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Abstract 

A method of beamforming of uniform linear arrays by using the 
orthogonalization technique is presented. A set of composing functions similar to that 
used by Woodward – Lawson is overlapped. In our study, instead of sampling of the 
desired pattern, the orthogonal method is applied. Depending on the form of the 
pattern, the number of the composing functions may be the same or different than the 
elements of the array. Also the progressive phase of each function can be derived in 
several ways. A set of numerical examples for different array patterns will be 
presented and will show the usefulness of the method. 
 

1.    INTRODUCTION 

Synthesis methods for linear antenna arrays have been studied by many 

researchers in the last decades; the existence of a long series of papers on this subject 

is enough to emphasize the importance of the area. Most of the procedures allow the 

synthesis of narrow-beam or low sidelobe patterns or the maximization of an index 

(gain, SNR) subject to one or several constraints. Excellent textbooks in the 

international literature, [1-4], present several treatments on the synthesis problem. 

Among the above treatments we notice the Fourier transform method [2], the 

Schelkunoff procedure [5], the Dolph-Chebyshev and the Riblet synthesis [6, 7], the 

the Woodward - Lawson method [8-10] and the Orchard et al synthesis [11]. The 

orthogonal method was introduced by Unz [12] and has been extensively used by 

Sahalos [13] in many antenna synthesis problems. Our effort in this paper is the 

application of the above method for multiple beam beam-forming. 

The procedure starts from a set of uniform, non-orthogonal progressively phased 

composing functions [9], which are orthonormalized and overlapped. The 

orthonormalized functions are weighted to form the desired pattern. Our method is 

general and able to interpolate between beams and to combine them in order to 

synthesize the desired one. 
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2.     FORMULATION 

Let a linear array (Figure 1) be composed of N equidistant point sources. The 

array factor is given by: 
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where  is the excitation coefficient of the kkA th element, 
λ
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=  and d is the 

equidistance of the array elements. 

The functional basis of (1) is: 

 ( )
⎭
⎬
⎫

⎩
⎨
⎧

=
−−− θβ

θ
cos

2
)]12([ dkNj

eo
kΦ  (2) 

It would be tiresome, if not tedious, to repeat here the procedures of 

orthonormalizing this basis and arriving at the formulas that give the complex 

amplitudes . One can refer to [13] for the intermediate steps. kA
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Figure 1. Geometry of an N element linear array 

In our present work we suppose that the array factor comes from a set of M 

different patterns of uniformly illuminated N element arrays. In this case )(θrF  can 

be expressed in the following form: 
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The functional base of (3) )(θmΦ  is not orthogonal and, in this case, the inner 

product ji ΦΦ ,  is given by: 
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It is noticed that in the inner products there is a transformation of the independent 

variable θ to u=πcos(θ-π/2)=πsin(θ). 

It should be noted that the inner product is simplified if the angle θ is measured 

from broadside instead of the array axis [13]. In that case: 

With the aid of (5), it is possible to construct M new functions, related to each 

other by a relation analogous to that of orthogonality, following the Gram-Schmidt 

procedure [13]. 

We thus get: 
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Expression (6) is divided by 2
1

, kk YY  so that the resulting function will be 

orthonormalized. It is: 
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where  and  will be related by: kΨ jΨ

 kjδ=jk ΨΨ ,     (8) 

)(θrF  can now be expressed as a function of )(θiΨ  as follows: 
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If we suppose that a pattern )(θdF  is desired and )(θrF  can approximate it, then 

in view of (8)  will be given by: iB
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The quantities  in view of (9) are: iI
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It is noticed that expression (10) comes from the minimization of the mean square 

error (MSE). It is: 

 min)()( 2 =−= θθ dr FFMSE   (12) 

Eq. (12) gives: 
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Obviously, (10) can be derived from expression (13). 

From (6) – (8) one can get the coefficients  in the following form: )( j
iC

 
2

1
)(

,

1

nn YY
=n

nC   (14) 

 ∑ ∑
−

= =

−=
1

1

)()()()( ,
n

kj

j

i

j
i

j
k

n
n

n
k CCCC ji ΦΦ   (15) 

Taking into account expressions (1)-(3) the array element excitation are derived 

as: 
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mα  of (4) and (17) could be defined in several ways. A suitable form could be: 
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For 1=α  the phase of the mth composing function ( )θmΦ  makes the main lobe 

maximum coincident with the innermost null of the (m-1)th corresponding one. In this 

case, where M=N, the composing functions are the same with those used in the 

Woodward – Lawson method. It must be pointed out that the above method is based 

on the sampling concept of the desired pattern and its defect is the lack of control over 

the sidelobe level in the unshaped region of the pattern. Our method makes use of 
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composing functions of more general type and, instead of sampling, it applies the 

orthonormalization procedure. Taking different values of α  and M in (18) we receive 

different solutions of the synthesis problem. It is also possible to specify certain  

values of mα  which could improve the solution. In the examples section several cases 

with different choices of M and N will be presented. 

