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Abstract 

The performance of Cell Averaging-Constant False Alarm Rate (CA-CFAR) 

degrades rapidly in nonideal conditions caused by the presence of a strong target 

signal in one of the reference cells. The Order Statistic-CFAR (OS-CFAR) is used to 

eliminate the reference cells with a strong input. The performance of the 

Conventional-Order Statistic (Conventional-OS) detector is evaluated to determine 

the signal-to-clutter ratio required achieving a particular probability of detection in 

clutter environments whose amplitude statistics are modelled by the Weibull 

distribution, and where the clutter dominates receiver noise. The performance is 

evaluated in both homogeneous and nonhomogeneous clutter. The analysis shows that 

the Conventional-OS detector is quite robust against the clutter edge effect. 

 

1. INTRODUCTION 

A target is detected when the output of the radar receiver crosses a predetermined 

fixed threshold level set to achieve a specified probability of false alarm. In many 

situations, however, the clutter echoes and or hostile noise can be much greater than 

receiver internal noise, when this happens, the receiver threshold can be exceeded and 

many false alarms can occur. In many applications where the noise can changes due to 

interference or varying clutter. The solution is an Adaptive Threshold adjustment, 

designed to keep the false-alarm probability constant despite changes in the 

background noise or interference. Many techniques can yield Constant False Alarm 
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Rate (CFAR), under specific restrictions. CFAR usually reduces the probability of 

detection compared to similar case at known and stable noise level. In a Cell-

Averaging (CA-CFAR) system the threshold adjustment for a specified resolution cell 

is based on the average detected input from the neighbouring cells during the same 

pulse or scans. This method is works well when the background interference is 

statistically homogeneous over the range. This assumption is violated in two major 

situations [1]: 

a) When the reference cells cross an edge in the clutter background. 

b)  When one or more reference cells include returns from other targets. 

When the cell under test is in the clear side of the edge, in the original CA-CFAR, 

the reference cells in the clutter will unnecessarily increase the threshold, causing a 

decrease in the probability of detection. The Greatest Of-CFAR (GO-CFAR) strategy 

will worsen the problem. One solution here is to use the opposite strategy by selecting 

the lower of the two levels. This type is known as the “Smallest Of-CFAR” or SO-

CFAR. The presence of a strong target signal in one of the reference cells is similar to 

the problem of having stronger clutter in several adjacent reference cells.  

Several solutions to the problem of maintaining CFAR in multiple-target 

situations have been proposed. They yield better Performance but require more 

complex implementation. Rohling [1] suggested a different approach to the 

elimination of reference cells with a strong input. This is called Order Statistic-

Constant False Alarm Rate (OS-CFAR). 

Several nonlinear estimation techniques have been proposed to reduce the above 

problems. The nonlinearity may involve taking the average of the reference cells, and 

variations on these recent interest has also concentrated on order statistic (OS) 

detectors that use the K th largest on M range cells 

   Order Statistics characterize amplitude information by ranking observations in 

which differently ranked outputs can estimate statistical properties of the distribution 

from which they stem. The order statistic corresponding to a rank K is found by taking 

the set of M observations X(k), k=1,2,….,M, and ordering them with respect to 

increasing magnitude.(i.e. Mki xxxxx ≤≤≤≤≤ L21 )  [2, 3, 4], the K th largest 

sample is taken as an estimate for the unknown noise level. 
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Most papers are limited to Rayleigh distributed receiver noise. Real word clutter 

statistics are generally not Rayleigh distributed so, the performance of the above 

algorithms can be substantially degraded.  The model uses a Weibull distribution to 

model the clutter. The approximation technique is applied here to study the 

performance of the conventional-OS detector under uniform and nonuniform 

background distribution. The block diagram of the processor is shown in fig. (1) 
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2. MATHEMATICAL MODEL 

The processor is assumed to use an approximation of the magnitude, where I and 

Q are “In-phase” and “Quadrature” channels, respectively [5, 6] of the sampler that 

follows the matched filter to determine the threshold. A variety of probability density 

functions may be used to model this amplitude. The Cumulative Distribution Function 

