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Abstract 
A unique solution for scattering from a roughness (boss or indentation) on a PEC 

ground plane is obtained making use of a new method that combines the Galerkin 
MoM on entire-domain basis and the Rayleigh's method expansion of a solution in 
terms of the eigensolutions of Helmholtz equation in cylindrical coordinates. This 
method uses the dividing of upper space into two parts with the aid of semi-
circumference that encloses the roughness. Numerical calculations are enacted on the 
roughness surface only and hence give a solution in a very economical way for any 
grazing. Uniqueness of a solution is proved and demonstrated. The two-dimensional 
case is considered. However, this method is applicable for the tree-dimensional scalar 
case as well. 

 
 

1.   INTRODUCTION 
 

Scattering by a roughness of finite extent on a perfectly conducting (PEC) half-

space is one of the main problems in electromagnetics since Lord Rayleigh’s time, 

when he has proposed the original method of images for constructing an equivalent 

scattering problem in free space and used it for semicircular bump. For this 

configuration, one can obtain a unique solution to the mentioned scattering problem 

making use of Rayleigh's method of images (MoI). For other configurations, one can 

use the combined field integral equation (CFIE) in free space to obtain a unique 

solution with the MoI. However, it is well known that the CFIE is not applicable for 

thin structures. Because of that, one cannot obtain a correct solution for scattering for 

example from a sea-wave on a ground plane in the PEC approximation of sea water if 

we use the MoI. More than that, this method is not applicable, in principle, for troughs 

in a PEC ground plane. The latter problem can be solved with the aid of widely used 

technique, the generalized network formulation proposed first in [1]. However, such a 

solution suffers from the problem of spurious resonances at the eigenfrequences of 

indentation. In order to obtain a unique solution to this problem, Asvestas and 

Kleinman [2] developed a set of coupled singular integral equations with the aid of 
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very complicated manipulations. Wood and Wood [3] applied these equations to the 

two-dimensional (2-D) cavity. It was claimed that these integral equations are free of 

cavity resonance. However, this affirmation was not proved. Numerical investigations 

show that it is really so, but mathematical complexity prevents to apply this method 

for arbitrary scatterers [4].  

Theoretically, to obtain a unique solution to the scattering problem for any 

roughness on a PEC plane, we can use either the electric field integral equation 

(EFIE) or the magnetic field integral equation (MFIE) on the whole infinite interface. 

Recently, it has been developed a powerful method, the forward-backward (F/B, in 

authors’ notation) iterative method solution to the MFIE on the infinite interface [5]. 

Unfortunately, this iterative method converges not for any roughness. In the case of 

convergence, one can obtain a very accurate approximate solution for not very low 

grazing angles. The last restriction is due to the fact of truncating the integral 

equation’s domain to a finite one. This issue leads to theoretically incorrect statement 

when one uses the MFIE in fact for open screen. To diminish the inadequacy error, 

which arises from such a truncation, one has to add very large pieces of plane 

interface to both sides of a scatterer. However, it is clear that the less the grazing the 

larger pieces must be added to prevent the influence of the ends of a screen. Because 

of that, one cannot diminish grazing angle close to zero if an integral equation is 

defined on the whole infinite interval and then it is truncated to a finite one. 

Additionally, the computational labor in such cases increases dramatically with 

grazing angle diminishing if we want to weaken the inadequacy. This refers not only 

to [5] but also to analogous works [6, 7] and to all other ones used the truncation 

principle without any version of resistive tapering. The last method is also considered 

intensively in the literature with the goal of reducing the edge diffraction (e.g., see 

[8]). Other than, it has to be noted that at low grazing this method does not improve a 

truncated solution in an acceptable manner as well. However, scattering features at 

close-to-zero grazing are of paramount importance for studying radar returns from sea 

surface in the PEC approximation of sea water, for example. 

A unique solution to the mentioned problem for a specific geometry, viz., a 

semicircular trough in a ground plane, can be obtained with the aid of Rayleigh's 

method expansion of a solution in terms of the eigensolutions of Helmholtz equation 

in cylindrical coordinates. Many authors solved this problem in such a manner (e.g., 
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see [9-11]). However, all cited works dealt with ill-conditioned equations for solving 

for modal coefficients. Because of that, these solutions are valid for the low-frequency 

case only. In [12], the most general case of scattering from cavity-backed semicircular 

troughs was considered. In this work, authors obtained very complicated system of 

integral-integrodifferential equations of the first kind but solved them in the low-

frequency case only without unicity and convergence analysis and error estimation.   