The synthesis procedure can be summarized in the following steps: 

1. Definition of the number N and the equidistance d of the array elements. 

2. Definition of the number M of the composing functions and their 

corresponding linear phase . ma

3. Calculation of coefficients . )( j
iC

4. Evaluation of the desired pattern )(θdF . 

5. Calculation of the quantities  and . iB iI

6. Calculation of the excitations  of the array elements. iA

Our method has no restrictions on the element numbers and the pattern symmetry. 

Also the degrees of freedom, in contrast to Woodward-Lawson are the maximum 

possible. 

 

3.    EXAMPLES 

As a first group of examples we will apply the method to the design of 

Chebyshev patterns. The design cases correspond to the ones presented in [14]. It is 

supposed that an endfire T5(x) pattern with SLL=-20dB is desired. For the 1st case, 

where the progressive phase shift is dβα −= , using M=N=11 the excitation 

coefficients obtained by our method are exactly the same with these obtained by the 

Riblet analytical method for an array with equidistance d=0.25λ. Decreasing M and 

keeping N=11 it is found that for up to M=8 different solutions give similar results. It 

must be pointed out that for M=N=8 the desired pattern can be produced. The 

excitation coefficients obtained in each of the cases mentioned above can be seen in 

Table 1, while Figure 2 represents the corresponding patterns. It is noticed that instead 

of 11 the problem can be solved with as few as 8 elements. Of course the MSE in the 

case of 11 elements is 100 times less than the corresponding one for N=8. 
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Next the method is applied to an array corresponding to the 2nd case, where the 

progressive phase shift is dβα = . Using N=9 elements, instead of the eleven that the 

Riblet method requires, the pattern obtained has exactly the same form. Table 2 and 

Figure 3 give the amplitudes and the corresponding pattern of the array for a T5(x) 

polynomial and λ2.0=d . 

Table 1. Excitation coefficients of arrays with d=0.25λ, for the T5(x) Chebyshev polynomial 
corresponding to the 1st Riblet endfire case. 

Excitation coefficients 

M=N=11 M=8, N=11 M=N=8 Element 
Number 

Magnitude Phase 
(deg) 

Magnitude Phase (deg) Magnitude Phase (deg) 

1 0.671 90 0.591 86.5 0.13 165 

2 0.567 0 0.405 -0.304 0.429 -6.50 

3 0.735 -90 0.651 -79.8 0.781 179 

4 0.874 180 0.818 -179 1 0 

5 0.967 90 0.856 94.3 1 179 

6 1 0 1 0 0.781 0.575 

7 0.967 -90 0.856 -94.3 0.429 -174 

8 0.874 -180 0.818 179 0.13 14.0 

9 0.735 90 0.651 79.8   

10 0.567 0 0.405 0.304   

11 0.671 -90 0.591 -86.5   
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Figure 2.  Computed Array Factor of arrays with d=0.25λ, for the T5(x) Chebyshev polynomial 

corresponding to the 1st Riblet endfire case. 
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Table 2.  Excitation coefficients of an array with d=0.2λ, for the T5(x) Chebyshev polynomial 
corresponding to the 2nd Riblet endfire case. 

 

Excitation coefficients 

M=11, N=9 
Element 
Number 

Magnitude Phase (deg) 

1 0.077 1.56 

2 0.274 -178 

3 0.566 -0.255 

4 0.865 178 

5 1 0 

6 0.865 -178 

7 0.566 0.255 

8 0.274 178 

9 0.077 -1.56 
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Figure 3.  Computed Array Factor of an array with d=0.2λ, for the T5(x) Chebyshev polynomial 
corresponding to the 2nd Riblet endfire case. 

 

In our next example we apply the method to the design of an optimum endfire 

array, which corresponds to the 3rd case of [14]. In this case the progressive phase 

shift is greater than the necessary for the classical endfire design. For M=N=11 the 

same results with the analytical method are found. Finally, for the 4th case we ask for 

a T5(x) array with SLL=-20dB and HPBW=30o. Table 3 and Figure 4 show the 

excitation coefficients and the radiation patterns for M=N=11 and M=N=9 elements, 
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which give similar solutions with acceptable MSEs. In both cases the equidistance of 

the array is λ2.0=d . 

Table 3: Excitation coefficients of arrays with d=0.2λ, for the T5(x) Chebyshev polynomial 
corresponding to the 4th Riblet endfire case. 

