. The latter is the most accurate compared to other existed methods.
Its simplest version with remained integral evaluated in the Bogoluybov-Krylov [2] approach
is the most economical but not sufficiently accurate. In principle, it is possible to improve this
simplest version but it takes much computational labor. To solve this problem in three
dimensions, a new approach was proposed in [3]. In presented work, this problem is
considered in two dimensions. A method analytical evaluation (AE) of the EFIE integral in
the vicinity of singular points is proposed in this work. The main merit of this method is the
substantial increasing of accuracy without increasing of the total computational labor (TCL)
compared to simplest version of the SE method.

2. EVALUATION OF THE EFIE INTEGRAL

For closed boundary, the EFIE operator can be represent as

T ti+d
Zj H? (KRt )y ()dt' =Y [HEP (R(t,, t)p(t)dt )
0 i t-d

59



where t, €[0.27], R(ty,t")=+/(x(ty) —X(t))? + (¥(ty) — Y(t)? and x=x(t),y=y(t) is a
parametric equation of the boundary. Here, Héz) (-) is the zero order Hankel function of the

second kind, k is a free space wave number, 2d =h is the grid spacing (h=2z/n), and

w(t)is an unknown function proportional to a surface current. For a smooth boundary, this
function is continuous and can be moved outside the integral in the midpoint t'=t;. The
remained integral is nonsingular for t; #t,and can be computed with guaranteed accuracy.

The main error produces evaluation of the singular EFIE integral for t; =t :

tj+d
Ji= [HP KR, 1))t (2)
tj—d

The known SE method evaluation of this integral makes use of logarithmic function
1 2j 1
H(t, —t')=———In(ka|t; —t']) (3)
VA
as a regularizer. After singularity extraction, we obtain

3, ~~ 2 (In(kad) -1+ In(L, /2a)) + (L- 2C / ) 4)
T

in the simplest version. Here, L; :\/Xz(ti) +y?(t,), C is the Euler’s constant (C=0.577...),
and a is a half of maximal scatterer size. In contrast to the SE method, we use in this work the
following function

G(t; —t')=H? (2kasin(t; —t')/2]) (5)

as a regularizer. Then,

d tj+d
J; =2[H{? (2kasin(s/2))ds + [{HP (KR(t;,t) - G(t; —t')}dt’
0

tj—d

d .
~2[H (2kasin(g/2))dg—ﬂln(kLi) (6)
0 T

The remained singular integral can be evaluated using the known identity
2z

[HE (2kasin(t —t')/2[)e ™ dt'= 272, (ka)H {? (ka)e ™
0
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as follows:

d 2z

[HE @kasin(c 1 2))dg = 27, (ka)HE? (ka) - [ HE? (2kasin(s / 2))dg ()
0 d

Now, the remained integral in (7) is nonsingular and can be evaluated with guaranteed

accuracy.

In order to compare the accuracy and efficiency of the new method proposed with those of
the traditional SE method, we consider the scattering from a metallic cylinder with the aid of
the Galerkin MoM (GMoM) on the set of {ej”t}f}w. To this end, we consider the combined

potential method [5] of electric field representation
oG .
E=E;+ | —wds'— jn|Gyds' (8)
a{) on a{)

that leads to the combined field integral equation (CFIE)

1 G . .
Sv+ [ S wds=in[Gyds=-E,, 9)
o N D

all in familiar notation. This equation contains the EFIE operator and we will derive the
corresponding EFIE integral with the aid of two mentioned methods. When solving the

equation (9), we put = p/a. For not very elongated structures, the parameter p has been

taken as 0.01 but for thin structures, it has been taken as 0.4 to meeting a combined challenge

of accuracy and TCL.

3. COMPUTATIONAL FEATURES

The relative boundary error e, was computed as the Euclidean norm of residual error for
(2N+1)-terms approximation to an exact solution divided by | E, ||, versus progressively
greater value of the grid resolution g, =A/h (a number of subintervals or points per

wavelength) with h the grid spacing. The latter parameter, g,, was proposed in [5] instead of

the number of subintervals (n) and has, to our opinion, an insightful physical meaning. While

using the GMoM, the truncation number N is related with n as N =[n/4], to support the

needed accuracy while evaluating the peripheral MoM matrix elements. The number (n) of

subintervals, which are used for approximate evaluation of the MoM matrix elements, is
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derived from the formula: n=[|oD |kag, /2x], where | oD | is the boundary length and [] is
the integer part of a number. To compare different numerical algorithms in terms of efficiency
and TCL, we estimate these notions as numeric quantities. TCL can be estimated as the ratio
of CPU time, tgp, , of tested algorithm to that of any standard numerical one. As such a
standard algorithm, we use the (2N+1)-terms approximation to well known Rayleigh solution
for scattering of a E-polarized plane wave by a circular metallic cylinder of the same electric
size (ka). The CPU time of this standard algorithm we denote as ti (ka, N). Then, TCL can be

estimated numerically as

For ka = 100, we take N = 200, and for ka = 150, N = 250. To estimate efficiency
numerically, we use a common economic definition, that of the accuracy per unit TCL. Then,

the efficiency can be estimated as
eff = (e, -tcl)™ (11)