(CDF) of the Weibull distribution QW(x) is given by [6, 7]: 

                    0,exp1)( ≥⎟
⎠
⎞⎜

⎝
⎛−−= xxxQ b

W γ                                                                          (1) 

where b is the skewness parameter of the distribution and γ  is the scale parameter, 

where both are greater than zero. At b=2 the distribution reduces to the Rayleigh 

distribution. Smaller values of b increase the skewness of the distribution, and allow 

the simulation of the spiky clutter. The probability density function of the Weibull 

distribution is the derivative of the CDF with respect to x [6, 7, 8]: 
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The probability density functions in Fig. (1) refers to the density function at 

the output of the order statistic calculator, similar notation for the cumulative 

distribution function . The threshold multiplier 

)(xP

)(xQ α  required guaranteeing a 

particular Pfa
 is determined as follows. 

Since the threshold is modelled as a random variable, the Pfa is given by [1, 6, 8]:                

                                                                                                   (3) 

The cumulative distributions at the OS calculator output is given by [1, 6, 7]  
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The probability density function of the detector out of the order statistic calculator 

can be obtained by differentiating Eq. (4) with respect to x, which yields: 
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Since, one side of the reference cells is used in this detector, then, the CDF at the 

output of the multiplier is given by [6, 9]  

                  ⎟
⎠
⎞

⎜
⎝
⎛=
α
xQxQT )(                                                                                               (6) 

Eqs. (3) and (6) are used to calculate the values of the threshold multiplier α  that 

gives a particular Pfa. 

 

3. AVERAGE DETECTION THRESHOLD ALGORITHM   

The Average Detection Threshold (ADT) adopted here to evaluate the threshold 

algorithm, when square-law detection is used; is defined as [6, 8].  

                  
μ

α SADT
2

=                  

where 
2sα represents the required signal energy to achieve a particular Pd, μ  is the 

average noise power and ADT represents a required SNR. 

The second moment of the output of the selection logic is used to obtain the ADT. 

The threshold multiplier α is squared when the squaring device is included [6, 7], the 
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ADT is then obtained  from                              

221
SADT α

μ
=                                                                               (7)               

Using the first derivative of  for the specific detector, this is given by [6, 7]:  )(xQ

                 ( ) dxxQ
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dxADT ∫
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The mean noise energy is given by [6]: 
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Eqs. (4) and (9) are substituted into Eq. (8) to calculate the value of ADT for a 

particular value of α , which was previously calculated at different values of the 

skewness parameter b, and the result formula is: 

    [ ] [ ] dxxPxQxQ
K
M

Kx

dx
bxbxb

ADT
WW

K

W

KM

∫
∞

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∫
∞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛−+
=

−−

0
)()()(1*

0
exp1

1
2

2

γγ

α                     (10) 

 

4. INTERFERENCE IN AN ESTIMATION CELLS 

Extended analysis can be done when the interference exists within the estimation 

cells. If the interference is large, one or more of the cells used for background clutter 

estimation cells is well above the average value of the remaining cells. This 

interference could be caused by multiple aircraft flying information, or by jamming. If 

the interference is assumed to generate a constant return, then the density function 

describes a constant signal in Weibull- distributed background noise, else the cells are 

represented by different density function.  

To avoid evaluating the weibull-plus-signal distribution functions, it is convenient 

to assume that the mean interference is much greater than the clutter in the remaining 

estimation cells. This approximation becomes more accurate as the returned energy 

from the interference increases relative to the energy in the remaining estimation cells. 

If one of the cells contains interference, the calculation is modified as follows. The Pfa 

is still given by Eq. (3). That is, the threshold multiplier is set with no interference 
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present. As in the non-interference case, Eq. (3) is solved forα , given a desired Pfa. 

