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Abstract 

A new method evaluation the electric field integral equation integral is proposed that is 
based on analytic evaluation of this integral in the vicinity of singular point. This new method 
is compared to the traditional method of singularity extraction in terms of accuracy and 
efficiency for solving the Dirichlet problem in the integral equation formulation making use of 
the Galerkin method of moments. A high accuracy and efficiency of the new method is 
demonstrated both for the combined field integral equation and electric field integral 
equation solvers. 
 
 
1. INTRODUCTION 

In this work, a new method evaluation of singular electric field integral equation (EFIE) 

integral is proposed substantially more accurate than that of the traditional singularity 

extraction (SE) method [1]. The latter is the most accurate compared to other existed methods. 

Its simplest version with remained integral evaluated in the Bogoluybov-Krylov  [2] approach 

is the most economical but not sufficiently accurate. In principle, it is possible to improve this 

simplest version but it takes much computational labor. To solve this problem in three 

dimensions, a new approach was proposed in [3]. In presented work, this problem is 

considered in two dimensions. A method analytical evaluation (AE) of the EFIE integral in 

the vicinity of singular points is proposed in this work. The main merit of this method is the 

substantial increasing of accuracy without increasing of the total computational labor (TCL) 

compared to simplest version of the SE method. 

 
2. EVALUATION OF THE EFIE INTEGRAL 

For closed boundary, the EFIE operator can be represent as 
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where ]2,0[ π∈mt , 22 ))'()(())'()(()',( tytytxtxttR mmm −+−=  and  is a 

parametric equation of the boundary. Here,  is the zero order Hankel function of the 

second kind, k is a free space wave number, 
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hd =2  is the grid spacing ( nh /2π= ), and 

)(tψ is an unknown function proportional to a surface current. For a smooth boundary, this 

function is continuous and can be moved outside the integral in the midpoint . The 

remained integral is nonsingular for 

itt ='

mi tt ≠ and can be computed with guaranteed accuracy. 

The main error produces evaluation of the singular EFIE integral for mi tt = : 
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The known SE method evaluation of this integral makes use of logarithmic function 
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as a regularizer. After singularity extraction, we obtain 
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in the simplest version. Here, )()( 22
iii tytxL && += , C is the Euler’s constant (C=0.577…), 

and a is a half of maximal scatterer size. In contrast to the SE method, we use in this work the 

following function 
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as a regularizer. Then,  
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The remained singular integral can be evaluated using the known identity 
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as follows: 
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Now, the remained integral in (7) is nonsingular and can be evaluated with guaranteed 

accuracy. 

In order to compare the accuracy and efficiency of the new method proposed with those of 

the traditional SE method, we consider the scattering from a metallic cylinder with the aid of 

the Galerkin MoM (GMoM) on the set of . To this end, we consider the combined 

potential method [5] of electric field representation 
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that leads to the combined field integral equation (CFIE)  
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all in familiar notation. This equation contains the EFIE operator and we will derive the 

corresponding EFIE integral with the aid of two mentioned methods. When solving the 

equation (9), we put ap /=η . For not very elongated structures, the parameter p has been 

taken as 0.01 but for thin structures, it has been taken as 0.4 to meeting a combined challenge 

of accuracy and TCL.  

 
3. COMPUTATIONAL FEATURES 

The relative boundary error  was computed as the Euclidean norm of residual error for 

(2N+1)-terms approximation to an exact solution divided by  versus progressively 

greater value of the grid resolution 

Ne

20 |||| E

hgr /λ=  (a number of subintervals or points per 

wavelength) with h the grid spacing. The latter parameter, , was proposed in [5] instead of 

the number of subintervals (n) and has, to our opinion, an insightful physical meaning. While 

using the GMoM, the truncation number N is related with n as 

rg

]4/[nN = , to support the 

needed accuracy while evaluating the peripheral MoM matrix elements. The number (n) of 

subintervals, which are used for approximate evaluation of the MoM matrix elements, is 
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derived from the formula: ]2/|[| πrkagDn ∂= , where || D∂  is the boundary length and ][⋅  is 

the integer part of a number. To compare different numerical algorithms in terms of efficiency 

and TCL, we estimate these notions as numeric quantities. TCL can be estimated as the ratio 

of CPU time, , of tested algorithm to that of any standard numerical one. As such a 

standard algorithm, we use the (2N+1)-terms approximation to well known Rayleigh solution 

for scattering of a E-polarized plane wave by a circular metallic cylinder of the same electric 

size (ka). The CPU time of this standard algorithm we denote as . Then, TCL can be 

estimated numerically as 

CPUt
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For ka = 100, we take N = 200, and for ka = 150, N = 250. To estimate efficiency 

numerically, we use a common economic definition, that of the accuracy per unit TCL. Then, 

the efficiency can be estimated as 

1)( −⋅= tcleeff N             (11) 

