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Abstract  
 

The finite positive real numbers ( )ncL ,  (the common limits for −∞→−k  of the 

infinite sequences of positive real numbers ( ){ }−− kncK ,,  and ( ){ }−− kncM ,,  where 

( )−− kncK ,,  = ( )c
nkk ,−− ζ , ( )−− kncM ,,  = ( )c

nka ,−− ζ  and ( )c
nk ,−

ζ  is the n th positive 

purely imaginary zero of the Kummer confluent hypergeometric function ( )xca ;,−Φ  

in x  ( ...3,2,1=n ) with −− −= jkca 2/  – complex, c  – real, lc ≠ , ,...3,2,1,0 −−−=l , 

jzx =  – positive  purely imaginary, z  – real, positive, −k  – real, negative, or the 

numbers ( )nlL ,2 −  in case lc = ) are tabulated for positive and negative values of 

parameter c  and for the first several natural numbers n . Based on the outcomes, 

some of their properties are studied. An approximate method is developed for 

computation of the differential phase shift, produced by the circular waveguide with 

azimuthally magnetized ferrite, propagating normal 01TE  mode. The approach uses 

the elements A , B  and C  of the defined in a special way column matrixT , the 

approximate values of which are determined by means of the ( )ncL ,  numbers. The 

error in the results obtained is less than one percent.  

 
1. INTRODUCTION 
 

The L  numbers sprang up into existence in the theory of latching phase shifters, 

built on circular ferrite and ferrite-dielectric waveguides with azimuthal magnetization 

and operating in the normal 01TE  mode, worked out through the complex confluent 
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hypergeometric functions (CHFs) [1-9] or by means of them and besides utilizing the 

real cylindrical ones for the geometries of the second kind [1]. The same happened 

when these functions (all real) were harnessed to describe slow nTE0  modes in 

waveguides of the type mentioned [6,10,11]. The quantities considered have been 

defined as limits of sequences of real numbers whose terms involve the purely imaginary 

(real) zeros of specific complex (real) Kummer CHF [2,3,6,8] or the purely imaginary 

(real) roots of some transcendental equations, written by complex (real) CHFs [5,7,9,11] 

or except by them, addressing the real ordinary and modified derivative difference Bessel 

functions [1,10] of specially chosen parameters, as well [1-3,5-11]. The aforesaid 

functions are taken in the Kummer-Tricomi form [2,3,5-19], respectively in  the Sovetov-

Averbuch one [1,10,20]. The sequences tend to the limits in question when the imaginary 

part of complex first parameter (the real first parameter) of the complex (real) CHF(s) 

gets infinitely large negative [2,3,5-11] or both negative and positive [1]. In view of this, 

several categories of L  numbers have been inaugurated [1-3,5-11]. As an eligible basis 

for their classification could serve the generating equations from which they stem 

from, enumerated above.  

To get the differential phase shift, provided by the structures under study in case of 

normal propagation, is a serious task for whose solution various schemes have been 

proposed [1,3-8,9,21-34]. The ones, using the L  numbers [3,4,8], avail of the traced 

by them peculiar envelope curves in the phase diagrams of the configurations at which 

the characteristics for negative (both negative and positive) magnetization terminate [1-

5,6]. It seems that these new objects would find application also in plenty of other 

fields in which CHFs are employed [6]. Therefore, the knowledge of a few of their 

values only [1-3,5-9] obviously is not sufficient.  

The discussion here is focussed on one representative of the class of numbers 

treated – the ( )ncL ,  ones, connected with the complex Kummer CHF ( )xca ;,Φ , 

provided jkca −= 2/  is complex, c  and k  are real, jzx =  is positive purely 

imaginary and z  is real, positive [2-4,8]. Tables of some of their values are compiled, 

depending on the second parameter c  of ( )xca ;,Φ  and the number n  of its positive 

purely imaginary zero in x . In addition, the paper reviews and extends the 

approximate method for calculation of the differential phase shift, due to the circular 
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waveguide, entirely filled with ferrite [3,4,8] which is an example of the putting into 

practice of these numbers.  
 
 
2. ( )ncL ,  NUMBERS  

Definition 1: The common limits for −∞→−k  of  the infinite sequences of positive 

(negative) real numbers ( ){ }−− kncK ,,  and ( ){ }−− kncM ,,  where ( )−− kncK ,,  = 

( )c
nkk ,−− ζ , ( )−− kncM ,,  = ( )c

nka ,−
− ζ  and ( )c

nk ,ζ  is the n th positive (negative) purely 

imaginary zero of the Kummer confluent hypergeometric function ( )xca ;,Φ  in x  

( ...3,2,1=n ) with jkca −= 2/  ( jkca += 2/ ) – complex, ac Re2=  – a restricted 

positive or negative real number, different from zero or negative integer ( lc ≠ , 

,...3,2,1,0 −−−=l ), jzx =  – positive (negative) purely imaginary, z  – real, positive 

(negative) and k  – real, ( c , n – fixed), are finite positive (negative) real numbers, 

called ( )ncL ,  ones. It holds:  

 

 ( ) ( ) ( )ncLkncMkncK
kk

,,,lim,,lim == −−
−∞→

−−
−∞→ −−

. (1) 

 
If lc = , it is postulated:  

 ( ) ( )nlLncL ,2, −= . (2)  

Moreover, it is valid: 

 ( ) zncL sgn,sgn = . (3)  

(The subscript “–“ indicates quantities, corresponding to negative k .) 
 

Properties: i) if lc =  ( )0≤<∞− l  and 1=n , it holds ( ) ( ) 01,lim1,0
0

==+
+→

cLlL
lc

; ii) 

in case lc =  ( )0≤<∞− l  and 1≥n , then ( )nlL ,0− < ( )nlL ,2 − < ( )1,0 ++ nlL  and 

( )nlL ,0−  = ( )ncL
lc

,lim
0−→

 = ( )1,lim
0

+
+→

ncL
lc

 = ( )1,0 ++ nlL  = ( )nlL ,2 − ; 

accordingly, it is accepted ( )ncL ,  = ( )nlL ,2 −  and hence ( )ncL ,0−  <  ( )ncL ,  <  

( )1,0 ++ ncL ; iii) assuming 0121 ≤+<<< lccl  ( )1−≤<∞− l  and 1=n , it is true 
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0  <  ( )1,1cL  <  ( )1,2cL  <  ( )1,1 lL −  <  ∞+ ;   iv)   provided  l  < 1c  < 2c  < 1+l  ≤  

0  ( )1−≤<∞− l  and 1≥n  ( )1>n , it is valid 

( ) ( ) ( )1,1,,20 21 +<+<−< ncLncLnlL  ( )1,1 +−< nlL < ∞+  

( ( )1,20 −−< nlL ( ) ( ) ( )nlLncLncL ,1,, 21 −<<< < ∞+ ); 

Table 1. Values of the ( )ncL ,  numbers in case 1=n  as a function of c  for c  = –10 (0.1) 0. 

c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  

-10.0  -8.0  -6.0  -4.0  -2.0  
-9.9 26.19089 68118 -7.9 17.14343 63819 -5.9 10.03047 09169 -3.9 4.83919 24332 -1.9 1.54771 56128 
-9.8 30.68438 14359 -7.8 20.52534 23509 -5.8 12.39210 23191 -3.8 6.28953 77433 -1.8 2.22586 15078 
-9.7 34.19201 67435 -7.7 23.19622 09888 -5.7 14.28929 19375 -3.7 7.48762 91585 -1.7 2.81862 52747 
-9.6 37.25742 36635 -7.6 25.54918 81844 -5.6 15.98019 05547 -3.6 8.57559 78055 -1.6 3.37709 13769 
-9.5 40.06788 59641 -7.5 27.72016 92830 -5.5 17.55453 33182 -3.5 9.60327 79174 -1.5 3.91946 53304 
-9.4 42.71219 89839 -7.4 29.77369 14664 -5.4 19.05499 50654 -3.4 10.59442 84989 -1.4 4.45444 70199 
-9.3 45.24001 43898 -7.3 31.74584 03450 -5.3 20.50544 09140 -3.3 11.56232 85784 -1.3 4.98687 39620 
-9.2 47.68211 47368 -7.2 33.65897 42670 -5.2 21.92064 11208 -3.2 12.51517 54687 -1.2 5.51970 18426 
-9.1 50.05899 40617 -7.1 35.52796 22185 -5.1 23.31039 98436 -3.1 13.45838 85151 -1.1 6.05485 68064 
-9.0  -7.0  -5.0  -3.0  -1.0  
-8.9 21.42474 80709 -6.9 13.34580 99511 -4.9 7.19567 87737 -2.9 2.95799 04285 -0.9 0.60135 94011 
-8.8 25.35186 94595 -6.8 16.20524 19397 -4.8 9.08658 52829 -2.8 4.00209 21312 -0.8 0.96338 27690 
-8.7 28.43379 55770 -6.7 18.48078 63447 -4.7 10.62396 13301 -2.7 4.88406 83761 -0.7 1.29967 28148 
-8.6 31.13711 06797 -6.6 20.49595 85652 -4.6 12.00529 35871 -2.6 5.69683 88860 -0.6 1.62888 38548 
-8.5 33.62282 54808 -6.5 22.36288 50229 -4.5 13.29948 64798 -2.5 6.47320 30095 -0.5 1.95774 11153 
-8.4 35.96732 35229 -6.4 24.13483 78916 -4.4 14.53934 61859 -2.4 7.22882 15474 -0.4 2.28943 38223 
-8.3 38.21331 87133 -6.3 25.84160 94350 -4.3 15.74321 62589 -2.3 7.97243 67100 -0.3 2.62570 07727 
-8.2 40.38728 53376 -6.2 27.50165 02011 -4.2 16.92243 85819 -2.2 8.70942 88338 -0.2 2.96757 32740 
-8.1 42.50684 04662 -6.1 29.12722 05506 -4.1 18.08452 98622 -2.1 9.44333 92952 -0.1 3.31569 73770 
-8.0  -6.0  -4.0  -2.0  0.0  