 

Excitation coefficients 

M=N=11 M=N=9 Element 
Number 

Magnitude Phase (deg) Magnitude Phase 
(deg) 

1 0.002 152 0.017 -22.7 

2 0.027 -22.3 0.131 163 

3 0.152 163 0.432 -11.3 

4 0.453 -11.2 0.816 174 

5 0.824 174 1 0 

6 1 0 0.816 -174 

7 0.824 -174 0.432 11.3 

8 0.453 11.2 0.131 -163 

9 0.152 -163 0.017 22.7 

10 0.027 22.3   

11 0.002 -152   
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Figure 4.  Computed Array Factor of arrays with d=0.2λ, for the T5(x) Chebyshev polynomial 

corresponding to the 4th Riblet endfire case. 
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The above examples show with convincingness the ability of the method to solve 

the Chebyshev synthesis problems with less (odd or even) than the required by the 

classical methods elements. 
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Figure 5.  Desired and Computed Array Factor of an array with d=0.5λ, corresponding to  

(a) the cosecant function, and (b) the modified cosecant function. 
 

Another interesting case is the design on an antenna with a cosecant – squared 

pattern. It is supposed that the beam is between  and . The array 

consists of N=46 elements with an equidistance of 

o60=θ o4.85=θ

λ5.0=d . Figure 5a shows the 
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pattern of our design for M=N=46. It is noted that the resulting pattern has a fair 

amount of ripple in it and the relative amplitude of the currents is 17.07dB. If in the 

vicinity of the maximum the pattern is expressed in an exponential form of the type 

( )[ ]  2/exp 2
ok θθ − , where k is derived to have a HPBW equal to oθ , the resulting 

pattern becomes considerably smooth. It can be noticed that a sidelobe envelope can 

follow the requirements. Figure 5b shows the pattern for M=N=46 and . 

The desired pattern requires a –35dB level from 125

o
o 6.4=θ

o to 180o. A disadvantage of the 

above array is that the relative amplitude of the currents becomes about 35.33dB. We 

could overcome this disadvantage by decreasing the HPBW of the desired pattern. As 

the desired HPBW decreases so the resultant pattern increases its ripple and its 

sidelobe level. The above example which contains pattern discontinuities shows the 

ability of the method to control the sidelobes. 
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Figure 6 : Desired and Computed Array Factor of an array with d=0.5λ, corresponding to the 

modified cosecant function. 
 

The same pattern with more requirements on the sidelobe envelope is presented. 

This case has to do with the control of the level of the close sidelobes as in the case of 

the Elliot’s method. Sixteen elements with half-wavelength distance are used. The 

close sidelobes are controlled from the value of the HPBW of the pattern. The beam is 

between 30o and 78o. Also the SLL envelope from 125o to 180o is ≤-30dB. Up to 125o 

there are sidelobes with level depended on the HPBW. A HPBW of 12.5o shows the 

close sidelobe level –55dB (see Figure 6). Obviously the example gives equivalently 
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acceptable results with these given by Elliot et al (see [15]). Comparing the result with 

the one obtained by the Woodward-Lawson method one can see that our technique 

offers almost 3 times more accurate results in terms of the mean square error. 
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Figure 7. Desired and Computed Array Factor of an array with d=0.45λ, corresponding to a desired 

pattern of the form ( )[ ]  2/exp 2
ok θθ − for the main beam. 

 

A 32 element linear array with required maximum at and different levels 

of the sidelobes in the left (≤-40dB) and right (≤-60dB and ≤-45dB) regions of the 

mainlobe has been designed. Figure 7 shows the pattern of the array with 

o
o 85=θ

λ45.0=d . 

It is noticed that this case can be compared to that given by Elliot et al [4], where the 

sidelobe level of the array is controlled. 

Another useful example of a Taylor and a Bayliss pattern is given for N=18 

elements, SLL=-40dB for the close and SLL=-30dB for the other sidelobes, and 

λ5.0=d . Figure 8a shows the Taylor pattern for M=18 and M=10. It is obvious that 

for a lower number of M the resulting pattern has a smaller number of sidelobes. 

Similar results are taken for the Bayliss pattern. Figure 8b shows the pattern for two 

different combinations of M and N. One is with M=N=16 and the other is with 

M=N=18. For both cases the results are acceptable. 
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(b) 

Figure 8.  Computed Array Factor of an array with d=0.5λ, corresponding to  
(a) a Taylor desired pattern, and (b) a Bayliss desired pattern. 

 
 
4.    CONCLUSION 

The method of orthosynthesis has been presented in this paper. It was supposed 

that the desired pattern comes from a set of N element, uniformly illuminated arrays. 

The factor of each uniform array is the basis function of a non orthogonal M-

dimensional vector space. The basis is orthonormalized by the Gram – Schmidt 
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procedure and the current of the array is found by the well-known orthogonal method. 

Several examples for different arrays and different patterns have shown the 

applicability of the method. 
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