Such estimations of the main characteristics of an algorithm, permits one to compare 

different numerical methods independently from theirs machinery realization. Besides these 

characteristics, we also use a monostatic RCS (MRCS) in unitless form 
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4. NUMERICAL RESULTS 

Using all mentioned characteristics, we compare in Table 1 solutions to the CFIE with 

GMoM for circular cylinder making use of the SE and AE methods to each other, and both of 

these to the solution of the MFIE with point-matching (PM) method versus progressively 

greater . Despite the lack of accuracy giving by SE method while solving the EFIE, its 

implementation in the CFIE solver gives sufficiently good solution as we can see from the 

first part (from top) of Table 1. In comparison, the exact value of MRCS derived from 

Rayleigh solution is 

rg

=bσ 24.9718. The analogous solution with the aid of new method is 

demonstrated in the second part of Table 1. Of the advantages of new method, the boundary 

error decreases more rapidly with  growth for the same TCL. This leads to efficiency 

increasing in contrast to the SE method. In the third part of Table 1, we collect the 

rg
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characteristics of solutions to the MFIE with PM. Worthwhile to note only a little difference 

in the TCL between solutions with GMoM and PM (~ 35 %). This is due to using very fast 

vector operations of MATLAB programming area while filling the MoM matrix. Besides that, 

using a complete orthonormal set of basis and test functions increases significantly accuracy 

of GMoM solutions compared to PM ones. As a result, GMoM solutions to the CFIE are 

about 15 times more effective than those of the MFIE with PM. 

 
 

Table 1 Scattering characteristics for circular cylinder. ka = 100. Exact monostatic RCS: bσ =24.9718. 
 

      rg 5 6 7 8 9 10 

Ne 104 0.1977 0.1877 0.1727 0.1577 0.1441 0.1322  

bσ  24.9755 24.9740 24.9732 24.9727 24.9724 24.9723 CFIE 

tcl 8.9 14.1 21.0 29.6 41.9 55.4 
 with 
  SE 

eff 10-3 5.7 3.8 2.8 2.1 1.7 1.4 
Ne 104 0.2213 0.1543 0.1089 0.0762 0.0516 0.0325  

bσ  24.9754 24.9739 24.9731 24.9727 24.9724 24.9722 CFIE 

tcl 9.0 14.3 21.6 29.8 41.7 56.3 
 with 
  AE 

eff 10-3 5.0 4.5 4.3 4.4 4.6 5.5 
Ne 104 5.5107 3.0531 1.8617 1.2341 0.8511 0.6151  

bσ  24.9754 24.9739 24.9731 24.9727 24.9724 24.9722 MFIE 

tcl 6.6 10.6 16.3 24.3 34.1 42.3 
 with 
  PM 

eff 10-3 0.27 0.31 0.32 0.33 0.34 0.38 
 
 

In spite of the CFIE yields a unique solution in contrast to the EFIE, and its solution is 

much more accurate, practitioners use, as a rule, the EFIE in design works due to a less TCL. 

However, one has to account a great difference between accuracies of theirs solutions, which 

leads to substantially larger efficiency of CFIE solutions compared to those of the EFIE. 

Along with this, the use of fast vector operations of the MATLAB programming area while 

filling MoM matrices yields practically the same TCL for both equations. To demonstrate full 

advantages of CFIE solutions, we collect in Table 2 the characteristics of the mentioned 

scattering problem solved with the aid of the EFIE. In the first part (from top) of this table, we 

give the characteristics derived with the aid of the new method (AE) evaluation of the EFIE 

integral. Comparing these ones with those of the CFIE solutions in Table 1, we can see 

dramatic difference in accuracy. When using the discretization of 10 points per wavelength 

( ), the CFIE solution is about  times more accurate than the corresponding 31010=rg
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solutions of the EFIE but with practically the same TCL. This leads to ~  times larger 

efficiency of the CFIE solutions compared to the EFIE ones. In the second part of Table 2, we 

give the characteristics of analogous solution with the SE method with the goal to show that 

the traditional method (SE) evaluation of the EFIE integral sometimes gives unstable 

solutions. This occurs, as a rule, for 

310

10<rg . For larger  the solution becomes stable and 

the condition number (cond) decreases tending to its theoretical value. The same behavior of 

the cond observes also when using the new method (SE), as we can see from the first part of 

Table 2. However, in this case no instability occurs. In the common range of stability 

( ), implementation of the new method (AE) gives substantially larger accuracy and 

efficiency than that of the SE. It is worthwhile to note that significant increasing of the cond 

for small  occurs due to large error evaluation of matrix elements. Then, the condition 

number of MoM matrix is the less the accurate is the method evaluation of the EFIE integral. 