 

Table 2. Values of the ( )ncL ,  numbers in case 1=n  as a function of c  for c  = 0 (0.1) 10. 

c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  

0.0  2.0 3.67049 26605 4.0 10.17661 64546 6.0 19.23473 20834 8.0 30.72690 00509
0.1 0.10492 12125 2.1 3.93219 59979 4.1 10.57021 34428 6.1 19.75223 46405 8.1 31.36404 87572
0.2 0.21940 16817 2.2 4.20080 97355 4.2 10.97014 77496 6.2 20.27580 31408 8.2 32.00709 95948
0.3 0.34307 65127 2.3 4.47628 94938 4.3 11.37640 14581 6.3 20.80542 75418 8.3 32.65604 60024
0.4 0.47564 39874 2.4 4.75859 34562 4.4 11.78895 72575 6.4 21.34109 80404 8.4 33.31088 15398
0.5 0.61685 02751 2.5 5.04768 21391 4.5 12.20779 84109 6.5 21.88280 50643 8.5 33.97159 98843
0.6 0.76647 86833 2.6 5.34351 81897 4.6 12.63290 87247 6.6 22.43053 92631 8.6 34.63819 48272
0.7 0.92434 18908 2.7 5.64606 62070 4.7 13.06427 25200 6.7 22.98429 15001 8.7 35.31066 02703
0.8 1.09027 62038 2.8 5.95529 25831 4.8 13.50187 46115 6.8 23.54405 28447 8.8 35.98899 02232
0.9 1.26413 72189 2.9 6.27116 53606 4.9 13.94570 02732 6.9 24.10981 45646 8.9 36.67317 87998
1.0 1.44579 64907 3.0 6.59365 41068 5.0 14.39573 52258 7.0 24.68156 81193 9.0 37.36322 02159
1.1 1.63513 89281 3.1 6.92272 97992 5.1 14.85196 56107 7.1 25.25930 51529 9.1 38.05910 87857
1.2 1.83206 07322 3.2 7.25836 47232 5.2 15.31437 79709 7.2 25.84301 74881 9.2 38.76083 89198
1.3 2.03646 77415 3.3 7.60053 23800 5.3 15.78295 92328 7.3 26.43269 71197 9.3 39.46840 51223
1.4 2.24827 40891 3.4 7.94920 74022 5.4 16.25769 66889 7.4 27.02833 62093 9.4 40.18180 19881
1.5 2.46740 11003 3.5 8.30436 54786 5.5 16.73857 79813 7.5 27.62992 70794 9.5 40.90102 42008
1.6 2.69377 63812 3.6 8.66598 32842 5.6 17.22559 10863 7.6 28.23746 22083 9.6 41.62606 65304
1.7 2.92733 30563 3.7 9.03403 84181 5.7 17.71872 43005 7.7 28.85093 42249 9.7 42.35692 38307
1.8 3.16800 91269 3.8 9.40850 93450 5.8 18.21796 62268 7.8 29.47033 59030 9.8 43.09359 10375
1.9 3.41574 69275 3.9 9.78937 53429 5.9 18.72330 57617 7.9 30.09566 01617 9.9 43.83606 31663
2.0 3.67049 26605 4.0 10.17661 64546 6.0 19.23473 20834 8.0 30.72690 00509 10.0 44.58433 53104
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v) on condition that +∞<<< 210 cc  and 1=n , it is fulfilled 

( ) ( ) +∞<<< 1,1,0 21 cLcL ;  

Table 3. Values of the ( )ncL ,  numbers in case 1=n  as a function of c  for c  = 0 (0.5) 40. 

c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  c  ( )ncL ,  

0.0  10.0 44.58433 53104 20.0 148.08759 86828 30.0 306.90308 28311 
0.5 0.61685 02751 10.5 48.41252 97318 20.5 154.72878 39190 30.5 316.27029 98591 
1.0 1.44579 64907 11.0 52.38503 00316 21.0 161.50776 17906 31.0 325.77248 27607 
1.5 2.46740 11003 11.5 56.50129 98266 21.5 168.42434 12537 31.5 335.40952 95278 
2.0 3.67049 26605 12.0 60.76083 92651 22.0 175.47833 83511 32.0 345.18134 07560 
2.5 5.04768 21391 12.5 65.16318 11682 22.5 182.66957 57974 32.5 355.08781 95392 
3.0 6.59365 41068 13.0 69.70788 77133 23.0 189.99788 25979 33.0 365.12887 13704 
3.5 8.30436 54786 13.5 74.39454 75648 23.5 197.46309 36963 33.5 375.30440 40471 
4.0 10.17661 64546 14.0 79.22277 33791 24.0 205.06504 96491 34.0 385.61432 75825 
4.5 12.20779 84109 14.5 84.19219 96232 24.5 212.80359 63245 34.5 396.05855 41200 
5.0 14.39573 52258 15.0 89.30248 06575 25.0 220.67858 46229 35.0 406.63699 78578 
5.5 16.73857 79813 15.5 94.55328 90451 25.5 228.68987 02173 35.5 417.34957 49633 
6.0 19.23473 20834 16.0 99.94431 40526 26.0 236.83731 33121 36.0 428.19620 35109 
6.5 21.88280 50643 16.5 105.47526 03165 26.5 245.12077 84178 36.5 439.17680 34083 
7.0 24.68156 81193 17.0 111.14584 66523 27.0 253.54013 41417 37.0 450.29129 63322 
7.5 27.62992 70794 17.5 116.95580 49883 27.5 262.09525 29919 37.5 461.53960 56665 
8.0 30.72690 00509 18.0 122.90487 94055 28.0 270.78601 11938 38.0 472.92165 64433 
8.5 33.97159 98843 18.5 128.99282 52735 28.5 279.61228 85190 38.5 484.43737 52862 
9.0 37.36322 02159 19.0 135.21940 84682 29.0 288.57396 81242 39.0 496.08669 03560 
9.5 40.90102 42008 19.5 141.58440 46628 29.5 297.67093 64003 39.5 507.86953 13040 

10.0 44.58433 53104 20.0 148.08759 86828 30.0 306.90308 28311 40.0 519.78582 92130 

Table 4. Values of the ( )ncL ,  numbers for c  = 1,2,…,10 and n = 1,2,…,10. 

     c    
n  1 2 3 4 5 

1 1.44579 64907 3.67049 26605 6.59365 41068 10.17661 64546 14.39573 52258 
2 7.61781 55859 12.30461 40804 17.71249 97298 23.81939 31360 30.60694 90162 
3 18.72175 16977 25.87486 34738 33.75517 72165 42.34886 24565 51.64245 25942 
4 34.76007 11066 44.38019 17035 54.73004 72864 65.80021 35638 77.58056 49660 
5 55.73307 59044 67.82041 35682 80.63877 90731 94.18134 98580 108.44028 40985 
6 81.64083 82331 96.19547 62757 111.48189 11343 127.49491 89688 144.22832 47328 
7 112.48338 21295 129.50536 02529 147.25958 79284 165.74202 20937 184.94759 38254 
8 148.26071 74130 167.75005 69057 187.97196 34525 208.92318 62182 230.59952 66790 
9 188.97284 86950 210.92956 19842 233.61906 58722 257.03868 99722 281.18490 14754 
10 234.61977 83689 259.04387 31927 284.20092 19539 310.08869 21487 336.70417 09619 

     c    
n  6 7 8 9 10 

1 19.23473 20834 24.68156 81193 30.72690 00509 37.36322 02159 44.58433 53104 
2 38.06028 83854 46.16720 18348 54.91750 16696 64.30255 02495 74.31492 00694 
3 61.62386 65333 72.28247 08239 83.60892 14637 95.59497 37578 108.23330 94262 
4 90.06137 04799 103.23361 85656 117.08907 44284 131.62024 25129 146.82029 86715 
5 123.40765 80609 139.07584 47506 155.43765 71909 172.48638 78485 190.21580 17214 
6 161.67556 28050 179.83013 81033 198.68577 66895 218.23650 13486 238.47665 84946 
7 204.87081 89278 225.50612 00984 246.84799 87124 268.89112 50223 291.63038 28414 
8 252.99633 02328 276.10876 62028 299.93198 96958 324.46123 51825 349.69186 95753 
9 306.05370 41196 331.64087 91788 357.94213 32949 384.95318 97156 412.66984 43237 
10 364.04389 21667 392.10414 30617 420.88109 74325 450.37090 16909 480.56973 07465 
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vi) stipulating that +∞<<< 210 cc  and 1≥n  ( )1>n , results in ( ) << nL ,20  

( ) ( ) +∞<+<+ 1,1, 21 ncLncL  ( ( ) ( ) ( )ncLncLnL ,,1,20 21 <<−< < ∞+ ); vi) for any 

arbitrary  finite  real  c  ( )+∞<<∞− c ,  it  holds  0  <  ( )ncL ,  <  ( )1, +ncL  <  ∞+ ; 

Table 5. Values of the ( )nmL ,  numbers for m  = –10 (1) 10 and n = 1,2,3,4. 

m  ( )nmL ,  ( )nmL ,2 −  n  = 1 n  = 2 n  = 3 n  = 4 

-10 ( )nL ,10−  ( )nL ,12  60.76083 92651 96.19653 93944 135.44134 16716 179.20270 00315 

-9 ( )nL ,9−  ( )nL ,11  52.38503 00316 84.94814 56903 121.51739 09178 162.68301 68941 