Recently, this canonical problem has been rigorously solved by the author in [13] for 

the E-case, and in [14, 15] for the H-case. To this end, the very same method that was 

used in [9-11] was modified so the equation for modal coefficients became Fredholm. 

However, for arbitrary roughness shape the mentioned uniqueness problem is not 

solved to date, as to author's knowledge, nether in the 2-D nor in 3-D case. 

 To solve the uniqueness problem in the 2-D case, we consider in this paper a 

novel hybrid Galerkin-Rayleigh method (HGRM) solution for the mentioned 

scattering problem valid for any grazing and any roughness. The method combines the 

Rayleigh's method expansion of a solution in terms of eigensolutions of the Helmholtz 

equation in the cylindrical coordinates (Rayleigh's series) and the method of moments 

(MoM). Worth noting that the HGRM solves the above problem in a very economical 

way due to the fact of enacting of a solution on the rough contour only. The HGRM 

yields a simple matrix equation for modal coefficients, which is analogous to a 

common MoM equation for screens and therefore has a unique solution [16]. 

 In this paper, we apply the HGRM for solving the E-scattering from sea wave 

modeled as the “exponential wedge” with the purpose of comparing our results to that 

obtained in [5] for  grazing angle with the aid of mentioned F/B method. Besides, 

we also consider backscattering at low-grazing regime, viz., for  and  grazing 

angles, to demonstrate the advantages of the HGRM in solving low-grazing-angle 

scattering problems. In addition, we consider the scattering from semicircular trough 

in a PEC ground plane with the goal of testing our numerical code and demonstrating 

the applicability of the HGRM for troughs. To this end, we compare this method to 

that of [13], in which the rigorous solution to semicircular trough has been obtained. 

At last, we note that presented method can be applied for solving appropriate three-

dimensional scalar scattering problems as well if we use specifically oriented 

spherical coordinate system, in which 

o5
o1.0o1

πθ <<0θ  varies in the range of  for free 

semi-space. Finally, note that we have considered here the E-case only leaving the H-
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case for the next paper. This is caused by the use of completely other technique for 

solving the hypersingular integral equation of the 1st kind, which arises on the rough 

metal boundary in the H-case. 

 
2.     HYBRID GALERKIN-RAYLEIGH METHOD  
 

Suppose a plane wave impinging upon a metallic ground plane with two-

dimensional roughness of a finite extent that occupies the interval [-a, a] on the x-axes 

(Fig. 1). Let this wave has the z-component only, viz., 

tjijkeE ωϕρϕρ +−−= )0sin(
0 ),(          (1) 

ck /ω=where  is the free space wavenumber and  is an incidence angle counted 

counterclockwise from  the y-axes. We omit henceforth the time dependence and  
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  Figure 1.  The geometry of scattering problem. 

decompose the total electric field in  domain into the incident, reflected, and 

scattered field as follows: 
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In , the total electric field is sought as a sum of the single-layer potential and the 

Rayleigh's expansion  

+D

∫ +=
π

ψϕρ
0

2
)2(

0 ')'())',,((),( dtttyxRkHE ∑
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2 sin)(
n
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where both (x,y) and ( ϕρ , ) represent the same observation point. We suppose here 

that  and  are separated by a semi-circumference (−D +D 1Γ ) of radius a (see Figure 
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1), and the dielectric constant 2ε  in the inward ( ) domain may be complex 

number with 

+D

0Jm 2 ≤ε . Here, in the integral term we denote 

2/12
2

2
2 )))'(())'((()',,( tyytxxtyxR −+−=        (4) 

with 

],0[),(),( 22 π∈== ttyytxx          (5) 

2Γbeing a parametric equation of the boundary  (or L ) of the scatterer and 2

22 εkk = 1Γ. Consider first the boundary conditions on . In this case, it is 

convenient to represent all fields in the polar coordinates and use of 

ϕϕϕϕ sin)(,cos)( 11 ayyaxx ====        (6) 

on . Then, one can obtain the following function equations on [1Γ π,0 ]: 
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Here, the primes denote derivatives of the Bessel and Hankel functions with 

respect to the whole argument. Consider now the boundary condition on  (L2Γ 2). 

