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Abstract 

The convergence of the Galerkin method of moments (GMoM) is proved in the 
familiar Hilbert space  for the electric field integral equation (EFIE) solver for 
two-dimensional smooth screens. Completeness of the orthogonal basis functions used 
permits one to obtain an exact relationship between residual and actual errors. A 
Fredholm MoM equation is obtained making use of a regularization procedure ap-
plied to the traditional MoM equation in the space of sequences. This issue permits 
one to increase substantially the accuracy of this new GMoM compared to the tradi-
tional one, and consider the adequacy problem for the traditional GMoM. 
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1. INTRODUCTION 

The Dirichlet problem can be solved with the aid of different methods. In this 

work, we consider the integral equation formulation of this problem making use of the 

single-layer potential representation of scattered field, which permits one to account 

automatically for the boundary conditions at the infinity. Such a statement leads to the 

necessity of solving the EFIE. To solve it, we use the GMoM on a complete orthogo-

nal entire-domain basis. The main problem herein is that the convergence of the 

GMoM algorithm for this equation is not proven to now in the familiar Hilbert space 

( ). Due to this issue, one cannot guarantee the tending of approximate solution to 

an exact one when the residual error is diminished. This one raises many critical re-

marks addressed to the MoM [1-3]. However, despite the not proven convergence any 

appropriate MoM solution to the EFIE for screens is evidently adequate. To clarify 

this situation, we consider in this paper the convergence of the Galerkin MoM solver 

making use of transforming the traditional GMoM equation to a Fredholm 2

2L

nd kind 

one in the space of sequences. To this end, we use the special parameterization of a 

boundary curve, which permits us to use the original change of variable proposed first 

in [4] for eliminating the known singular behavior of a solution at the ends of a 

screen. All this permits us to seek a solution in the Hilbert function space. To prove 
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the convergence of the GMoM solution in such a space, we use the regularization pro-

cedure for the traditional MoM equation in the space of sequences, which is analo-

gous to that of used in function space for static case, [5,6]. Such procedure permits us 

to transform the traditional 1st kind MoM equation to a Fredholm 2nd kind one. Regu-

larization procedure in the space of sequences is none other than adding and subtract-

ing of a special matrix (regularizer) to the MoM matrix. Such a trivial procedure 

yields completely nontrivial result for the GMoM because the matrix elements in this 

case are Fourier integrals, decay rate of which with harmonic number growth depends 

drastically on the smoothing properties of integrand. Then, a difference between the 

traditional MoM matrix and the regularizer represents a matrix, which elements are 

Fourier integrals with smoother integrand and then they decay more rapidly than that 

for both these matrices separately. It is precisely this issue that permits us to transform 

the traditional GMoM equation to a Fredholm one and to prove the convergence of 

the GMoM in the Hilbert function space. 
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Figure 1. Geometry of α -degree-slot elliptical screen. 

  

Besides the convergence problem, we also consider the actual error estimation 

with the use of known residual error. The completeness of basis function used permits 

us to obtain an analytic relationship between actual and residual errors in  space. 

The obtained result permits one to avoid the using of more complicated Sobolev space 

when computing actual error as has been proposed in [7]. Besides that, practical mer-

its of the new GMoM equation obtained are highlighted. The regularization procedure 

leads to smoother integrand in Fourier integrals, which represent matrix elements. 

This one increases significantly the accuracy of GMoM compared to the traditional 

method evaluation of matrix elements. Advantages of the new solver for the EFIE are 

2L
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demonstrated by comparing results with that of traditional method. At the same time, 

having the rigorous solution we obtain an opportunity to verify the adequacy of tradi-

tional GMoM widely used in practice. This is done in the fifth section. 

 
2. THE CONVERGENT GALERKIN MoM 

Represent the electric field outside a screen as the sum of an incident field 

)cossinexp(),( 000 ijkyijkxyxE −−=            (1) 

and a scattered field, which we will seek as a single-layer potential 

∫
∂

=
L

sc dsssyxGyxE ')'()',,(),( ϕ .             (2) 

Here, the incidence angle  is counted clockwise from the –Y direction (see Fig. 