-8 ( )nL ,8−  ( )nL ,10  44.58433 53104 74.31492 00694 108.23330 94262 146.82029 86715 

-7 ( )nL ,7−  ( )nL ,9  37.36322 02159 64.30255 02495 95.59497 37578 131.62024 25129 

-6 ( )nL ,6−  ( )nL ,8  30.72690 00509 54.91750 16696 83.60892 14637 117.08907 44284 

-5 ( )nL ,5−  ( )nL ,7  24.68156 81193 46.16720 18348 72.28247 08239 103.23361 85656 

-4 ( )nL ,4−  ( )nL ,6  19.23473 20834 38.06028 83854 61.62386 65333 90.06137 04799 

-3 ( )nL ,3−  ( )nL ,5  14.39573 52258 30.60694 90162 51.64245 25942 77.58056 49669 

-2 ( )nL ,2−  ( )nL ,4  10.17661 64546 23.81939 31360 42.34886 24565 65.80021 35638 

-1 ( )nL ,1−  ( )nL ,3  6.59365 41068 17.71249 97298 33.75517 72165 54.73004 72864 

0 ( )nL ,0  ( )nL ,2  3.67049 26605 12.30461 40804 25.87486 34738 44.38019 17035 

1 ( )nL ,1  ( )nL ,1  1.44579 64907 7.61781 55859 18.72175 16977 34.76007 11066 

2 ( )nL ,2  ( )nL ,0  3.67049 26605 12.30461 40804 25.87486 34738 44.38019 17035 

3 ( )nL ,3  ( )nL ,1−  6.59365 41068 17.71249 97298 33.75517 72165 54.73004 72864 

4 ( )nL ,4  ( )nL ,2−  10.17661 64546 23.81939 31360 42.34886 24565 65.80021 35638 

5 ( )nL ,5  ( )nL ,3−  14.39573 52258 30.60694 90162 51.64245 25942 77.58056 49669 

6 ( )nL ,6  ( )nL ,4−  19.23473 20834 38.06028 83854 61.62386 65333 90.06137 04799 

7 ( )nL ,7  ( )nL ,5−  24.68156 81193 46.16720 18348 72.28247 08239 103.23361 85656 

8 ( )nL ,8  ( )nL ,6−  30.72690 00509 54.91750 16696 83.60892 14637 117.08907 44284 

9 ( )nL ,9  ( )nL ,7−  37.36322 02159 64.30255 02495 95.59497 37578 131.62024 25129 

10 ( )nL ,10  ( )nL ,8−  44.58433 53104 74.31492 00694 108.23330 94262 146.82029 86715 
 
 

vii) on the understanding that 1c  and 2c  are arbitrary finite real numbers and 

+∞<<<∞− 21 cc , it follows 0  <  ( )ncL ,1  <  ( )1,2 +ncL  <  ∞+ ; viii) provided 

mc = ,  ,...2,1,0 ±±=m , ( )+∞<<∞− m ,  it  is  true  ( )nmL ,   =  ( )nmL ,2 − ,  thus  if 

lm = , then ( )nlL ,  = ( )nlL ,2 −  and in case lm −=  ( pm = , ,...2,1,0=p ,), it is valid 

( )nlL ,−  = ( )nlL ,2 +  [ ( )npL ,  = ( )npL ,2 − ]; ix) in particular when 1=m , 

obviously ( )nL ,1 ≡ ( )nL ,1 ; x) for any L  there exist infinite different real numbers lc  

(each of which satisfies the condition 1+<< lcl l , ( )1−≤<∞− l , or +∞<< lcl , 

( )0=l ) and n  (part or all of which are identical), for that the values of ( )ncL l ,  are 

the same; xi) if 21 LL < , for the corresponding numbers lc  it is fulfilled 
21 ll cc < ; xii) 

provided ( ) LncL l =,  and ( )1,20 LL ≤< , then 1=n . 
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Properties of related quantities: I) For any real c , including the case lc =  which 

is equivalent to the one lc −= 2 , the following is valid: i) when 0=k , then 
( )

( ) nc
c
n ,2/1,0 2 −= νζ , ( ) 00,, =ncK  and ( ) ( ) 2/0,, ,0

c
ncncM ζ=  [ ( )0,, ncM  = ( ) ncc ,2/1−ν ], 

[ ( ) nc ,2/1−ν  – nth  zero of Bessel function ( ) ( )2/2/1 zJ c− ] ; ii) assuming −∞→−k , it 

holds ( ) 0lim , =
−

− −∞→

c
nkk

ζ ; iii)  if −1k  and −2k  are any two large negative real numbers, 

−1a  and −2a  are the moduli of complex first parameter of ( )xca ;,Φ , relevant 

to them, and ( )c
nk ,1−

ζ  and ( )c
nk ,2−

ζ  are the corresponding purely imaginary zeros of 

the function for the same n , it is true: 1) ( ) ( )c
nk

hc
nk ,, 21

10
−−

−≈ ζζ  (if −− = 21 10 kk h  and 

h  is a positive or negative integer or zero); 2)  ( ) ( )c
nk

c
nkkk ,,21

12
//

−−
≈−− ζζ ; 3) 

( ) ( )
−−

−−
≈ 1,2, //

21
kk c

nk
c

nk ζζ ; 4) ( ) ( ) ( )ncLkk c
nk

c
nk ,,2,1

21
≈≈

−−
−− ζζ ; 5)  ≈−− 21 / aa  

( ) ( )c
nk

c
nk ,, 12

/
−−

ζζ ; 6) ( ) ( )
−−

−−
≈ 1,2, //

21
aa c

nk
c

nk ζζ ; 7)  ( ) ( )c
nk

c
nk aa ,2,1

21 −−
−− ≈ ζζ ( )ncL ,≈ ; iv)  

in case −1k  and −2k  are any two large negative real numbers, then ( ) ≈−− 1,, kncK  

( ) ( )−−−− ≈ 12 ,,,, kncMkncK  ( )−−≈ 2,, kncM  ( )ncL ,≈ ; v) for any large negative −k  

it holds ( ) <−− kncK ,, ( ) ( )−−< kncMncL ,,, ; vi)  provided −k  is large, it is 

fulfilled: 1) ( ) ( ) −=
−

kncLc
nk /,,ζ ; 2) ( ) ( ) 2

, /,/ −− ≈
−

kncLkc
nkζ ; 3)  ( ) ( ) ancLc

nk /,, ≈ζ ; 

4) ( ) ( ) 2
, /,/ ancLac
nk ≈ζ ; II) If 0>c , in case +∞→+k , it is valid ( ) =

+
+ +∞→

c
nkk ,lim ζ  

( )++
+∞→+

kncK
k

,,lim  = ( )++
+∞→+

kncM
k

,,lim  = ∞+  where ( )++ kncK ,,  =  ( )c
nkk ,++ ζ , 

( )++ kncM ,,  = ( )c
nka ,++ ζ   (The subscript “+“ indicates quantities, corresponding to 

positive k .) 

General characteristics: i) When c  rises from l  to 1+l , ( 1−≤<∞− l ), the 

( )ncL ,  numbers strictly monotonously increase from 0  to ( )1,1 lL − , if 1=n  and 

from ( )1,2 −− nlL  to ( )nlL ,1− , on the understanding that 1>n .  Provided c  grows 

from 0  to ∞+  (remaining finite), they mount in the same interval in case 1=n  and 

in the one ( ( )1,2 −nL , ∞+ ) for 1>n  (remaining finite). At the points lc =  jumps 

from ( )1,2 lL −  to 0 , assuming 1=n  and from ( )nlL ,2 −  to ( )1,2 −− nlL , 
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stipulating that 1>n  are observed. ii) The sequence of real numbers 0 , ( )1,cL , 

( )( )1,12 +− lL , ( )2,cL , ( )( )2,22 +− lL , ( )3,cL , ( )( )3,32 +− lL , …, 

( )( )( )1,12 −−−−+− lllL , ( )lcL −, , ( )lL −,2 , ( )1, +−lcL  is strictly monotonously 

increasing, on condition that c  enlarges from l  ( l<∞− ) to ∞+  (remaining finite). 

iii) At fixed n  the numbers ( )nmL ,  are mirror images of the ones ( )nmL ,2 −  in the 

straight line 1=m . ( )nL ,1  coincides with its image. iv) The infinite sequence of real 

numbers { }lcl −  is convergent for −∞→l  and its limit is zero. 