Here, we use the rectangular coordinates and known relationship between polar and 

rectangular reference systems [17], 
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We denote further 
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2Γand write down the equation on  (L ) as 2
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What is important in this equation is the use of relation (8) that yields a uniform 

discretization of the boundary if we use a uniform meshing of parameter t.  Besides 

that, we do not need to find the polar equation of the boundary of a scatterer that is not 

an easy problem itself. Instead, we can use a parametric equation (5) of the boundary 

 (L2Γ 2), deriving of which is not a problem. The first issue permits one to increase 

substantially the accuracy of a solution, and the second one to consider scatterers with 

complex boundaries. To obtain the solution of functional equations (7, 9), we 

represent the unknown function  as a Fourier series )(tψ

∑
>

=
0
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according to the Galerkin procedure. Then, multiplying the equations (7) by ϕmsin  

and integrating from 0 to π , we obtain the following system for modal coefficients 
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Additionally, multiplying the equation (9) by  and integrating from 0 to mtsin π  

as well, we obtain the third matrix equation  

∑ ∑
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The system obtained, (11), can be solved analytically with respect to modal 
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Then, these coefficients are as follows: 
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Substituting (18a) into (11c) and denoting 
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we obtain the main matrix equation for , viz., }{ mc

)4()2( FDccT =+ .                   (21) 

In this equation,  is a common Galerkin MoM matrix for the EFIE on a non-

closed contour (screen), D is a square summable matrix under certain condition we 

)2(T
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consider a bit later. It is known that  has highly expressed diagonal predominance 

and, then, permits one to obtain an adequate solution to the equation (21). Really, the 

equation (21) follows from the MoM procedure applied to functional equation (9), 

which has the same integral operator as the EFIE for a screen. The existence and 

uniqueness of a MoM solution to such an equation was proved in [17]. This one 

proves the uniqueness of a solution to considered scattering problem. Following 

further the work [18], one can transform this equation to a Fredholm one making use 

of both regularization and preconditioning procedures. Such an issue leads to 

substantial increasing in accuracy of an approximate solution and permits one to 

calculate an actual error of a solution for specific problem. We do not consider this 

method in presented work for brevity having in mind that it easily can be done making 

use of the mentioned work. Lastly, consider the square summability of matrix D. 

Because the matrix Φ  (16) is compact, the compactness of D depends exclusively on 

compactness of the matrix E. The latter one is compact only for those scatterers for 

which 

)2(T

a≤)(ϕρ . However, this restriction is not very hard because we always can 

increase the radius a of auxiliary semi-circumference to the needed value. These 

considerations prove completely the uniqueness of HGRM solutions. At last, we note 

that this method can be applicable to the tree-dimensional scalar case as well, if we 

use the spherical coordinate system so that metallic semi-space will be  and 

hence 

0≤y

πθ <<0  in the free semi-space. In this case, we can use the orthogonality 

properties of spherical functions and obtain modal coefficients on the semi-sphere 

analytically. The uniqueness of a HGRM solution can be proved in this case in very 

same manner as for 2-D case, if we account for the fact that the considered roughness 

inside the semi-sphere provides the same integral operator as the corresponding 

screen, for which the unique solvability has been proved in [19], for instance. 

Regardless dimensionality of the problem, we obtain in the HGRM an integral 

equation analogous to that for a screen of finite extent. Therefore, this integral 

equation one can solve making use of all of powerful methods developed to date. 