1), k is the free space wave number, and 

0i

ϕ  is an unknown function, which is propor-

tional to a surface current. The function     

)),,((
4
1),,( )2(

0 syxkRH
j

syxG =              (3) 

stands for the free space Green’s function with 

22 ))(())((),,( syysxxsyxR −+−=  

and  

],0[),(),( Lssyysxx ∈==              (4) 

being a -parameterization of a smooth boundary ∞C L∂  of the length L of a screen. 

Let us go to a new parametrization using a new variable    

]1,1[,/21 −∈+−= σσ Ls .              (5) 

The scattered field (2) can be represented then as 

')'())',,((
2

),(
1

1
σσϕσ dyxRkGLyxEsc ∫

−

=            (6) 

with 

22 ))'(())'((),,( σσσ yyxxyxR −+−= ,          (7) 

new parametrization of a boundary L∂  

)5.05.0()(),5.05.0()( σσσσ LLyyyLLxxx +==+== ,      (8) 

and new unknown function )5.05.0()( σϕσϕ LL += . The Dirichlet condition yields 

the EFIE 
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∫
−

−∈=
1

1
]1,1[),(')'())',((5.0 σσσσϕσσ FdRkGL         (9) 

when using (6). Here, ))(),(()( 0 σσσ yxEF −=  and  

22 ))'()(())'()(()',( σσσσσσ yyxxR −+−= . 

It is known that the solution of (9) has the singular behavior  at the 

end points 

2/12 |1~| −−σ

1±=σ . This issue prevents to seek a solution in familiar Hilbert space . 

This obstacle can be circumvented with the aid of special change of variable in (9) 

proposed in [4]: 

2L

],0[','cos' πσ ∈−= tt . Using this procedure, the equation (9) can be 

written as 

∫ ∈=
π

πψ
0

)2(
0 ],0[),(')'())',(~( ttfdttttRkH                    (10) 

with 
22 ))'(~)(~())'(~)(~()',(~ tytytxtxttR −+−= ,                          (11) 

new unknown function 

tt
j

Lt sin)(cos
8

)( ϕψ = ,                          (12) 

new parametrization 
)(cos)(~),(cos)(~ tytyytxtxx ==== ,                              (13) 

and new right-hand side (RHS) 
)(cos)( tFtf = .                                    (14) 

It is clear that the new unknown function (12) is nonsingular now at points 

π,0=t  despite the mentioned singular behavior of the surface current function ϕ . 

The scattered field can be written then as 

'                     (15) )'())',,(~(),(
0

)2(
0 dtttyxRkHyxEsc ψ

π

∫=

with 

22 ))'(~())'(~(),,(~ tyytxxtyxR −+−= . 

Summarizing, we eliminate the singular behavior of a solution to the EFIE for 

screens and this procedure leads automatically to a new domain of integral equation, 

viz., ],0[ π . Now we can seek a solution of (10) in , using the Fourier representa-

tion of unknown function   

2L

∑
≥

=
0

cos)(
n

n ntatψ .                         (16) 
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The known procedure yields the traditional GMoM equation in the space of se-

quences  

fKa =                               (17) 
with 

∫∫=
ππ

00
''cos)',(cos dtntttHmtdtKmn ,                                                (18) 

∫=
π

0
cos)( mtdttffm ,                                                    (19) 

))',(~()',( )2(
0 ttRkHttH = ,                                                   (20) 

Prove that this equation can be transformed to a Fredholm one with the aid of 

equivalent transformations making use of special operator (regularizer) 
o

K , which has 

the following matrix elements: 

∫∫=
ππ

00
''cos)',(cos dtntttHmtdtK mn

oo

,                  

with 

|)'cos(cos2|ln2)',( 1 ttejttH −−= −

π

o

.                                            (21) 

These matrix elements can be evaluated analytically making use of the known in-

tegral [4, 8]  

∫
−

− =
−

−
π

π

ρ
π

jnt
n

jnt edtette '|
2

'sin2|ln1 '2/1                                      (22) 

with  and 1
0 |)|( −+= nnn δρ mnδ  being the Kroneker delta. With the aid of (22), we 

can obtain 

mn
m

m
mn

m
jK δ
δ

δ
π

+
+

=
0

01o

.                                                     (23) 

Using the operator 
o

K , we can transform the traditional GMoM equation (17) as 

follows: 

fTaaK =+
o

                            (24) 

with 
o

KKT −=                             (25) 

having the matrix elements 
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∫∫=
ππ