Comments: The ( )ncL ,  numbers have been introduced for the first time in Ref. [2] 

and the ( )±± kncK ,,  and ( )±± kncM ,,  ones – in Ref. [8]. In the general case ( c – 

arbitrary real) Definition 1 is substantiated by Lemma 1 in Refs. [3,8], whereas in the 

special one (c – a positive integer) this is done through Lemma 1 in Ref. [2]. Tables 1, 

2 and 3 list ( )ncL ,  for c  varying from –10 to 0 and from 0 to 10 with a step 0.1, and 

from 0 to 40 with a step 0.5, resp., when 1=n . Table 4 gives them for values of the 

natural numbers c  = 1 to 10 and n  = 1 to 10. The computations are performed by 

means of the representation of ( )xca ;,Φ  around the point 0 in terms of an infinite 

power series [2,3,6,8,11-19] with parameters – specified in Definition 1, accepting k  

= 1010.1− . The approach does not allow to obtain ( )ncL ,  for lc =  where ( )xca ;,Φ  

does not exist (cf. the empty places in Tables 1-3). This is effectuated with the help of 

eqn. (2) whose proof is given in Refs. [3,8]. The more general case mc =  is 

illustrated in Table 5. It is assumed here that ( ) 1,sgn +=ncL  ( 1sgn +=z ). All 

complementary results, given above, are due to the numerical analysis of numbers 

advanced and of the related with them quantities. Part of the same are based on the 

study of the values, presented in Tables 1-5. Some of the properties of the zeros ( )c
nk ,ζ  

have been established in Ref. [2] and of the ( )±± kncK ,,  and ( )±± kncM ,,  numbers – 

in Ref. [8].  
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3. AZIMUTHALLY MAGNETIZED CIRCULAR FERRITE WAVEGUIDE 

 PHASE SHIFTER 

 
Definition 2: The set of points ( )0,,, rncRR β=  constitutes a space of phase 

characteristics R of the ferrite-loaded circular waveguide with azimuthal 

magnetization, propagating normal nTE0  mode, if their co-ordinates β  and 0r  are 

connected through the equations:  

 

 ( ) 0;, 0 =Φ xca   (4) 

 

in which jkca −= 2/ , 3=c , 00 jzx = , =k ( )22/ ββα , 2β = ( ) 2/1221 βα −− , 

020 2 rz β= , ( k , 0z  – real, +∞<<∞− k , 00 >z ), =β ( )rεββ 0/ , 2β = 

( )rεββ 02 / , rrr εβ 000 = , 000 μεωβ = , ωγα /rM=  is the off-diagonal element 

of Polder permeability tensor of the lossless ferrite, 11 <<− α , (γ – gyromagnetic 

ratio, rM  – remanent magnetization, ω  – angular frequency of the wave), β  is the 

phase constant, 2β  is the radial wavenumber, rε  is the scalar  ferrite relative 

permittivity, 0r  is the waveguide radius, and 

   
 ( ) ( )0,2 2/ rc

nkζβ =   (5) 

 
in that ( )c

nk ,ζ  are the n th roots of eqn. (4) in 0x  (in 0z ), ,...3,2,1=n , ( k  is a varying 

and α  – a discrete parameter).  

 Definition 3: The co-ordinates β  and 0r  of the points of space of phase 

characteristics  R  for the normal nTE0  mode suffice also the equations:  

 

 ( ) ( )[ ] ( )( )[ ] ( ){ } 2/122
0 1/2/1/,,,,, ±±±±±±±±± −+= αααα kkncKkncr , (6)  

 

 ( ) ( ) ( )( )[ ]{ } 2/122 2/1/1, ±±±±±± +−= kk αααβ  (7)  
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in which α  is the off-diagonal element of ferrite permeability tensor, 0r  is the 

normalized guide radius and ( )±± kncK ,,  are certain positive real numbers, with 

3=c , ,...3,2,1=n , ( k  is a varying and α  – a discrete parameter). (The subscripts 

“+”, “–” indicate quantities, related to positive ( 0>α ) or negative )0( <α  

magnetization, resp.) Thus, it could be written ( )±±= kncRR ,,, α .  

Definition 4: The ensemble of points ( )0,,, rncPP α=  forms a space of phase 

shifter operation P of the azimuthally magnetized circular ferrite waveguide, working 

in the normal nTE0  mode, if their co-ordinates α  and 0r  satisfy the criterion:  

 

 ( ) ( ) ααν /,1 2
0,2/1 ncLrnc <−<− ,       (8) 

or 

 ( ) ( ) αα /,1/0,, 2
0 ncLrcncM <−<         (9) 

 
in which α  is the off-diagonal element of ferrite permeability tensor, 0r  is the 

normalized guide radius, ( ) nc ,2/1−ν  is the n th root of Bessel function ( ) ( )2/2/1 zJ c− , 

( )ncL ,  and ( )0,, ncM  are certain positive real numbers in that 3=c  and ,...3,2,1=n . 

At each point ∈P P a differential phase shift ( )0,,, rnc αββ Δ=Δ  is produced, 

symbolized in normalized notations as ( ) ( )00 ,,,,,, rncrnc αβαββ +− −=Δ  where 

+β  and −β  are the normalized phase constants for positive (counterclockwise) and 

negative (clockwise) magnetization of the ferrite. 

Comments: The problem for normal nTE0  modes propagation in the circular 

waveguide, uniformly filled with azimuthally magnetized ferrite, leading to eqns. (4), 

(5), is considered in Refs. [2-4,8,34]. Equations (6),(7) [2,8] allow to figure the phase 

characteristics ( )0rβ  of the configuration examined. The phase shifter operation of 

the structure under investigation is discussed in Refs. [2-4,6,8], the notion space of 

phase shifter (phaser) operation P is introduced in Ref. [4], the one space of phase 

characteristics R is original. The criterion for phase shifter (phaser) operation for 
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01TE  is derived in Ref. [2] and substantiated in Ref. [4]. Its new form (9) in terms of 

( )0,, ncM  and ( )ncL ,  numbers is suggested recently in Ref. [8]. If 3=c  and 1=n , it 

holds: ( ) nc ,2/1−ν  = 3.83170 59702, ( )0,, ncM  = 11.49511 79106 and ( )ncL ,  = 

6.59365 41068. In this case the parameters c  and n  in the notations for R , P , 0r  

and β  could be dropped. 

 

4. A , B , C  NUMBERS. T MATRIX 

 
Definition 5: To each point ∈P P corresponds a column matrix  

 

 T ( )
( )
( )
( )⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0

0

0

0

,,,
,,,
,,,

,,,
rncC
rncB
rncA

rnc
α
α
α

α , (10) 

 
of the type 13×  with real elements, determined by the equation 

 
 T ( )0,,, rnc α =Λ ( )0,,, rnc α U ( )0, rα   (11) 

 
in which Λ ( ) ( )( )00 ,,,,,, rncrnc ij αλα =  is a scalar matrix of the type 33×  with 

elements 

 

 ( )
( ) ( )[ ]⎩

⎨
⎧

=−

≠
=

+− jirrncrnc
ji

rncij ,/,,,,,,
,0

,,,
000

0 ααβαβ
αλ , (12)  

 
3,2,1, =ji  and U ( )0, rα  is a column matrix of the type 13× , composed in the 

following way: 

 U ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1

/1
,

0

0 αα
r

r . (13)  

 
Here ( ) ( ) ( )000 ,,,,,,,,, rncrncrnc αβαβαβ +− −=Δ  is the normalized 

differential phase shift, provided by the azimuthally magnetized circular ferrite 
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waveguide, operating in the normal nTE0  mode, α  is the off-diagonal element of 

ferrite permeability tensor, 0r  is the normalized guide radius, +β  and −β  are the 

normalized phase constants for positive and negative magnetization of the ferrite, 

3=c  and ,...3,2,1=n .  

Definition 6: The diagonal elements ( )0,,, rncii αλ  of the scalar matrix 

Λ ( )0,,, rnc α  could be presented also in the form  

 

 ( ) ( )[ ] 2/,,,,,,, ααλ ++−−
−

+ −=⎟
⎠

⎞
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧ kncKkncK
k
k

ncii , (14)  

 

(the matrix could be written in the shape Λ ⎟
⎠

⎞
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

−

+

k
k

nc ,,, α ) where ( )±± kncK ,,  

are certain positive real numbers which meet the requirement  

 

 ( ) ( ) =++−− kncKkncK ,,/,,  ( )( )[ ] ( )( )[ ]{ } 2/122 2/1/2/1 +− ++ kk αα ,  (15)  

 
corresponding to the conditions 000 rrr == −+  and  ααα == −+ , α  is the off-

diagonal element of ferrite permeability tensor, 0r  is the normalized guide radius of 

the azimuthally magnetized circular ferrite waveguide that sustains normal nTE0  

modes, c  and k  are the second parameter and the imaginary part of the first one a  

( jkca −= 2/ ) of wave function for propagation – the complex Kummer function 

( )xca ;,Φ  and n  is the number of its purely imaginary zero, 3,2,1=i , 3=c  and 

,...3,2,1=n . (The subscripts “+”,“–” correspond to positive, negative ferrite 

magnetization.)   
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Definition 7: The ensemble of column matrices T , constructed according 

Definition 5 makes up a space of matrices T. The matrices themselves can be 

considered as points in T and their elements (components) – the real numbers A, B  

and C  as co-ordinates of these points.  

Comments: The real numbers A , B  and C  have been introduced as a means for 

computation of the differential phase shift, produced by the waveguide explored [34], 

serving as factors of proportionality in simple formulae, suggested for the purpose. 

Expressing them through the ( )±± kncK ,,  numbers is a quite recent idea [8]. It is 

believed that the notions matrix of numbers and space of matrices, replacing the ones 

triad and space of triads [4] are more successful. To simplify the notations, relevant 

to the 01TE  mode, the parameters c  and n  in all quantities save for ( )±± kncK ,,  

could be omitted, as done earlier [4,8,34]. Eqns. (10), (11), (13) could be written in 

terms of 0r , +k  or −k  which are interchangeable in view of the relations (6), (15) 

between them.  