 
3.     COMPUTATIONAL FEATURES 

The relative boundary condition’s error  is computed as the Euclidean norm of 

residual error for the N-term approximation (

Ne

) to an exact solution to the equation Nψ
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hgr /λ=(9) versus progressively greater value of the grid resolution  (a number of 

subintervals or points per wavelength) with h the grid spacing. The latter parameter, 

, has been proposed in [20] instead of the number of subintervals (n) and is very 

useful, as to our opinion. When using the GMoM, a truncation number N has been 

related with n as , to support the needed accuracy when evaluating the 

peripheral MoM matrix elements. The number (n) of subintervals, which has been 

used for approximate evaluation of the MoM matrix elements, is derived then from 

the formula: 

rg

]2/[nN =

]2/[ πrLkgn =  with ][⋅  being the integer part of a number. The used 

relation between N and n corresponds approximately to the wide used relation: 

. In our work, this relationship is as follows: Nh /1= Nh 2/π= . Besides these 

characteristics, we also use a monostatic RCS (MRCS) in unitless form 

22
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ρ

==
∞→

               (22) 

with  being  the amplitude scattering function and bϕϕ =)(ϕF  corresponds to 

backscattering. For comparison with [5], we also calculate the backscatter coefficient 

)(|4 bH FB ϕ= | . 

The matrix elements (13c) are evaluated in the Bogolyubov-Krylov approach [21] 

as 
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where . To evaluate the EFIE integral (24), we use the singularity extraction 

(SE) method [22] as the most accurate and fast. As the regularizer, we use here the 

function 

2/hd =

|)'|ln(2)'( ttkajttG −−=−
π

o

.                                               

Using this function in the SE method, we transform the EFIE integral as 
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Here, , and C = 0.577… is the Euler constant. Above, 

we have used the Bogolyubov-Krylov approach when evaluating the second integral.  

2/12
2
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2 ))()(( iii tytxL && +=

 
4.    NUMERICAL RESULTS 

What is the main problem of deriving a unique solution for scattering from rough 

metal surface for any grazing is the elimination of edge diffraction if we use a 

truncated integral equation. With grazing angle diminishing, it is necessary to increase 

substantially the leading and trailing flat sections that in turn increases dramatically 

the computational burden. To avoid this, one can use any version of resistive tapering 

across these sections as in [8]. However, such model methods need to be verified by 

some rigorous method. As such a method, one can use the HGRM proposed in this 

paper. This method permits one to obtain a unique solution to the mentioned problem 

for any grazing in a very economical way. Computational burden of this method is the 

same as for Galerkin MoM solution to the MFIE for the circular cylinder of the same 

electric size. 

 To demonstrate the uniqueness of HGRM solutions, we give in Figure 2 the 

behavior of matrix condition number via electric size, ka, for scattering from semi-

elliptic boss with axes ratio b/a = 0.1 derived by both the Rayleigh’s method of 

images making use of the MFIE (curve 1) and this method (curve 2). Both graphics 

are calculated with ka spacing 0.1. We can see herein practically unchanged matrix 

condition number for the HGRM in the vicinity of resonance frequencies in contrast 

to that for the MFIE. 

 To demonstrate the effectiveness of the new method, we consider the same 

scattering problem as in [5], where sea wave model called “exponential wedge” (ew) 

has been used. The profile of this wave is outlined by the function 
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where h is the wave’s height, 2a is its length (Figure 1), and parameter s has been 

chosen equal to  as in [5]. Scattering of the plane wave with wavelength 3cm 

impinging on a half space with this scatterer of the length 2 m and height from 0.1 cm 

to 12 cm at grazing angle  (incidence angle ) has been considered in mentioned 

paper. To obtain an adequate solution for such a low grazing, the authors needed to 

add 3 m flat pieces to both sides of scatterer so the total number of meshing points 

was 10001. For this meshing, approximately 0.5% relative error in boundary 

conditions has been achieved using a workstation of modest cost. Using new method 

presented in this paper, we obtain the same accuracy with 1462 points meshing used 

for integrals evaluation and 366 modal harmonics. The calculations have been 

provided with the aid of Pentium Pro 200 MHz computer. The comparative results are 

listed in Table 1 for two wave heights, 10 cm and 1 cm. It has to be noted that the 

HGRM solution is sufficiently accurate almost for 1048 points and 262 harmonics 

(error is less than 1%). What is of principle importance in the mentioned scattering 

problem is obtaining an accurate solution in the low grazing regime (grazing angle  

o22tan

o5 o85
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Figure 3. The monostatic RCS for scattering from the trough of ka = 10 obtained by the HGRM 
compared with the exact method [13] versus observation angle for various meshing ( ). rg
 
less than ). This range is practically unachievable for methods that use the truncated 

integral equations. However, namely this range of grazing angles is of paramount 

importance for radar remote sensing and targets detection. The HGRM presented here 

is applicable for any grazing. This is demonstrated in Table 2, where the scattering 

features for the same ew-configuration of scatterer are listed for  and  grazing 

angles. 