Such estimations of the main characteristics of an algorithm, permits one to compare
different numerical methods independently from theirs machinery realization. Besides these

characteristics, we also use a monostatic RCS (MRCS) in unitless form

oy = lim ko Eq. I /1 [P).
p—>®

4. NUMERICAL RESULTS

Using all mentioned characteristics, we compare in Table 1 solutions to the CFIE with
GMoM for circular cylinder making use of the SE and AE methods to each other, and both of
these to the solution of the MFIE with point-matching (PM) method versus progressively
greater g,. Despite the lack of accuracy giving by SE method while solving the EFIE, its
implementation in the CFIE solver gives sufficiently good solution as we can see from the
first part (from top) of Table 1. In comparison, the exact value of MRCS derived from

Rayleigh solution is o, =24.9718. The analogous solution with the aid of new method is

demonstrated in the second part of Table 1. Of the advantages of new method, the boundary
error decreases more rapidly with g, growth for the same TCL. This leads to efficiency

increasing in contrast to the SE method. In the third part of Table 1, we collect the
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characteristics of solutions to the MFIE with PM. Worthwhile to note only a little difference
in the TCL between solutions with GMoM and PM (~ 35 %). This is due to using very fast
vector operations of MATLAB programming area while filling the MoM matrix. Besides that,
using a complete orthonormal set of basis and test functions increases significantly accuracy
of GMoM solutions compared to PM ones. As a result, GMoM solutions to the CFIE are
about 15 times more effective than those of the MFIE with PM.

Table 1 Scattering characteristics for circular cylinder. ka = 100. Exact monostatic RCS: ¢,=24.9718.

g, 5 6 7 8 9 10

e 10° | 0.1977 | 0.1877 | 01727 | 0.1577 | 01441 | 0.1322

SVFI:E o, | 249755 | 24.9740 | 24.9732 | 249727 | 24.9724 | 24.9723
SE | tel 8.9 141 210 | 296 |419 |554
eff 10° | 5.7 3.8 2.8 2.1 1.7 1.4

e 10° | 0.2213 | 0.1543 | 0.1089 | 0.0762 | 0.0516 |0.0325

(\i\II:I'I[E o, | 24.9754 | 249739 | 24.9731 | 24.9727 | 24.9724 | 24.9722
AE |t 9.0 143 216 | 2908 417 |563
eff 107 | 5.0 45 43 4.4 4.6 55

e, 10° | 5.5107 | 3.0531 | 18617 | 12341 |0.8511 | 0.6151

'\\f'VIFtLE o, | 249754 | 24.9739 | 24.9731 | 249727 | 24.9724 | 24.9722
PM | tol 6.6 106 | 163 | 243 | 341|423
eff10°| 027 | 031 | 032 033 |034 |o038

In spite of the CFIE yields a unique solution in contrast to the EFIE, and its solution is
much more accurate, practitioners use, as a rule, the EFIE in design works due to a less TCL.
However, one has to account a great difference between accuracies of theirs solutions, which
leads to substantially larger efficiency of CFIE solutions compared to those of the EFIE.
Along with this, the use of fast vector operations of the MATLAB programming area while
filling MoM matrices yields practically the same TCL for both equations. To demonstrate full
advantages of CFIE solutions, we collect in Table 2 the characteristics of the mentioned
scattering problem solved with the aid of the EFIE. In the first part (from top) of this table, we
give the characteristics derived with the aid of the new method (AE) evaluation of the EFIE
integral. Comparing these ones with those of the CFIE solutions in Table 1, we can see

dramatic difference in accuracy. When using the discretization of 10 points per wavelength

(g, =10), the CFIE solution is about 10° times more accurate than the corresponding

63



solutions of the EFIE but with practically the same TCL. This leads to ~10° times larger
efficiency of the CFIE solutions compared to the EFIE ones. In the second part of Table 2, we
give the characteristics of analogous solution with the SE method with the goal to show that
the traditional method (SE) evaluation of the EFIE integral sometimes gives unstable
solutions. This occurs, as a rule, for g, <10. For larger g, the solution becomes stable and
the condition number (cond) decreases tending to its theoretical value. The same behavior of
the cond observes also when using the new method (SE), as we can see from the first part of
Table 2. However, in this case no instability occurs. In the common range of stability
(9, >10), implementation of the new method (AE) gives substantially larger accuracy and
efficiency than that of the SE. It is worthwhile to note that significant increasing of the cond
for small g, occurs due to large error evaluation of matrix elements. Then, the condition
number of MoM matrix is the less the accurate is the method evaluation of the EFIE integral.
The condition number diminishing with g, growth when g, >10 does not mean its
boundness. According to theoretical predictions, this diminution will vanish for some g, and
then the condition number will increase.