 

5. T −en  AND T min,−en  MATRICES  
 

Let −∞→= −− enkk  and 0<= −enαα . Then, eqns. (6), (7) become:  

 ( ) ( ) ( )[ ]2/12
0 1/,,,, −−−−− −= enenenenen ncLkncr ααα , (16) 

 ( ) ( ) 2/121, −−−− −= enenenen k ααβ  (17) 
 

which is the equation of the envelope curve of phase characteristics −enβ  = 

( )−− enen r0β  (the one, restricting the characteristics for negative magnetization from 

the side of higher frequencies) in parametric form with −enα  as parameter ( 3=c  and 

1=n  for normal 01TE  mode) [2]. There is +k  for which if 0>== −+ enααα , it is 

true −+ = enrr 00 . The corresponding value of the phase constant for positive 

magnetization is ( )+−++ = knc en ,,, αββ . The numbers +k  and +β  searched are 

specified, harnessing an iterative procedure, described lately [4]. (All quantities, 

related to the envelope are denoted by the subscript “ −en ”.) 
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Accordingly, for the matrices, connected with the envelope, it could be written:  

 Λ ( ) ( )( )+−−+−− = kncknc enijenenen ,,,,,, , αλα , (18) 

( )
( ) ( ) ( )
( ) ( )[ ]⎪⎩

⎪
⎨
⎧

−

⎭⎬
⎫

⎩⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−

=

−++

−−+−+
+−−

2

22/12

,

/,,,

/1/,,,1,
,,,

en

enenen
eniien

kncKncL

kncncL
knc

α

αααβ
αλ , 

  (19) 
 

 ( ) ( ) =++ kncKncL ,,/, ( )( )[ ]{ } 2/122/1/1 +−+ kenα , (20) 

 T −en ( )−− enennc κα ,,,  = Λ −en ( )−− enennc κα ,,, U −en ( )−− enennc κα ,,, , (21) 

 T −en ( )
( )
( )
( )⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−−−

−−−

−−−

−−

enenen

enenen

enenen

enen

ncC
ncB
ncA

nc
κα
κα
κα

κα
,,,
,,,
,,,

,,, , (22) 

 U ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= −

−

−−−
1

/1
,,,

0

en

en

enenen

r
nc ακα  (23) 

where −enκ  stands for any of the interchangeable symbols −enr0 , −enk  and the 

relevant +k . If −enα  is accepted as a basic parameter, −enr0  is determined from eqn. 

(16) and −enκ  = −enk . In case +− = 00 rr en  is figured from eqn. (6) with −+ = enαα , 

then  −enκ  = +k . The numerical values of −enr0 , −enA , −enB , −enC  have been 

computed earlier as a function of −enα  = 0.1 (0.1) 0.9 and listed in Table 4 [4] and in 

Table 4 [8].  

At the minimum of envelope with respect to −enr0 – ( )ncLr en ,2min 0 =− , attained 

at 2/1min, −=−enα  and  2/1min, =−enβ  [4], eqns. (18) – (23) are recorded as:  

 
 Λ ( ) ( )( )min,min,min,,min,min,min, ,,,,,, +−−+−− = kncknc enijenenen αλα , (24) 

 ( ) =+−− min,min,min,, ,,, knc eniien αλ  

 
( ) ( ) ( )
( ) ( )[ ]⎪

⎩

⎪
⎨

⎧

−

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−

=

−++

−−+−+

2
min,min,min,

2
min,

2/12
min,min,min,min,

/,,,

/1/,,,1,

en

enenen

kncKncL

kncncL

α

αααβ
, (25) 
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 ( ) ( )=++ min,min, ,,/, kncKncL ( )( )[ ]{ } 2/12
min,min, 2/1/1 +−+ kenα , (26) 

 
 T min,−en ( )min,min, ,,, −− enennc κα  =  

 Λ min,−en ( )min,min, ,,, −− enennc κα U min−en ( )min,min, ,,, −− enennc κα , (27) 

 T min,−en ( )
( )
( )
( )⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−−−

−−−

−−−

−−

min,min,min,

min,min,min,

min,min,min,

min,min,

,,,
,,,
,,,

,,,

enenen

enenen

enenen

enen

ncC
ncB
ncA

nc
κα
κα
κα

κα , (28) 

 U min,−en ( )min,min, ,,, −− enennc κα
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= −

−

1

min/1

min,

0

en

enr
α . (29) 

Eqns. (25) and (29) could be simplified like: 

   ( ) =+−− min,min,min,, ,,, knc eniien αλ  
 

 
( ) ( )[ ]{ }
( ) ( )[ ]⎪⎩

⎪
⎨
⎧

−

−
=

++

+−+

min,min,

min,min,min,

,,,2

,,,21,2

kncKncL

kncncL enαβ
, (30) 

 U min,−en ( )min,min, ,,, −− enennc κα
( )[ ]

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1
2/1
,2/1 ncL

, (31) 

( min,−enκ  is a general notation of the parameters −enr0min , −∞=− min,enk  and 

min,+k .) The numerical investigation in case of normal 01TE  mode yields: 3=c , 

1=n , ( )ncL ,  = 6.59365 41068, −enr0min  = 13.18730 82136, min,+k  = 0.54841 

53081, ( )3
1,min,+kζ = 10.10518 02318, min,+β  = 0.59430 92282, ( )min,min, ,, ++ kncK  = 

5.54183 55298. Correspondingly, for the matrix T min,−en  it is calculated: 

 T min,−en (3,1,0.70710 67812, 13.18730 82136) = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

7153910363.2
6096748749.1
9829215951.0

. (32) 

 



THE ( )ncL ,  NUMBERS AND THEIR APPLICATION TO THE ANALYSIS OF THE CIRCULAR FERRITE 

WAVEGUIDE PHASE SHIFTER 
 

JAE Vol 10 No 1 

6. T approx , T −enapprox,  AND T min,, −enapprox  MATRICES  
 

The following contention and subsequent considerations are based on and 

constitute a generalization of the numerical and analytical study done in Ref. [4] and 

extended recently in Ref. [8].  

Assumption for independence of A , B , C  numbers of certain parameters: It 

could be accepted that A  and B  are constants with regard to α  and 0r , resp., 

whereas C  is constant in relation to both α  and 0r . Thus, it is assumed that:  

 
 T ( ) ≈0,,, rnc α T ( )0,,, rncapprox α  (33) 
 
where 

 T ( )0,,, rncapprox α  = 

( )
( )
( ) ⎟⎟

⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

ncC

ncB

rncA

approx

approx

approx

,

,,

,, 0

α . (34) 

 
Accordingly, it has been shown that knowing the T  matrix (anyone of its 

elements) at an arbitrary point ( )0,,, rncP α , whose co-ordinates satisfy condition (8) 

or (9), it is possible to obtain its approximation T approx  at any other point of co-

ordinates, subject to the same criterion with a fair degree of accuracy [4,8]. Several 

simple methods have been elaborated for this purpose [4,8]. In particular, if the matrix 

T −en  for arbitrary −enα  is known, the corresponding approximate one T −enapprox, , 

relevant to any point, belonging to the space of phase shifter operation, is easily 

calculated from the equation:  

 T ( ) ( )−−−− = enenienenapprox ncrnc καμα ,,,,,, ,0, U ( )0, rα  (35) 
 
in which ( )−−− enenien nc καμ ,,,,  is any of the elements of the matrix: 

 
 Μ ( ) ( )( )−−−−−− = enenienenenen ncnc καμκα ,,,,,, , , (36) 
 
defined by the relation: 
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 Μ −en ( )−− enennc κα ,,, =[ E U ( )] 1,,, −
−−− enenen nc κα T −en

( )−− enennc κα ,,,  (37) 

in that E  is a unit matrix of type 33×  and ( E U 1)−−en  is the reverse of the matrix 

E U −en . In explicit form: 

 Μ ( )
( ) ( )

( )
( ) ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−−−

−−−−

−−−−−−

−−−

enenen

enenenen

enenenenenen

enenen
ncC

ncB
ncrncA

nc
κα

ακα
κακα

κα
,,,

/,,,
,,,,,,

,,,
0

. (38) 

 
It could be proved that for the same set of parameters ( )−− enennc κα ,,,  it is 

fulfilled: −−−− =≡≡ enenenen μμμμ 3,2,1, . For example, it is convenient to chose 

( ) −−−− = enenenen Cnc καμ ,,, ( )−− enennc κα ,,, . Accordingly, eqn. (35) could be 

rewritten as:  

 T ( ) ( )−−−− = enenenenapprox ncCrnc καα ,,,,,, 0, U ( )0, rα  (39) 
 

At the point 2/1min, −=−enα , 2/1min, =−enβ , ( )ncLr en ,2min 0 =−  it is true:  

 T ( ) ( )min,min,min,,0min,, ,,,,,, −−−− = enenienenapprox ncrnc καμα U ( )0, rα , (40) 
 
 Μ ( ) ( )( )min,min,min,,min,min,min, ,,,,,, −−−−−−

= enenienenenen ncnc καμκα , (41) 
 
 Μ min,−en ( )min,min, ,,, −− enennc κα = 
  
 = [ E U ( )] 1

min,min,min, ,,, −
−−− enenen nc κα T min,−en ( )min,min, ,,, −− enennc κα , (42) 

 
 Μ min,−en ( )min,min, ,,, −− enennc κα = 
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In a simpler form:  

 Μ min,−en ( )min,min, ,,, −− enennc κα = 

( ) ( )
( )

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

−−−

−−−

min,min,min,

min,min,min,

min,min,min,

,,,
,,,2

,,,,2

enenen

enenen

enenen

ncC
ncB

ncLncA

κα
κα

κα
. (44) 



THE ( )ncL ,  NUMBERS AND THEIR APPLICATION TO THE ANALYSIS OF THE CIRCULAR FERRITE 

WAVEGUIDE PHASE SHIFTER 
 

JAE Vol 10 No 1 

Obviously, it holds min,3min,,2min,,1min,, −−−− =≡≡ enenenen μμμμ , 

( )min,min,min, ,,, −−− enenen nc καμ = min,−enC ( )min,min, ,,, −− enennc κα . Hence, eqn. 

(40) could become: 

 T ( ) ( )min,min,min,0min,, ,,,,,, −−−− = enenenenapprox ncCrnc καα U ( )0, rα , (45) 
 

which for normal 01TE  mode in view of eqns. (28) and (32) is equivalent to:  

 
 T ( ) 7153910363.2,,1,3 0min,, =− renapprox α U ( )0, rα . (46) 
 
 

The last relation is accepted as a basis for computation of the approximate values 

of the matrix T  (of its elements A , B  and C ).  