The ADT is obtained from Eq. (8), using Eqs. (4), and (5) with Q(x) and P(x) as a 

function of M-1 estimation cells. Note that the actual cell occupied by the interference 

is irrelevant to this analysis.  

 

5. CLUTTER BOUNDARIES ANALYSIS 

The real world clutter background is not identically distributed among the 

estimation cells. This nonhomogeneity in the background environment occurs when 

one or more of these cells contain additional energy either from multiple targets or 

from intentional jamming. The reference channel is always assumed to be 

homogeneous and representative of the primary target distribution under the null 

hypotheses      

The clutter boundary is modelled as a step function discontinuity in noise power. 

The window of size M, it is assume that there are R cells coming from heavy clutter 

region each with power level  [9, 10], where CNR denotes the 

clutter-to-thermal noise ratio, and the remaining M-R cells having thermal noise only 

with power level 

))1(( CNRcc += μμμ

)( μμμ =tt  each. The observations in both cases are assumed to be 

statistically independent. Then, the CDF of the K th ranked cell has a form given by 

[8, 11]; 
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Q1(x) and Q2(x) denote the CDFs of the Rayleigh and Weibull distributed receiver 

noise of the reference cells respectively.  

Equation (11) can now be substituted into Eq.(3) to obtain the Pfa at clutter 

boundaries. The threshold Multiplier α  is adjusted using Eq. (3) to yield a particular 

Pfa in Rayleigh- distributed receiver noise for the selected OS cell. Next, a clutter is 

passed through the estimation cells before the test cell. These cells consist of Weibull-

distributed clutter having a variance (20 dB for example) above that used to initially 

set the threshold. The front advances one estimation cell at a time until it covers all 

the cells. During this period, the target test cell remains in Rayleigh-distributed 

receiver noise. After that, the test cell is assumed to respond to Weibull-distributed 

                                                                                                                JAE Vol 8 No 1 18



S. M. Salih , N. K. Uzunoglu, A. Y. Fattah 

 
clutter. Thus, a substantial performance change occurs when the clutter crosses the M 

the estimation cell. 

The background energy μ  in Eq. (9) has one of two values, depending on whether 

or not the test cell responds to clutter. 

 

6. SIMULATION RESULTS 

6.1 Threshold multiplier amplitude  

To determine the threshold multiplier amplitude ( )α , it is convenient to normalize 

W so that it has unity mean, then γ  in Eq. (1) can be set to unity [6]. The threshold 

multiplier α  is determined under the hypothesis that the noise alone is present in the 

reference channel. The value of α  for detector is numerically computed by solving 

Eq. (3). In all numerical results, the window size M is 24 cells and two values of Pfa 

are assumed: 10-4 and 10-6.  

It can be seen that from Fig.(2), the threshold multiplier α  decreases as the order 

statistic cell K increases. As the skewness of the Weibull distribution increases (i.e. as 

b decreases), the threshold multiplier values (α ) increases, raising the threshold to 

account for noise spikes.  
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6.2 Average detection threshold calculation (ADT) 

The ADT is now calculated for the detector. Eq. (8) is used to calculate the ADT 

for the detector. The ADT is obtained from this equation with and  as a 

function of (M-1) estimation cells for single interference case. The threshold 

multiplier is set with no interference present in the reference cells, and its values are 

obtained by solving Eq. (3), which was previously calculated for the design values of 

P

)(xQ )(xP

fa  (10-4 and 10-6), and different skewness parameter b. Fig. (3a) is plotted at Pfa=10-4.    

In the four pairs (b) that end at M=23 represents the single interference case, with 

interference case the best performance (i.e. smallest ADT) occurs near K=18. With no 

interference case, the best performance occurs also near K= 20. The same results are 

obtained in Ref.[6] for GO-OS detector. A relatively wide performance plateau exists 

for K between 17 and 22 for the Rayleigh amplitude (b=2) case within which the 

ADT varies less than 0.2 dB and K between 14-22 for GO-OS [6],  the width of this 

plateau decreases for more spiky clutter. The detector introduces a higher loss in case 

of single interference compared with GO-OS detector; this is due to using single side 

of the reference window. The higher loss occurs at higher values of K for this 

detector, so, the smaller values of K can accommodate many interference-dominated 

clutter estimation cells in Rayleigh clutter, and this option becomes less attractive as 

the clutter becomes spikier.  