00
''cos)',(cos dtntttPmtdtTmn                          (26) 

Here, the function 

)',()',()',( ttHttHttP
o

−=                                                     (27) 
is nonsingular, and more,  with )( Ω×Ω∈ ∞CP ],0[ π=Ω  for smooth boundary of  

the mentioned properties. This one can be easily seen from the following representa-

tion: 

( )
a

tjkaCjttP )(cosln2ln2ln2121),( Λ
−+−+−=
ππ

                                   (28) 

where 2/122 )()( yx && +=Λ σ   with pointed quantities being the derivatives of (8) with 

respect to σ , C = 0.577… the Euler constant, and a being a half of maximum size of 

a scatterer. For  ∞∈∂ CL 0>≥Λ ε , and then  analogously to the 

static case [4]. Such behavior of the function P permits us to integrate by parts in (26) 

that, in turn, permits one to prove the decay rate of matrix elements  as being 

 with harmonic numbers (m and n) increasing. At the same time, both the 

traditional GMoM matrix elements ( ) and auxiliary matrix ones ( ) decay 

separately only as . This is the point that permits us to transform the tradi-

tional GMoM equation (17) to a Fredholm one. To this end, let us apply the operator 

 with matrix elements  

)(),( Ω∈ ∞CttP

mnT

)( 22 −− nmO

mnK mnK
o

)( 11 −− nmO

1−S

mnmn mS δ)1(1 +=−                                                             (29) 

to both sides of equation (24). Then, it becomes 

fSTaSaKS 111 −−− =+
o

                                                           (30) 

which is non other than a Fredholm equation. It is worthwhile to note that one can 

also use the inverse operator  instead of . It is just simpler from theoretical 

point of view but gives larger condition number when solving this equation numeri-

cally. Prove that the equation (30) is Fredholm. Using the decay rate of  as being 

 and asymptotic behavior of  as (29), we can see that 

 and then, the operator  is compact in . We can easily 

1−o

K 1−S

mnT

)( 22 −− nmO 1−
mnS

)()( 211 −−− = nmOTS mn TS 1−
2l
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see that the operator  is Fredholm in  as well because its matrix elements can 

be written as 

o

KS 1−
2l

mn
m

m
mmnmmn m

jjKS δ
δ

δ
δπδδπ

+
−

+++=−

0

0
00

1 1
)1()1()(

o

. 

Then, the first matrix corresponds to an invertable operator, and the second one 

corresponds to a compact one. Further, according to [9], for existence of a solution to 

the equation (30) the RHS vector  have to be square summable. Prove that it is 

really so. Integrating by parts in (19), one can obtain that asymptotically 

 and then, using (29), . Because of that, . 

All this proves that the equation (30) is Fredholm and has a unique solution if the de-

terminant of the system is nonzero. In this case, as has been proved in [10],  and 

the approximate solution  

fS 1−

)( 2−= mOfm )()( 11 −− = mOfS m 2
1 lfS ∈−

2la∈

∑
=

=
N

n
nN ntat

0
cos)(ψ                                                      (31) 

converges to an exact solution of integral equation (10) in . The uniqueness of a 

solution is guaranteed by the determinant of , and hence of , 

being nonzero. Prove this issue. As has been proved in [11], the homogeneous integral 

equation (10) has trivial solutions only. Because of that, the corresponding integral 

operator has no eigenvalue that equals to zero. Further, because of the spectrum of 

integral operator in (10) coincides with that of its discretized counterpart (17), and 

hence (30), if we  use the Galerkin method [10], the determinant of the system in (17), 

and hence in (30), is nonzero. All this proves the convergence of the GMoM solution 

to the EFIE in . 

2L

mnK mnTSKS )( 11 −− +
o

2L

 

3. ACTUAL ERROR 

One of the main problems of the EFIE solving procedure is the estimation of an 

actual error of an approximate solution with the aid of residual error computed in .  