o5

o1.0o1

Because any roughness on sea surface is caused by gravitation, we cannot use a 

boss as a model of sea wave. Gravity wave is constituted from both promotions and 

indentations. To demonstrate the validity of HGRM for indentations as well, we 

consider the scattering from a semi-circular trough in a PEC plane with the goal of 

comparison our results with rigorous solution obtained in [13]. The latter solution will 

be regarded further as “exact” solution. These two solutions are used for computing 

the monostatic RCS (MRCS). The obtained results are shown in Figure 3. The MRCS 

(in dB) behaviors via incidence angle are presented herein for both the “exact” 

method (solid curve) with  and the HGRM (“x”-marked curve) with  

(Figure 3a) and with  (Fig. 3b). As we can see, the corresponding MRCS 

values for these two methods are close enough even for 

10=rg 10=rg

20=rg

10=rg  and those ones 
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obtained with the HGRM approach to corresponding “exact” values with  

increasing. The boundary condition relative errors for these two methods are shown in 

Figure 4. The “exact” method has been enacted on meshing with  whereas the 

HGRM has been used with progressively increasing , viz., 

rg

10=rg

rg 10=rg  (Figure 4a), 

 (Figure 4b),  (Figure 4c), and 20=rg 30=rg 40=rg  (Figure 4d) with the goal of 

demonstrating the convergence and validity of presented method. It is worthwhile to 

point out that the boundary condition’s error is decreasing with grazing angle 

diminishing as we can see from these figures.  
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Figure 4. The boundary condition's relative error ( ) for both the exact solution with = 10 and the 
HGRM solution with progressively increasing grid resolution. 
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Table 1. Comparison of the HGRM and F/B for  (  grazing) o850i

o5
HGRM F/B 

n 632 840 1048 1256 1462 10001 
N 158 210 262 314 366  

Ne  0.0545 0.0133 0.0069 0.0045 0.0031 ~ 0.003  

|| HB  0.2174 0.1837 0.1951 0.2015 0.2141 0.215 
h=10 cm 

-19.276 -20.736 -20.215 -19.933 -19.408 -19.371 
bσ , dB 

Ne  0.3098 0.0904 0.0461 0.0290 0.0280 ~ 0.003  

|| HB  0.0141 0.0160 0.0171 0.0180 0.0190 0.0191 
h=1 cm 

-43.057 -41.924 -41.337 -41.013 -40.445 -40.399 
bσ , dB 
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Table 2.  The HGRM for low grazing. 
h 10 cm 1 cm 

0.0059 0.0133 
Ne  

|| HB  0.0252 7.23  410−⋅

o890 =i  
o1  grazing 

-38.0088 -68.8290 
bσ , dB 

0.0060 0.0134 
Ne  

|| HB  2.62  410−⋅ 7.42  610−⋅

o9.890 =i  
o1.0  grazing 

-77.6402 -108.8233 
bσ , dB 

 
 
5.   CONCLUSION 

A rigorous method solution for scattering from any roughness of finite extent on a 

PEC ground plane has been presented. This method, the HGRM, is enacted on finite 

boundary of a scatterer only. In contrast to methods solution of the EFIE or MFIE on 

the whole infinite interface, the proposed method yields an accurate and fast 

convergent unique solution in a very economical way. Comparison of scattering from 

67λ -"exponential wedge" obtained by well known "Forward-Backward" (F/B) 

method solution to the MFIE on the whole infinite interface to that obtained with this 

method exhibits approximately ten times reduction in complexity for our algorithm at 

the same level of accuracy. More than that, the presented method yields stable 

solution for any low-grazing angle in contrast to the F/B method, for instance. 

Therefore, the method presented gives a possibility to investigate effectively the 

backscattering from gravity sea waves at low grazing and many other related 

problems in two or three dimensions.  

Summarizing we note that the  method proposed in this paper solves in unique 

manner the scattering problem for any trough or boss on a ground plane in a rigorous 

and very economical way and finishes in a sense the long-time efforts to overcome 

this problem.  
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