Despite the CFIE solutions are much more effective than the EFIE ones, in some cases
one has to solve only the latter equation. Example is the scattering from very elongated
structures, in which case the CFIE is not valid. In the connection with this issue, the principal
importance has the method evaluation of the EFIE integral, which determines the accuracy
and efficiency of BVP solutions. To demonstrate the advantages of proposed method (AE) in

terms of the accuracy, TCL, and efficiency, we give in Table 3 the scattering characteristics
for very elongated elliptical cylinder of ka=150and b/a=10"3, where b/a is the axes ratio
(the incidence angle is i, =45"). Analogously to the circular cylinder, the condition number
sharply increases with maximum at g, =6 and then decreases to corresponding theoretical
value. For g, > 6, both methods yield stable solution but the new method is more accurate

and efficient. Analogously to the circular cylinder, the efficiency of BVP solution with the

new method increases with g, growth in contrast to that of with the SE.
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Table 2. Scattering characteristics for circular cylinder of ka =100 as the solutions of the EFIE.

g, 5 6 7 8 9 10 11 12
EFIE, | e, [00245 [0.0172 |0.0120 |0.0084 [0.0059 |0.0036 |0.0019 |0.0008
G\/'\\/’i't‘?]'\" o, | 250342 [ 24.9791 | 24.9968 | 24.9819 | 24.9947 | 25.0002 | 24.9900 | 24.9848
AE | cond | 340 598 605 997 1980 1350 871 661

tcl |45 6.8 9.9 14.9 20.8 28.1 37.8 50.1

eff |9.1 8.5 8.4 8.0 8.2 9.9 13.9 23.8
EFIE, | e, |0.0298 [0.0741 |0.0322 |0.0286 |0.0740 |0.0198 |0.0149 |0.0129
GVD?%M o, | 245189 | 24.0653 | 24.4378 | 24.4324 | 25.5477 | 25.0456 | 24.9746 | 24.9522
SE cond | 2910° |1.010* [ 3510° |[3.010° |1.110* |2.410° | 1374 1000

tcl |5.3 8.6 12.6 18.1 23.9 31.1 39.7 475

eff |6.3 1.6 25 1.9 0.6 1.6 1.7 1.6

Table 3. Scattering from elongated cylinder of ka =150, b/a =107 i, =45".

g, 5 6 7 8 9 10 11 12

EFIE, | e, |0.0568|0.1685 | 0.0333 | 0.0171 | 0.0105 | 0.0068 | 0.0043 | 0.0027

le\\//iI%M o, |3.0684[3.2748 | 3.0745 | 3.0480 | 3.0416 | 3.0391 | 3.0379 | 3.0371

AE | cond | 259 2108 | 491 296 231 202 186 177

tcl |34 5.5 8.1 11.6 160 |217 [29.1 |348
eff |- - 3.7 5.1 6.0 6.8 8.0 10.6

EFIE, | e, |0.0152|0.0702 [ 0.0294 | 0.0221 | 0.0185 | 0.0163 | 0.0146 | 0.0134

Gv'\\//ilt?]M o, | 30009 |3.1076 | 3.0365 | 3.0356 | 3.0366 | 3.0375 | 3.0381 | 3.0386

SE cond | 381 3.310° | 576 339 267 233 216 206

tcl |34 5.4 8.0 12.2 164 |211 [282 |[385
eff |- - 5.7 3.7 3.3 2.9 2.4 1.9

5. CONCLUSION

A substantial advantage of the new method (AE) evaluation the EFIE integral has been

shown when solving the Dirichlet problem both in the CFIE and EFIE formulations compared

to the traditional method (SE). To this end, numerical estimations of the total computational

labor (TCL) and efficiency were done, which permit to compare different methods solution of

the same boundary-value problem with the goal to reveal the most economical and accurate

method. Using these estimations, it was shown the GMoM solution to the CFIE to be much

more effective than that of the MFIE with PM method in the range of correctness of the latter

equation. The EFIE solutions have been also estimated in terms of accuracy, TCL, and

efficiency for very elongated structures, for which both the CFIE and MFIE are not apropos.
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