The interference causes a performance loss of only 2 dB or less for  and 

K=20, 1 dB for GO-OS detector under the same conditions. The performance is 

degraded by about 21 dB as b varies from Rayleigh to Weibull with b=0.5 and 19 dB 

for GO-OS detector. Fig. (3b) is plotted for P

1≥b

fa=10-6, the same results approximately 

are obtained. The ADTs are all higher and more degradation is caused by the 

interference (additional CFAR loss). 

 

6.3 Order statistic cell (K) 

The threshold multiplier α  is calculated to guarantee Pfa=10-4 at a value of b=1.5. 

The representative rank K, which makes Pfa insensitive to uncertainty in the clutter 

distribution model, is taken as an even number (for example). Then Eq. (3) is used to 

calculate the Pfa at different values of b. Fig. (4) Shows this result for the detector. 
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From this figure, K=24 (i.e., the maximum value of M) shows the least sensitivity 

to changes in b. Similar results are obtained when the threshold is adjusted 

with , Also, the same results are obtained when the design value of b=1.0. 

Thus, the higher values of K (K=24) is capable of maintaining a particular P

25.0 ≤≤ b

fa in 
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uncertain clutter background. The best performance (least sensitivity to change in b) 

occurs at 18≥K for this processor. 

 

 

 

 

 

 

 

 

 

 

 

6.4 The detection performance of the detector 
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 Fig (4) Sensitivity of Pfa to b for Pfa=10-4, b=1.5 

Fig.(5a) represents the detection performance in homogeneous background of the 

processor as a function of the primary target (SNR in dB), Pfa=10-4  for window size 

M=24, K=12 and the skewness parameter b is variable. Also in the same figures the 

CA-CFAR and Non-CFAR processor detection performance curves are plotted, the 

equations of CA-CFAR processor are not mentioned and it is exist in many different 

papers [1, 7, 8, and 13]. Eq. (3) is used to calculate the Pd of this Processor with the 

assumption that the noise power has Rayleigh distribution (i.e. 1=μ ) and 

( )SNRd += 1μαα . From the displayed results, the detection probability increases by 

increasing SNR values, and it decreases for more skewed Weibull clutter (b). So, the 

SNR loss increases as b decreases. For the same parameters and K=18 as expected, 

the SNR loss decreased for this processor as in fig. (6). Finally, the detection 

Performance decreases as Pfa increases, figs. (5b) to (6b) are plotted at Pfa=10-6
 . 

Now it is suitable to assume that the noise power (μ ) in the reference cells has 

the same shape of the noise in the test cell. From fig. (7), it can be seen that the 

required SNR values for achieving Pd=0.5 decreases as b decreases. This means that it 
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can be chosen this detector for more skewed Weibull distribution at K=12. For K=18, 

fig. (8), the SNR increases for more skewed Weibull distribution. Smaller values of 

SNR required achieving a specific Pd at higher values of b. The loss increases for 

more skewed Weibull distribution.  
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Fig (5) Probability of Detection against SNR with various Weibull skewness
parameter b and Non-CFAR Processor, (a) Pfa=10-4, (b) Pfa=10-6 (M=24, K=12,
R=0). 
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By comparing the two cases at K=12, b=1 the required SNR to achieves Pd=0.5 is 

5.25 dB and 7 dB at K=18, the SNR required to achieve Pd=0.5, K=18 increased for 

more skewed Weibull distribution. The reason of this case, is the ability of 

cancellation more spikes signals for K=12 than K=18. 