The condition number diminishing with  growth when  does not mean its 

boundness. According to theoretical predictions, this diminution will vanish for some  and 

then the condition number will increase. 

rg

10>rg
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Despite the CFIE solutions are much more effective than the EFIE ones, in some cases 

one has to solve only the latter equation. Example is the scattering from very elongated 

structures, in which case the CFIE is not valid. In the connection with this issue, the principal 

importance has the method evaluation of the EFIE integral, which determines the accuracy 

and efficiency of BVP solutions. To demonstrate the advantages of proposed method (AE) in 

terms of the accuracy, TCL, and efficiency, we give in Table 3 the scattering characteristics 

for very elongated elliptical cylinder of 150=ka and , where  is the axes ratio 

(the incidence angle is ). Analogously to the circular cylinder, the condition number 

sharply increases with maximum at 

310/ −=ab ab /
o450 =i

6=rg  and then decreases to corresponding theoretical 

value. For , both methods yield stable solution but the new method is more accurate 

and efficient. Analogously to the circular cylinder, the efficiency of BVP solution with the 

new method increases with  growth in contrast to that of with the SE. 

6>rg

rg
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Table 2. Scattering characteristics for circular cylinder of  ka = 100 as the solutions of the EFIE. 

 
5 6 7 8 9 10 11 12           rg
0.0245 0.0172 0.0120 0.0084 0.0059 0.0036 0.0019 0.0008 Ne   EFIE, 

bσ  25.0342 24.9791 24.9968 24.9819 24.9947 25.0002 24.9900 24.9848GMoM 

cond 340 598 605 997 1980 1350 871 661 
  with 

tcl 4.5 6.8 9.9 14.9 20.8 28.1 37.8 50.1 
   AE 

eff 9.1 8.5 8.4 8.0 8.2 9.9 13.9 23.8 
0.0298 0.0741 0.0322 0.0286 0.0740 0.0198 0.0149 0.0129 Ne   EFIE, 

bσ  24.5189 24.0653 24.4378 24.4324 25.5477 25.0456 24.9746 24.9522GMoM 

cond 2.9 103 1.0 104 3.5 103 3.0 103 1.1 104 2.4 103 1374 1000 
  with 

tcl 5.3 8.6 12.6 18.1 23.9 31.1 39.7 47.5 
   SE 

eff 6.3 1.6 2.5 1.9 0.6 1.6 1.7 1.6 
 

Table 3. Scattering from elongated cylinder of  ka =150, b / a = 10-3, . o450 =i
 

5 6 7 8 9 10 11 12           rg
0.0568 0.1685 0.0333 0.0171 0.0105 0.0068 0.0043 0.0027Ne   EFIE, 

bσ  3.0684 3.2748 3.0745 3.0480 3.0416 3.0391 3.0379 3.0371GMoM 

cond 259 2108 491 296 231 202 186 177 
  with 

tcl 3.4 5.5 8.1 11.6 16.0 21.7 29.1 34.8 
   AE 

eff - - 3.7 5.1 6.0 6.8 8.0 10.6 
0.0152 0.0702 0.0294 0.0221 0.0185 0.0163 0.0146 0.0134Ne   EFIE, 

bσ  3.0009 3.1076 3.0365 3.0356 3.0366 3.0375 3.0381 3.0386GMoM 

cond 381 3.3 105 576 339 267 233 216 206 
  with 

tcl 3.4 5.4 8.0 12.2 16.4 21.1 28.2 38.5 
   SE 

eff - - 5.7 3.7 3.3 2.9 2.4 1.9 
 
 
5. CONCLUSION 

A substantial advantage of the new method (AE) evaluation the EFIE integral has been 

shown when solving the Dirichlet problem both in the CFIE and EFIE formulations compared 

to the traditional method (SE). To this end, numerical estimations of the total computational 

labor (TCL) and efficiency were done, which permit to compare different methods solution of 

the same boundary-value problem with the goal to reveal the most economical and accurate 

method. Using these estimations, it was shown the GMoM solution to the CFIE to be much 

more effective than that of the MFIE with PM method in the range of correctness of the latter 

equation. The EFIE solutions have been also estimated in terms of accuracy, TCL, and 

efficiency for very elongated structures, for which both the CFIE and MFIE are not apropos.  
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