 

7. NUMERICAL RESULTS FOR THE A , B , C  NUMBERS 
 

Tables 6 and 7 juxtapose the results for normal 01TE  mode, calculated by means of 

formula (46) and the exact ones obtained, applying the iterative procedure, described 

in Ref. [4], as a function of α  and 0r . For simplicity of the notations in the Tables 

the subscript “approx,en–,min” is shortened to “approx”. The exact values of 

numbers, denoted by the subscript “exact” are taken from Tables 1-3 [4,34]. The 

empty places, indicating that for the relevant set ( α , 0r ) there are no values of the A , 

B , C  numbers (T  does not exist), are in accordance with criterion (8), or (9). The 

comparison shows that the approximate values of the elements of matrix deviate 

insignificantly from the exact ones.  

 

8. APPROXIMATE METHOD FOR DIFFERENTIAL PHASE SHIFT 

 COMPUTATION 

 
Fundamentals of the approach: If the A , B , C  numbers are known at certain 

point ∈P P, the differential phase shift, produced at it, for normal 01TE  mode could 

be computed from any of the formulae:  
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( )⎪⎩

⎪
⎨

⎧
=Δ

α

α
β

0

0

/
/

rC
rB

A
, (47) 

Table 6. Exact and approximate values of the numbers A , B , C  as a function of 0r  

in case α  = 0.1, 3=c  and 1=n . 

0r  4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 

exactA  0.513 613 0.456 551 0.410 903 0.373 554 0.342 431 0.316 097 0.293 525 0.273 963 0.256 847 

approxA  0.525 909 0.467 475 0.420 727 0.382 479 0.350 606 0.323 636 0.300 520 0.280 485 0.262 955 

exactB  0.205 445 0.205 448 0.205 451 0.205 455 0.205 459 0.205 463 0.205 467 0.205 472 0.205 477 

approxB  0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 

exactC  2.054 452 2.054 481 2.054 513 2.054 548 2.054 587 2.054 628 2.054 674 2.054 722 2.054 775 

approxC  2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 

0r  8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 

exactA  0.241 745 0.228 321 0.216 311 0.205 502 0.195 722 0.186 833 0.178 716 0.171 276 0.164 432 

approxA  0.247 487 0.233 737 0.22 144 0.210 364 0.200 346 0.191 240 0.182 925 0.175 303 0.168 291 

exactB  0.205 483 0.205 489 0.205 495 0.205 502 0.205 508 0.205 516 0.205 523 0.205 531 0.205 539 

approxB  0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 

exactC  2.054 830 2.054 889 2.054 951 2.055 016 2.055 085 2.055 157 2.055 233 2.055 312 2.055 394 

approxC  2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 

0r  13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 

exactA  0.158 114 0.152 264 0.146 833 0.141 776 0.137 057 0.132 643 0.128 504 0.124 617 0.120 958 

approxA  0.161 818 0.155 825 0.150 260 0.145 078 0.140 242 0.135 719 0.131 477 0.127 493 0.123 743 

exactB  0.205 548 0.205 557 0.205 566 0.205 576 0.205 586 0.205 596 0.205 607 0.205 618 0.205 629 

approxB  0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 

exactC  2.055 480 2.055 569 2.055 662 2.055 758 2.055 857 2.055 960 2.056 066 2.056 175 2.056 288 

approxC  2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 

0r  17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 

exactA  0.117 509 0.114 251 0.111 170 0.108 251 0.105 482 0.102 852 0.100 350 0.097 967 0.095 696 

approxA  0.120 208 0.116 869 0.113 710 0.110 718 0.107 879 0.105 182 0.102 616 0.100 173 0.097 844 

exactB  0.205 640 0.205 652 0.205 665 0.205 677 0.205 690 0.205 704 0.205 717 0.205 731 0.205 746 

approxB  0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 

exactC  2.056 404 2.056 524 2.056 647 2.056 773 2.056 903 2.057 036 2.057 173 2.057 313 2.057 457 

approxC  2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 
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Table 7. Exact and approximate values of the numbers A , B , C  as a function of α  
in case 0r  = 5 (5) 20, 3=c  and 1=n . 

α  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0r =5 

exactA  0.410 902 0.411 195 0.411 673 0.412 321 0.413 116 0.414 026    

approxA  0.420 727 0.420 727 0.420 727 0.420 727 0.420 727 0.420 727    

exactB  0.205 451 0.411 195 0.617 510 0.824 642 1.032 790 1.242 078    

approxB  0.210 364 0.420 727 0.631 091 0.841 455 1.051 819 1.262 182    

exactC  2.054 513 2.055 976 2.058 366 2.061 606 2.065 580 2.070 131    

approxC  2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637    

0r =10 

exactA  0.205 502 0.205 794 0.206 261 0.206 868 0.207 564 0.208 275 0.208 904 0.209 324 0.209 378 

approxA  0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 0.210 364 

exactB  0.205 502 0.411 589 0.618 783 0.827 473 1.037 819 1.249 651 1.462 329 1.674 591 1.884 400 

approxB  0.210 364 0.420 727 0.631 091 0.841 455 1.051 819 1.262 182 1.472 546 1.682 910 1.893 273 

exactC  2.055 016 2.057 944 2.062 612 2.068 682 2.075 638 2.082 752 2.089 041 2.093 238 2.093 778 

approxC  2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 2.103 637 

0r =15 

exactA  0.137 057 0.137 416 0.137 985 0.138 714 0.139 525    0.140 608 

approxA  0.140 242 0.140 242 0.140 242 0.140 242 0.140 242    0.140 242 

exactB  0.205 586 0.412 248 0.620 933 0.832 287 1.046 439    1.898 208 

approxB  0.210 364 0.420 727 0.631 091 0.841 455 1.051 819    1.893 273 

exactC  2.055 857 2.061 242 2.069 777 2.080 717 2.092 877    2.109 121 

approxC  2.103 637 2.103 637 2.103 637 2.103 637 2.103 637    2.103 637 

0r =20 

exactA  0.102 852 0.103 295 0.104 000       

approxA  0.105 182 0.105 182 0.105 182       

exactB  0.205 704 0.413 180 0.623 998       

approxB  0.210 364 0.420 727 0.631 091       

exactC  2.057 036 2.065 901 2.079 992       

approxC  2.103 637 2.103 637 2.103 637       
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whose area of application is specified by the criterion (8) or (9). The first six 

expressions have been suggested earlier [4,34] whereas the last three ones are 

original. Introducing the approximate values of corresponding numbers, determined 

from eqn. (46) in any of these formulae (e.g. the data from Tables 6,7), yields the 

approximation of βΔ  for the relevant parameters α  and 0r . 

Complementary considerations: It is worthwhile to accept the following new 

notations AT =1 , BT =2 , CT =3 , 01 /1 rU = , α=2U , 13 =U , T ( )iT=  and 

U ( )iU= . Then, eqns. (47)-(49) are rewritten as:  
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(In the second variant of the formulae 13 =U  is introduced for symmetry.) 

Moreover, for the elements of eqn. (11) it is fulfilled: 

 
 iiii UT λ= . (53) 
 

Accordingly, it is easily seen that expressions (50)-(52) are equivalent to: 
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where iiλλ =  (cf. eqn. (12)). (The last formulae are identical, since 13 =U ). 

Similarly, it is true:  

 ieniienien UT ,,, −−− = λ . (55) 

 
 ieniienien UT min,,min,,min,, −−− = λ , (56) 

 
in which −− = eniien λλ , , min,min,, −− = eniien λλ , 

 ienienapprox UT −− = μ,, , (57) 

 
 ienienapprox UT min,min,,, −− = μ , (58) 

 

⎪⎩
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,

/UUU
UUU

UU

enenapprox μβ ,             (59) 

 
⎪⎩
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⎧
=Δ −−

321
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21

min,min,,

/UUU
UUU

UU

enenapprox μβ , (60) 

 
 ( )αβ 0, / rCenenapprox −− =Δ , (61) 
 
 ( )αβ 0min,min,, / rCenenapprox −− =Δ . (62) 
 
 

Finally, the formula, suggested to approximately find the differential phase shift, 

is: 

 
 ( )αβ 0min,, /7153910363.2 renapprox =Δ − . (63) 

Numerical results for the differential phase shift: Illustrative examples of the 

computations  are given  in  Tables 8 and 9  for selected parameters  α   and  0r .  The 

notations, used in the previous Section are preserved here. The exact values of βΔ   are  
 



G. N. Georgiev and M. Nikolova Georgieva-Grosse 
 

JAE Vol 10 No 1 

Table 8. Exact and approximate values of βΔ  for normal 01TE  mode as a function of 0r  
in case α =0.1. 

0r  4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 

exactβΔ  0.051 361 0.045 655 0.041 090 0.037 355 0.034 243 0.031 610 0.029 352 0.027 396 0.025 685 

approxβΔ  0.052 591 0.046 747 0.042 073 0.038 248 0.035 061 0.032 364 0.030 052 0.028 048 0.026 295 

βδΔ % 0.1230 0.1092 0.0983 0.0893 0.0818 0.0754 0.0700 0.0652 0.0610 

0r  8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 

exactβΔ  0.024 174 0.022 832 0.021 631 0.020 550 0.019 572 0.018 683 0.017 871 0.017 128 0.016 443 

approxβΔ  0.024 749 0.023 374 0.022 144 0.021 036 0.020 035 0.019 124 0.018 292 0.017 530 0.016 829 

βδΔ % 0.0575 0.0542 0.0513 0.0486 0.0463 0.0441 0.0421 0.0402 0.0386 

0r  13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 

exactβΔ  0.015 811 0.015 226 0.014 683 0.014 178 0.013 706 0.013 264 0.012 850 0.012 462 0.012 096 

approxβΔ  0.016 182 0.015 582 0.015 026 0.014 508 0.014 024 0.013 572 0.013 148 0.012 749 0.012 374 

βδΔ % 0.0371 0.0356 0.0343 0.0330 0.0318 0.0308 0.0298 0.0287 0.0278 

0r  17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 

exactβΔ  0.011 751 0.011 425 0.011 117 0.010 825 0.010 548 0.010 285 0.010 035 0.009 797 0.009 570 

approxβΔ  0.012 021 0.011 687 0.011 371 0.011 072 0.010 788 0.010 518 0.010 262 0.010 017 0.009 784 

βδΔ % 0.0270 0.0262 0.0254 0.0247 0.0240 0.0233 0.0227 0.0220 0.0214 

 
 
obtained, employing any formula from the sets (47)-(49) with A , B , C  numbers, 

taken from Tables 1-3 [4,34] for [ ]10,40 ∈r  and found by the iterative procedure, 

described in Ref. [4] for larger 0r . (The outcomes in Tables 6,7 could be exercised, 

too.) The quantities approxβΔ  are specified from eqn. (63). The absolute error %βδΔ = 

approxexact ββ Δ−Δ  is less than 1% for the values of parameters chosen. This is an 

excellent result, in view of the simplicity of the method, compared with the complicated 

computations, harnessing the sophisticated iterative techniques of the exact one. 