From the last two curves, the loss increased for the detector as K increased from 

12 to 18. At this case, it can be find a value of the order statistic cell K that make the 

detector less sensitive to the variation of the skewness parameter b, fig. (9) Shows that 

for K=13, the SNR increases by about 2.4 dB as b varies from 2 to 0.1. This means 

that the best performance of the detector is obtained by selecting the order statistic 

cell (K) near the 55% percentile out of the total cells M, where at this value, the 

detector is less sensitive to the shape of the clutter distribution. 

 

6.5 The performance at clutter boundaries  

The Pfa is determined using Eq. (3) for the detector, with Q(x) as given in Eq. (11). 

The threshold multiplier values are calculated previously in section (6.1) for the 

selected order statistic cell (K=18) and CNR=20 dB. From fig. (10) the alarm 

probability is slowly decreases when fewer than (M-K+1) cells immersed in clutter. 

While in the same case the Pfa rapidly decreases in the simple CA-CFAR. So, the 

clutter power has less effect on the performance of the conventional OS-CFAR. The 

more skewed Weibull distribution has less decrease in the Pfa, and less required SNR 

to achieve the desired Pd.     

For the same parameters the probability of detection can be calculated by solving 

Eq. (3) with ( )SNRd += 1μαα  and the SNR=20 dB, these results are plotted in fig. 

(11). The Pd decreases when more than (M-K) cells immersed in clutter. With the 

most skewed Weibull clutter showing the greatest increase in the detection 

probability. Fig. (12) Shows the detection probability in the presence of clutter power 

transition (R) when the test cell responds to Weibull distributed (b=1) primary target 

at SNR=20 dB. The masking of the primary target occurs when there are less than (M-

K+1) cells lying under clutter power transition’s effect. Also, the more skewed 

Weibull clutter showing the more decrease in the detection probability. 
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 Fig (6) Probability of Detection against SNR with various Weibull skewness
parameter b and Non-CFAR Processor, (a) Pfa=10-4, (b) Pfa=10-6. (M=24,  K=18, 
R=0). 
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 Fig. (7) SNR versus Weibull skewness Parameter b, (Design at b=2, M=24, 
K=12, Pd=0.5)  
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K=18, Pd=0.5)  
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                JAE Vol 8 No 1 26



S. M. Salih , N. K. Uzunoglu, A. Y. Fattah 

 
 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
0 

5 

10 

15 

WEIBULL SKEWNESS PARAMETER (b) 

SN
R

 (d
B

) 

Pd=0.5, Pfa=10-4

M=24 
K=13, b=2 

Fig. (9) SNR versus Weibull skewness parameter b, (Design values at b=2, 
M=24, K=13, Pd=0.5) 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20
10 -10 

10 -9 

10 -8 

10 -7 

10 -6 

10 -5 

10 -4 

NUMBER OF CELLS IN CLUTTER (R1) 

PR
O

B
A

B
IL

IT
Y 

O
F 

FA
LS

E 
A

LA
R

M
    M=24, Pfa=10-4

   K=18, R2=0    
   CNR=20 dB 
                         b=2 
                         b=1 

Fig. (10) Pfa versus the number of cells (R1) lying in clutter. (K=18, R2=0, Pfa=10-4, 
CNR=20 dB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                     JAE Vol 8 No 1  27



CONVENTIONAL ORDER STATISTIC-CFAR ANALYSIS IN WEIBULL CLUTTER 

 
In general, the Pfa achieved by the OS-CFAR family (GO-OS, SO-OS and the 

Conventional-OS) increases as the clutter increases, the GO-OS and the Conventional 

OS detectors has the best performance at clutter edges 
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  Fig. (11) Pd versus the number of cells (R) lying in clutter. (K=18, Pfa=10-4 and 
   CNR=SNR=20 dB) 
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Fig. (12) Pd versus the number of cells (R) lying in clutter and the cell under test lying 
in Weibull distributed clutter (b=1). (K=18, Pfa=10-4, CNR=SNR=20 dB) 
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      6.6  Neyman pearson test of the detector 

A simulation of Independent Identically Distributed Rayleigh and Weibull 

distributed data [12] is used to test the detector for a window size M=24, K=18, 

Pfa=10-4 and the skewness parameter (b) is assumed known a priori. 