The latter stands for the boundary condition’s error and can be easily computed in 

practice. This problem has been solved in [7] in the energy Sobolev space. We con-

sider this problem in the familiar  space. The completeness of basis functions used 

2L

2L
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permits us to obtain a rigorous relationship between actual and residual errors. To this 

end, let us write down an actual error as a function 

)()()( ttt Nψψε −= .                                                            (32) 
One can easily see that this function satisfies the integral equation 

∫ Ω∈=
π

ε
0

),(')'()',( ttddttttH N                                                    (33) 

where 

∫−=
π

ψ
0

')'()',()()( dttttHtftd NN                                              (34) 

is a residual error function. Let us derive the actual error function from (33). This 

equation is exactly the same as (10) except the RHS. As is clear from the above, the 

developed GMoM procedure for solving the equation (33) converges if the RHS func-

tion (34) is continuous on . It is really so. The first addend in (34) is obviously con-

tinuous. The second one is continuous as well because it is a single-layer potential. 

Hence, we can use the abovementioned technique to obtain a convergent GMoM solu-

tion for the error function 

Ω

∑
≥

=
0

cos)(
n

n ntt αε                              (35) 

in . As is clear from (30), the corresponding solution in  can be written then as 2L 2l

DTSKS 111 )( −−− +=
o

α                                                           (36) 

where vector D has the coordinates 

∫+=
π

0
cos)()1( mtdttdmD Nm .                                   (37) 

Because  is continuous and its derivative is integrable, one can easily prove 

by integrating by parts that integral in (37) decays asymptotically as  with m. 

Then,  and hence, 

)(td N

2−m

)( 1−= mODm 2lD∈ . This is sufficient for the GMoM convergence 

in , and this one permits us to use the Parseval equality  2L

22
|||||||| lL αε = , 

which permits one to relate the actual and residual errors in the form 

22
||)(|||||| 111

lLN DTSKS −−− +=−
o

ψψ ,                                            (38) 

if we account for (32), (36), and (37). 
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4. COMPUTATIONAL FEATURES 

We use in this work an elliptic screen with α -degree slot (Fig. 1) for numerical 

calculations. For this boundary, the chosen parametrization (13) has the following 

form: 

)cos1(5.0sin)(~);cos1(5.0cos)(~ tbtytatx −=−= ββ                             (39) 

with 180/2 αππβ −=  and α  being the angle measure of a slot (Fig. 1). Further, the 

relative boundary condition’s error  is computed as the Euclidean norm of residual 

error for the (N+1)-term approximation (

Ne

Nψ ) to an exact solution divided by  

versus progressively greater value of the grid resolution 

20 |||| E

hgr /λ=  (a number of sub-

intervals or points per wavelength) with h the grid spacing. The latter parameter, , 

has been proposed in [12] instead of the number of subintervals (n) and has, to our 

opinion, an insightful physical meaning. When using the GMoM, a truncation number 

N is related with n as , to support the needed accuracy when evaluating pe-

ripheral MoM matrix elements. The number (n) of subintervals, which is used for ap-

proximate evaluation of MoM matrix elements, is derived from the formula: 

rg

]2/[nN =

]2/[ πrLkgn =  with  being the integer part of a number.  ][⋅

To compare different numerical algorithms in terms of total computational labor 

(TCL), we estimate this notion as numeric quantity. The TCL can be estimated as a 

ratio of the CPU time, , of tested algorithm enacted on given meshing (n) 

to that of a standard one with the same meshing. As such a standard algorithm, we use 

the (2N+1)-terms approximation to the MFIE solution with the aid of GMoM on 

 basis for scattering of an E-polarized plane wave by a circular metallic cyl-

inder of the same electric size (ka) and meshing (n). The CPU time of this standard 

algorithm we denote as . Then, the TCL can be estimated numerically as 

),( nkatCPU

Nn
jnte ≤||}{

),( nkatST

),(/),( nkatnkattcl STCPU= .                           (40) 

Abovementioned estimations of the main characteristics of a solution permit one 

to compare different numerical methods independently from their machinery realiza-

tion. Besides these characteristics, we also use a monostatic RCS (MRCS) in unitless 

form 
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| , )5.1(|4)||/||2(lim 0

2
0

2 iFEEk scb −==
∞→

πρπσ
ρ

were )(ϕF  is the scattering amplitude function (SAF). To verify the adequacy of the 

mentioned traditional GMoM, we solve in this work both the equation (17) and the 

transformed one (30). The matrix elements (18) of the traditional GMoM are evalu-

ated in the Bogolyubov-Krylov approach [13] as 

∑
=

≈
n

ki
ikkimn mtmthK

1,
coscos χ                             (41) 

with 

⎩
⎨
⎧

=
≠

=
kiJ

kitthH

i

ki
ik ,

),,(
χ  

and 

∫
+

−

=
dt

dt
ii

i

i

dtttHJ ')',(                               (42) 

with . To evaluate the EFIE integral (42), we use the singularity extraction 

(SE) method [14] as the most accurate and fast. As the regularizer, we use here the 

function 

2/hd =

|)'|ln(2)'( ttkajttG −−=−
π

o

.                                              (43) 