 
9. CONCLUSION 
 

The elements of the theory of the ( )ncL ,  numbers – a new class of real numbers, 

appearing in the analysis of the purely imaginary zeros of the complex Kummer CHF 

of  specially  selected  parameters   –   are  presented.   They  include:   the  definition,  
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Table 9. Exact and approximate values of βΔ  for normal 01TE  mode as a function of α  
in case 0r =5 (5) 20. 

α  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0r =5 

exactβΔ  0.041 090 0.082 239 0.123 502 0.164 928 0.206 558 0.248 416    

approxβΔ  0.042 073 0.084 145 0.126 218 0.168 291 0.210 364 0.252 436    

βδΔ % 0.0983 0.1906 0.2716 0.3363 0.3806 0.4020    

0r =10 

exactβΔ  0.020 550 0.041 159 0.061 878 0.082 747 0.103 782 0.124 965 0.146 233 0.167 459 0.188 440 

approxβΔ  0.021 036 0.042 073 0.063 109 0.084 145 0.105 182 0.126 218 0.147 255 0.168 291 0.189 327 

βδΔ % 0.0486 0.0914 0.1231 0.1398 0.1400 0.1253 0.1022 0.0832 0.0887 

0r =15 

exactβΔ  0.013 706 0.027 483 0.041 396 0.055 486 0.069 763    0.126 547 

approxβΔ  0.014 024 0.028 048 0.042 073 0.056 097 0.070 121    0.126 218 

βδΔ % 0.0318 0.0565 0.0677 0.0611 0.0358    0.0329 

0r =20 

exactβΔ  0.010 285 0.020 659 0.031 200       

approxβΔ  0.010 518 0.021 036 0.031 555       

βδΔ % 0.0233 0.0377 0.0355       

 
 
properties, general characteristics and tables, compiled for the first time. Some 

features of related with them quantities are also object of the investigation. 

As a field of application of the numbers, the theory of azimuthally magnetized 

circular ferrite waveguide phase shifters, working in normal 01TE  mode, is 

considered. Definitions of essential for its formulation notions: spaces of phase 

characteristics and of phase shifter operation, matrix T  of the A , B , C  numbers and 

space of the matrices are given. The main point in the paper is the development of an 

approximate method for computation of the quantities A , B , C . According to it, the 

first (second) of them is obtained dividing (multiplying) certain real number (denoted 

by min,−enC  and equal to 2.10363 71539) by the value of the normalized guide radius 

0r  (of the modulus of off-diagonal ferrite tensor element α ), chosen as parameter. 

The third is accepted to be equal to the number mentioned in the whole area (space) of 



G. N. Georgiev and M. Nikolova Georgieva-Grosse 
 

JAE Vol 10 No 1 

phase shifter operation of the structure. A procedure is described, giving min,−enC  in 

terms of ( )ncL ,  for specific c  and n . Using special formulae, involving A , B , C , 

substantiated earlier, the approximate values of differential phase shift are figured. A 

discussion reveals also a straightforward way to get the latter just dividing the basic 

number min,−enC  by 0r  and subsequently multiplying it by α . The approach goes on 

the slight dependence of the first (second) number on α  ( 0r ) and of the third one on 

both parameters, established numerically. It is very simple and harnesses the iterative 

schemes, inherent to the exact one, thrifty which is its main advantage. 

Simultaneously, the error introduced practically could be neglected. 
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	1. INTRODUCTION 
	The   numbers sprang up into existence in the theory of latching phase shifters, built on circular ferrite and ferrite-dielectric waveguides with azimuthal magnetization and operating in the normal   mode, worked out through the complex confluent hypergeometric functions (CHFs) [1-9] or by means of them and besides utilizing the real cylindrical ones for the geometries of the second kind [1]. The same happened when these functions (all real) were harnessed to describe slow   modes in waveguides of the type mentioned [6,10,11]. The quantities considered have been defined as limits of sequences of real numbers whose terms involve the purely imaginary (real) zeros of specific complex (real) Kummer CHF [2,3,6,8] or the purely imaginary (real) roots of some transcendental equations, written by complex (real) CHFs [5,7,9,11] or except by them, addressing the real ordinary and modified derivative difference Bessel functions [1,10] of specially chosen parameters, as well [1-3,5-11]. The aforesaid functions are taken in the Kummer-Tricomi form [2,3,5-19], respectively in  the Sovetov-Averbuch one [1,10,20]. The sequences tend to the limits in question when the imaginary part of complex first parameter (the real first parameter) of the complex (real) CHF(s) gets infinitely large negative [2,3,5-11] or both negative and positive [1]. In view of this, several categories of   numbers have been inaugurated [1-3,5-11]. As an eligible basis for their classification could serve the generating equations from which they stem from, enumerated above.  
	To get the differential phase shift, provided by the structures under study in case of normal propagation, is a serious task for whose solution various schemes have been proposed [1,3-8,9,21-34]. The ones, using the   numbers [3,4,8], avail of the traced by them peculiar envelope curves in the phase diagrams of the configurations at which the characteristics for negative (both negative and positive) magnetization terminate [1-5,6]. It seems that these new objects would find application also in plenty of other fields in which CHFs are employed [6]. Therefore, the knowledge of a few of their values only [1-3,5-9] obviously is not sufficient.  
	The discussion here is focussed on one representative of the class of numbers treated – the   ones, connected with the complex Kummer CHF  , provided   is complex,   and   are real,   is positive purely imaginary and   is real, positive [2-4,8]. Tables of some of their values are compiled, depending on the second parameter   of   and the number   of its positive purely imaginary zero in  . In addition, the paper reviews and extends the approximate method for calculation of the differential phase shift, due to the circular waveguide, entirely filled with ferrite [3,4,8] which is an example of the putting into practice of these numbers.  
	2.   NUMBERS  
	Definition 1: The common limits for   of  the infinite sequences of positive (negative) real numbers   and   where   =  ,   =   and   is the  th positive (negative) purely imaginary zero of the Kummer confluent hypergeometric function   in   ( ) with   ( ) – complex,   – a restricted positive or negative real number, different from zero or negative integer ( ,  ),   – positive (negative) purely imaginary,   – real, positive (negative) and   – real, ( , – fixed), are finite positive (negative) real numbers, called   ones. It holds:  
	If  , it is postulated:  
	Moreover, it is valid: 
	Properties: i) if     and  , it holds  ; ii) in case     and  , then       and   =   =   =   =  ; accordingly, it is accepted   =   and hence          ; iii) assuming     and  , it is true                  ;   iv)   provided    <   <   <         and    , it is valid       (    ); 
	v) on condition that   and  , it is fulfilled  ;  
	vi) stipulating that   and    , results in     (   ); vi) for any arbitrary  finite  real     ,  it  holds               ; 
	vii) on the understanding that   and   are arbitrary finite real numbers and  , it follows              ; viii) provided  ,   ,  ,  it  is  true     =   ,  thus  if  , then   =   and in case   ( , ,), it is valid   =   [  =  ]; ix) in particular when  , obviously    ; x) for any   there exist infinite different real numbers   (each of which satisfies the condition  ,  , or  ,  ) and   (part or all of which are identical), for that the values of   are the same; xi) if  , for the corresponding numbers   it is fulfilled  ; xii) provided   and  , then  . 
	Properties of related quantities: I) For any real  , including the case   which is equivalent to the one  , the following is valid: i) when  , then  ,   and   [  =  ], [  –   zero of Bessel function  ] ; ii) assuming  , it holds  ; iii)  if   and   are any two large negative real numbers,   and   are the moduli of complex first parameter of  , relevant to them, and   and   are the corresponding purely imaginary zeros of the function for the same  , it is true: 1)   (if   and   is a positive or negative integer or zero); 2)   ; 3)  ; 4)  ; 5)     ; 6)  ; 7)    ; iv)  in case   and   are any two large negative real numbers, then        ; v) for any large negative   it holds   ; vi)  provided   is large, it is fulfilled: 1)  ; 2)  ; 3)   ; 4)  ; II) If  , in case  , it is valid     =   =   where   =   ,   =    (The subscript “+“ indicates quantities, corresponding to positive  .) 
	General characteristics: i) When   rises from   to  , ( ), the   numbers strictly monotonously increase from   to  , if   and from   to  , on the understanding that  .  Provided   grows from   to   (remaining finite), they mount in the same interval in case   and in the one ( , ) for   (remaining finite). At the points   jumps from   to  , assuming   and from   to  , stipulating that   are observed. ii) The sequence of real numbers  ,  ,  ,  ,  ,  ,  , …,  ,  ,  ,   is strictly monotonously increasing, on condition that   enlarges from   ( ) to   (remaining finite). iii) At fixed   the numbers   are mirror images of the ones   in the straight line  .   coincides with its image. iv) The infinite sequence of real numbers   is convergent for   and its limit is zero. 
	Comments: The   numbers have been introduced for the first time in Ref. [2] and the   and   ones – in Ref. [8]. In the general case ( – arbitrary real) Definition 1 is substantiated by Lemma 1 in Refs. [3,8], whereas in the special one ( – a positive integer) this is done through Lemma 1 in Ref. [2]. Tables 1, 2 and 3 list   for   varying from –10 to 0 and from 0 to 10 with a step 0.1, and from 0 to 40 with a step 0.5, resp., when  . Table 4 gives them for values of the natural numbers   = 1 to 10 and   = 1 to 10. The computations are performed by means of the representation of   around the point 0 in terms of an infinite power series [2,3,6,8,11-19] with parameters – specified in Definition 1, accepting   =  . The approach does not allow to obtain   for   where   does not exist (cf. the empty places in Tables 1-3). This is effectuated with the help of eqn. (2) whose proof is given in Refs. [3,8]. The more general case   is illustrated in Table 5. It is assumed here that   ( ). All complementary results, given above, are due to the numerical analysis of numbers advanced and of the related with them quantities. Part of the same are based on the study of the values, presented in Tables 1-5. Some of the properties of the zeros   have been established in Ref. [2] and of the   and   numbers – in Ref. [8].  