Using 300 samples, multiple 16 dB point targets have been added at samples 70-

105, isolated target at 150 and potentially masked target at 222 by the 15-dB edge at 

240 onwards. With reference to fig. (13a): 

1. Multiple targets cause masking for this processor. The target near the clutter 

edge is also completely masked and very abrupt changes are seen in the threshold. 

2. The conventional OS detector is extremely sensitive to clutter edge. 

It can be seen that this detector are capable of overcoming the multiple target 

problems and is extremely sensitive to the clutter edge. With some going undetected 

for simple Cell Averaging-CFAR.  

Fig. (13b) shows the effect of decreasing the value of the skewness parameter 

(b=1). The threshold level increases as b decreases; also, the fluctuation of the 

amplitude of the threshold is increases as b decreases for the same value of K, the 

detection probability decreases as b decreases. For more skewed Weibull distribution 

(b=0.5), (this curve is not shown) the required SNR for adjusting Pd at 0.5 should be 

increases as in fig. (5) and fig. (6) And the best detection performance can be obtained 

at this value (b=0.5).    

For K=12, b=2, approximately, the same detection performance can be obtained as 

shown in fig. (14). More skewed Weibull distribution (b=1) has less effects on the 

performance of this processor and the processor becomes less sensitive to the 

uncertainty in the clutter distribution (i.e. lower adaptive threshold level than K=18) 

as shown in fig. (14b). 

Fig. (15a) is plotted at K=20 and b=2, multiple targets would cause problems, some of 

these targets undetected. However, the value of K=M fig. (15b) cannot be used in 

practice due to suppression of targets this would give in the presence of multiple 

targets. In other words, for K=M the noise estimate x will be highest ordered sample 

which may contain in the interfering target echo with high probability.  
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 Fig. (13) NP test for the Conventional OS-CFAR. (a) b=2, (b) b=1. (M=24,
 K=18, Pfa=10-4)  
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Fig. (14) NP test for the Conventional OS-CFAR. (a) b=2, (b) b=1. (M=24, K=12, 
Pfa=10-4) 
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If a single extraneous target appears in the reference window, it occupies the 

highest ranked cell with high probability for the conventional OS detector; this will 

increase the overall threshold and may lead to the target miss. If, on the other hand, K 

is chosen to be less than the maximum value, the OS-CFAR processor will be 

influenced only slightly for up to M-K interfering targets, as in the past figures. The 

detector has the best detection performance under these conditions. For more results 

reference [6, 13] analyzed the performance of GO-OS under Weibull distributed 

clutter and reference [7] analyzed the performance of CA-CFAR by using FPGA 

Technology.  

 

7. CONCLUSIONS 

Limiting the number of false alarms that occur gives robustness to any detection 

scheme. At clutter edges, where both the power and type of statistics can vary 

abruptly, the CFAR detectors are lowered in performance. The Conventional-OS 

detector is used to reduce the effect of this problem, with reference to these results, 

most appealing conclusions are: 

1) More skewed clutter distribution would require greater threshold increase, and 

greater concomitant increase in the required SNR. 

2) The threshold multiplier values increases as the number of cells M, the order statistic 

cells K and the skewness parameter b decrease. 

3) The best performance is obtained by selecting a cell near 75th percentile out of the 

order statistic calculator for this processor. 

4) The Conventional OS-CFAR is found to be relatively insensitive to interference 

in one of the clutter estimation cells at different skewness parameter.  

5) The best performance with single interference and with no-interference case 

occurs near K=18 for this detector. 

6) The conventional OS detector provides good clutter boundary protection against 

abrupt changes in the unknown noise power level. 

7) A selection of 55% out of the order statistic calculator makes the processor to be 

less sensitive to the variation in the skewness parameter.  
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