For this function, we need the following parameterization of the boundary : L∂

Ω∈== ttaytax ,sin~;cos~
π
β

π
β                                              (44) 

instead of (39). The function H in (42) is defined then as (20) with corresponding re-

placements. Using (43) in the SE method, we obtain for the EFIE integral 

≈−−+−= ∫∫
+

−

+

−

dt

dt
ii

dt

dt
ii

i

i

i

i

dtttGttHdtttGJ ')}'()',({')'(
oo

 

hjChaLkadj
i )/21())2/ln(1)(ln(2 π

π
−++−− ,                                    (45) 

if we use the Bogolyubov-Krylov approach when evaluating the second integral. 

Here, 2/122 ))(~)(~( iii tytxL && += , and a is a half of a maximum size of a scatterer. An 

improvement of this approach is possible, in principle, but leads to significant increas-

ing of TCL and in fact is not effective. When solving the new GMoM equation (30), 

we use the same approach when evaluating the matrix elements,  (26), as mnT
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∑
=

≈
n

ki
kikimn ttPntmthT

1,

2 ),(coscos .                                             (46) 

Some improvement of this approach is not useful as well, as to our opinion. At 

last, the relative actual error is computed as  

22
)( ||||/|||| NNNe ψψψψ −=                                                     (47) 

making use of (38). 

 
 
5. NUMERICAL RESULTS 
 
This section is devoted to research both the main characteristics of the new version of 

GMoM for EFIE and the adequacy problem for the mentioned traditional GMoM. As 

is known, the traditional GMoM procedure is coupled with two main problems: not 

proven convergence and condition number increasing with grid resolution ( ). As 

has been shown in this work, the traditional GMoM equation (17) can be easily trans-

formed to the Fredholm one (30). This issue ensures both the convergence of the used 

GMoM and the boundness of a condition number of GMoM system. On the other 

side, the regularization procedure used results in substantial increasing in accuracy of 

the new GMoM compared to the traditional one with the same TCL. General overlap-

ping of the new and traditional solutions and some differences between them are 

demonstrated in Figure 2, where the scattering amplitude functions (SAF) are shown 

for the 90-degree-slot circular screen of ka = 20, 

rg

,0,1/,90 0
oo === iabα λ4.62 ≈a , and 10=rg . Small differences observed are 

-4 -2 0 2 4 6 8
-5

0

5

10

15

20

25
ka=20, i0=0o

gr=10        
n=150, N=75   

1 

2 

1 - Exact GMoM                      
2 - Traditional GMoM (less regular) 

 
Figure 2. SAFs for -slot circular screen of ka = 20, , 

=10 obtained bythe new (1) and traditional (2) methods. 

o90 o00 =i

rg
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due to less accuracy of the traditional method, and they vanish with  growth. The 

scattering characteristics for this problem are listed more detailed in Table 1 for the 

new method and in Table 2 for the traditional one. 

rg

 
Table 1 New GMoM. -slot circular screen, ka=20, , N=[n/2]. o90 o00 =i

rg (n) 10 (150) 20 (300) 30 (450) 40 (600) 50 (750) 

Ne  6.2  410−⋅ 3.9 510−⋅ 7.9 510−⋅ 2.5 610−⋅ 1.0  610−⋅
)(ψ

Ne  3.4  410−⋅ 1.5 510−⋅ 2.5 610−⋅ 6.9
 710−⋅

2.5
 710−⋅

bσ , dB 8.6594 8.6720 8.6733 8.6736 8.6737 
cond 75.02 75.01 75.01 75.01 75.01 
tcl 0.74 0.66 0.56 0.45 0.46 

 
Table 2 Traditional GMoM. -slot  circular screen, ka=20, , N=[n/2]. o90 o00 =i

rg (n) 10 (150) 20 (300) 30 (450) 40 (600) 50 (750) 