	 
	3. AZIMUTHALLY MAGNETIZED CIRCULAR FERRITE WAVEGUIDE 
	 PHASE SHIFTER 
	 
	Definition 2: The set of points   constitutes a space of phase characteristics R of the ferrite-loaded circular waveguide with azimuthal magnetization, propagating normal   mode, if their co-ordinates   and   are connected through the equations:  
	in which  ,  ,  ,   ,  = ,  , ( ,   – real,  ,  ),   ,  =  ,  ,  ,   is the off-diagonal element of Polder permeability tensor of the lossless ferrite,  , ( – gyromagnetic ratio,   – remanent magnetization,   – angular frequency of the wave),   is the phase constant,   is the radial wavenumber,   is the scalar  ferrite relative permittivity,   is the waveguide radius, and 
	 Definition 3: The co-ordinates   and   of the points of space of phase characteristics  R  for the normal   mode suffice also the equations:  
	in which   is the off-diagonal element of ferrite permeability tensor,   is the normalized guide radius and   are certain positive real numbers, with  ,  , (  is a varying and   – a discrete parameter). (The subscripts “+”, “–” indicate quantities, related to positive ( ) or negative   magnetization, resp.) Thus, it could be written  .  
	Definition 4: The ensemble of points   forms a space of phase shifter operation P of the azimuthally magnetized circular ferrite waveguide, working in the normal   mode, if their co-ordinates   and   satisfy the criterion:  
	in which   is the off-diagonal element of ferrite permeability tensor,   is the normalized guide radius,   is the  th root of Bessel function  ,   and   are certain positive real numbers in that   and  . At each point  P a differential phase shift   is produced, symbolized in normalized notations as   where   and   are the normalized phase constants for positive (counterclockwise) and negative (clockwise) magnetization of the ferrite. 
	Comments: The problem for normal   modes propagation in the circular waveguide, uniformly filled with azimuthally magnetized ferrite, leading to eqns. (4), (5), is considered in Refs. [2-4,8,34]. Equations (6),(7) [2,8] allow to figure the phase characteristics   of the configuration examined. The phase shifter operation of the structure under investigation is discussed in Refs. [2-4,6,8], the notion space of phase shifter (phaser) operation P is introduced in Ref. [4], the one space of phase characteristics R is original. The criterion for phase shifter (phaser) operation for   is derived in Ref. [2] and substantiated in Ref. [4]. Its new form (9) in terms of   and   numbers is suggested recently in Ref. [8]. If   and  , it holds:   = 3.83170 59702,   = 11.49511 79106 and   = 6.59365 41068. In this case the parameters   and   in the notations for  ,  ,   and   could be dropped. 

	4.  ,  ,   NUMBERS.  MATRIX 
	 
	Definition 5: To each point  P corresponds a column matrix  
	of the type   with real elements, determined by the equation 
	in which    is a scalar matrix of the type   with elements 
	  and    is a column matrix of the type  , composed in the following way: 
	Here   is the normalized differential phase shift, provided by the azimuthally magnetized circular ferrite waveguide, operating in the normal   mode,   is the off-diagonal element of ferrite permeability tensor,   is the normalized guide radius,   and   are the normalized phase constants for positive and negative magnetization of the ferrite,   and  .  
	Definition 6: The diagonal elements   of the scalar matrix    could be presented also in the form  
	(the matrix could be written in the shape   ) where   are certain positive real numbers which meet the requirement  
	corresponding to the conditions   and   ,   is the off-diagonal element of ferrite permeability tensor,   is the normalized guide radius of the azimuthally magnetized circular ferrite waveguide that sustains normal   modes,   and   are the second parameter and the imaginary part of the first one   ( ) of wave function for propagation – the complex Kummer function   and   is the number of its purely imaginary zero,  ,   and  . (The subscripts “+”,“–” correspond to positive, negative ferrite magnetization.)   
	Definition 7: The ensemble of column matrices  , constructed according Definition 5 makes up a space of matrices T. The matrices themselves can be considered as points in T and their elements (components) – the real numbers  ,  and   as co-ordinates of these points.  
	Comments: The real numbers  ,  and   have been introduced as a means for computation of the differential phase shift, produced by the waveguide explored [34], serving as factors of proportionality in simple formulae, suggested for the purpose. Expressing them through the   numbers is a quite recent idea [8]. It is believed that the notions matrix of numbers and space of matrices, replacing the ones triad and space of triads [4] are more successful. To simplify the notations, relevant to the   mode, the parameters   and   in all quantities save for   could be omitted, as done earlier [4,8,34]. Eqns. (10), (11), (13) could be written in terms of  ,   or   which are interchangeable in view of the relations (6), (15) between them.  

	 
	5.    AND    MATRICES  
	 
	Let   and  . Then, eqns. (6), (7) become:  
	Accordingly, for the matrices, connected with the envelope, it could be written:  
	At the minimum of envelope with respect to  –  , attained at   and    [4], eqns. (18) – (23) are recorded as:  

	6.   ,    AND    MATRICES  
	 
	The following contention and subsequent considerations are based on and constitute a generalization of the numerical and analytical study done in Ref. [4] and extended recently in Ref. [8].  
	Assumption for independence of  ,  ,   numbers of certain parameters: It could be accepted that   and   are constants with regard to   and  , resp., whereas   is constant in relation to both   and  . Thus, it is assumed that:  
	Accordingly, it has been shown that knowing the   matrix (anyone of its elements) at an arbitrary point  , whose co-ordinates satisfy condition (8) or (9), it is possible to obtain its approximation    at any other point of co-ordinates, subject to the same criterion with a fair degree of accuracy [4,8]. Several simple methods have been elaborated for this purpose [4,8]. In particular, if the matrix    for arbitrary   is known, the corresponding approximate one   , relevant to any point, belonging to the space of phase shifter operation, is easily calculated from the equation:  
	    =[       (37) 
	in that   is a unit matrix of type   and (    is the reverse of the matrix    . In explicit form: 
	It could be proved that for the same set of parameters   it is fulfilled:  . For example, it is convenient to chose   . Accordingly, eqn. (35) could be rewritten as:  
	At the point  ,  ,   it is true:  
	Obviously, it holds  ,  =  . Hence, eqn. (40) could become: 
	which for normal   mode in view of eqns. (28) and (32) is equivalent to:  
	The last relation is accepted as a basis for computation of the approximate values of the matrix   (of its elements  ,   and  ).  

	 
	Tables 6 and 7 juxtapose the results for normal   mode, calculated by means of formula (46) and the exact ones obtained, applying the iterative procedure, described in Ref. [4], as a function of   and  . For simplicity of the notations in the Tables the subscript “approx,en–,min” is shortened to “approx”. The exact values of numbers, denoted by the subscript “exact” are taken from Tables 1-3 [4,34]. The empty places, indicating that for the relevant set ( , ) there are no values of the  ,  ,   numbers (  does not exist), are in accordance with criterion (8), or (9). The comparison shows that the approximate values of the elements of matrix deviate insignificantly from the exact ones.  

	8. APPROXIMATE METHOD FOR DIFFERENTIAL PHASE SHIFT 
	 
	Fundamentals of the approach: If the  ,  ,   numbers are known at certain point  P, the differential phase shift, produced at it, for normal   mode could be computed from any of the formulae:  
	whose area of application is specified by the criterion (8) or (9). The first six expressions have been suggested earlier [4,34] whereas the last three ones are original. Introducing the approximate values of corresponding numbers, determined from eqn. (46) in any of these formulae (e.g. the data from Tables 6,7), yields the approximation of   for the relevant parameters   and  . 
	Complementary considerations: It is worthwhile to accept the following new notations  ,  ,  ,  ,  ,  ,    and   . Then, eqns. (47)-(49) are rewritten as:  
	(In the second variant of the formulae   is introduced for symmetry.) Moreover, for the elements of eqn. (11) it is fulfilled: 
	Accordingly, it is easily seen that expressions (50)-(52) are equivalent to: 
	where   (cf. eqn. (12)). (The last formulae are identical, since  ). Similarly, it is true:  
	 ,             (59) 
	Finally, the formula, suggested to approximately find the differential phase shift, is: 
	Numerical results for the differential phase shift: Illustrative examples of the computations  are given  in  Tables 8 and 9  for selected parameters     and   .  The notations, used in the previous Section are preserved here. The exact values of    are  
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