Ne  0.0284 0.0137 0.0090 0.0067 0.0054 

bσ , dB 7.9804 8.3619 8.4743 8.5268 8.5578 
cond 9.31 20.03 30.49 40.90 51.24 
tcl 0.81 0.63 0.53 0.44 0.43 

 
Table 3 New GMoM. Strip, ka=100, , N=[n/2].. o450 =i

rg (n) 8 (254) 9 (286) 10 (318) 11 (350) 12 (380) 13 (412) 14 (444) 

Ne  0.0086 0.0037 0.0011 7.2 410−⋅ 5.0 410−⋅ 3.5  410−⋅ 2.6 410−⋅
)(ψ

Ne  4.9 410−⋅ 2.6  410−⋅ 1.5 410−⋅ 9.4 510−⋅ 6.3 510−⋅ 4.2  510−⋅ 2.9 510−⋅

bσ , dB 8.7 410−⋅ 0.0118 0.0113 0.0113 0.0113 0.0113 0.0113 
cond 428.2 487.7 628.7 642.1 642.0 642.0 642.0 
tcl 0.71 0.65 0.64 0.59 0.54 0.55 0.55 

 
 

We can see herein substantially larger accuracy of the new method with practi-

cally the same TCL if we compare the boundary condition’s errors ( ). The actual 

error ( ), which we can compute for the new method only, is less than the residual 

error ( ) because the latter one is integrated along the boundary when computing 

. As has been predicted, the condition number of the new GMoM equation is 

bounded in contrast to the traditional one. It is worthwhile, however, to note that for 

the traditional GMoM algorithm used a condition number is very small for screens, 

and its growing rate with  is small as well. This one does not give the sound for 

Ne

)(ψ
Ne

Ne

)(ψ
Ne

rg
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incipience of inadequacy of a traditional solution due to the ill-posedness in suffi-

ciently large range of electric size of a scatterer. To demonstrate this issue, we con-

sider the scattering problem for scatterer of moderate size. As an example we use a 

strip of ka = 100 ( ). λα 322,450/,180 0 ≈=== aiab oo

Table 4 Traditional GMoM. Strip, ka=100, , N=[n/2]. o450 =i

rg (n) 8 (254) 9 (286) 10 (318) 11 (350) 12 (380) 13 (412) 14 (444) 

Ne  0.0243 0.0225 0.0207 0.0192 0.0179 0.0167 0.0156 

bσ , dB 0.0858 0.0775 0.0709 0.0654 0.0612 0.0573 0.0540 
cond 18.0 20.5 23.0 25.4 27.7 30.1 32.5 
tcl 0.70 0.65 0.61 0.56 0.54 0.55 0.53 

 
 

The scattering characteristics for this problem obtained by the new and traditional 

methods are gathered in Table 3 and 4 respectively. We can see herein that the resid-

ual error for both methods diminishes with , but the new method gives much more 

rapid diminution. A condition number for the new method is bounded as well but its 

magnitude became much more large than for ka = 20. At the same time, a condition 

number for the traditional method remains not large despite the increasing with .  

rg

rg

 
6. CONCLUSION 

In this paper, the convergence of the Galerkin MoM solution to the EFIE has 

been proved for smooth two-dimensional screens. To this end, a special technique for 

eliminating the singular behavior of a solution at the ends of a screen and a 

regularization procedure for eliminating the singular behavior of the EFIE kernel has 

been applied.  

Completeness of the basis functions used has permitted one to obtain a rigorous 

relation between residual and actual errors. This relation permits one to compute an 

actual error simply by integration of a residual error along the boundary of a screen.  

Adequacy problem of the traditional GMoM for the EFIE has also been consid-

ered. The closeness of solutions obtained by the traditional and new methods has been 

demonstrated for scatterers of moderate electric size. Despite the boundness of condi-

tion number for the new method, its magnitude increases substantially with dimen-

sionality of a scatterer. On the other hand, that of traditional method remains very 

moderate despite general increasing. This state is very contrasted with that for closed 
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boundary and permits one to use in practice this version of traditional GMoM in wide 

range of scatterer dimensionalities without apprehension of ill-conditioning. At the 

same time, the new method gives much more accurate solution with theoretically 

proven convergence, which gives the opportunity to verify a traditional method if it is 

necessary. 
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