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Abstract 

In this paper, a two-dimensional (2-D) inverse synthetic aperture radar (ISAR) 
return signal model, recently proposed for the interesting case of illuminating a moving 
target with stepped frequency (SF) modulated pulses, is employed to describe the 
scattering response of simulated air-craft targets. Moreover, we propose an ISAR 
imaging approach that consists of a cross-correlation algorithm for range compression 
and a linear or bilinear time-frequency (TF) transform for azimuth compression.  

The proposed approach circumvents the motion compensation necessity through 
averaging of all image frames. Additionally, simulation results, for signal-to-noise 
ratio (SNR) of 20dB and target orientation angle of 40o, indicate that the most efficient 
TF transformations result in clear ISAR images and outperform the classical FFT 
based azimuth compression.  

 
 

1.  INTRODUCTION 

In this paper, a two-dimensional (2-D) inverse synthetic aperture radar (ISAR) 

return signal model, recently proposed for the case of stepped frequency (SF) 

modulation [1], is exploited for realistic description of the scattering behaviour of the 

target to be imaged. Moreover, we propose an ISAR imaging approach that consists of 

a cross-correlation algorithm for range compression and a linear or bilinear 

time-frequency (TF) transform for azimuth compression.  

The target to be imaged is represented by a rectangular grid of point scatterers, with 

the corresponding scattering intensities describing its geometrical shape. In contrast to 

the usual assumption in ISAR imaging, that of uniform rotational motion of the target 

around its mass-center, in this paper we assume that the target moves along a rectilinear 

trajectory at constant speed, without any rotational motion. Thus, the inverse synthetic 

aperture results from the translational motion of the target for a short period of time. 
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The cross-correlation based range compression technique [1] is applied to the 

synthetic 2-D raw data, which are generated via the employed 2-D SF ISAR return 

signal model. The resultant range profiles constitute the input data for the TF transform 

based azimuth compression technique. For each range cell, a time history series, with 

length equal to the number of SF bursts transmitted during the coherent processing 

interval, is transformed to a range and instantaneous Doppler image. Furthermore, time 

sampling leads to a reduced number of image frames, adequate to describe the 

time-varying Doppler frequency shift of each point scatterer of the target of interest. 

The final step of the proposed ISAR imaging approach is the integration of the retained 

image frames, which results in a superresolution range-Doppler image. 

Conventional linear TF transforms, such as the short-time Fourier transform 

(STFT), and, more sophisticated bilinear TF transforms, such as the pseudo 

Wigner-Ville distribution (PWVD) and its smoothed version (SPWVD), are used in the 

present study. Low cross-term interference is a desirable feature for the bilinear 

transforms, which usually exhibit better resolution in both time and frequency than the 

linear transforms. In this paper, we examine the image focusing efficiency of each 

transform. 

As a means of assessing the validity of the proposed ISAR imaging approach, 

numerical simulations are carried out for a particular SF ISAR scenario causing 

unfocusing in case of FFT based image formation, and high-resolution ISAR images 

are generated for a simulated Mirage 2000 aircraft geometry. Based on the visual 

examination of the obtained ISAR images, we conclude that the proposed imaging 

methodology is very efficient for realistic ISAR scenarios. 

This paper is organized as follows. In Section 2, we briefly describe the employed 

2-D SF ISAR return signal model. Section 3 includes the mathematical description of 

the proposed ISAR imaging approach. Section 4 presents the simulation results for the 

examined ISAR scenario, and, the performance of the applied TF transformations is 

evaluated in terms of ISAR image resolution and cross-term interference reduction. 

Finally, in Section 5, useful conclusions are drawn with respect to the present study. 

 

2.  2-D ISAR RETURN SIGNAL MODEL  
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It is a common practice to consider the target to be imaged as an assembly of point 

scatterers or distributed scattering centers [2], an approach which is widely adopted for 

high radar frequencies. In this paper, we adopt for simplicity a point scatterer model. 

Furthermore, we model the 2-D ISAR geometry with the object and the ISAR being 

placed in separate coordinate systems. Details with respect to the geometrical 

modelling can be found in [1]. 

An analytical geometrical model of the time-domain ISAR return signal for the case 

of SF modulation has been recently proposed [1], and its validity has been proven for 

realistic ISAR scenarios. In the present study, we employ this model as an ideal 

characterization of the point scattering behaviour of the target to be imaged. 

For the SF ISAR functionality, a series of bursts of SF pulses is emitted. Here, we 

assume that each burst consists of M  pulses, to which SF modulation is applied. 

Moreover,  bursts are transmitted during the coherent processing interval. N

The overall ISAR return signal is the sum of the deterministic data component 

 and the random noise component , which is assumed to be white 

Gaussian. The following equations summarize the 2-D SF ISAR return signal model 

proposed and thoroughly described in [1]. 
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where  

 

ija  denotes the scattering intensity for the ij th point scatterer; 

2 (
( ) ij

ij

)R p
t p

c
⋅

=  is the round-trip delay of the ISAR signal backscattered from the thij  

point scatterer, for the p th emitted burst; 

( )ijR p  denotes the magnitude of the distance vector from the ISAR to the ij th point 

scatterer of the target; 
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⋅min ( ) ( 1)ijt t p m T= + −  is the dwell time of the ij th point scatterer;  

T  and  stand for the pulse and burst repetition intervals respectively; bT

1 0 ( )m rf f m r− + = + − ⋅Δf  is the received pulse frequency, appropriately indexed in order 

to take into account the reception time offset of the ISAR signal reflected from the ij th 

point scatterer, with respect to ; min ( )ijt p

fΔ  is the frequency step of the SF modulation. 

   

In the above equations, p  and  are the burst and sample indices respectively 

(

m

1,p N= , 1, ( )m M L p= + , max min( ) ( )( ) ij ijt p t p
TL p −⎡ ⎤

⎢ ⎥= ), while indices i , j  determine a particular 

point scatterer on the target grid, whose size is I J× . 

 

3.  PROPOSED ISAR IMAGING APPROACH 

Range and azimuth compression are the fundamental procedures performed by a 

conventional radar receiver, in order to form a well-focused 2-D ISAR image. 

 

3. 1. Cross-Correlation Based Range Compression 

The cross-correlation based approach to range compression is realized by 

cross-correlating each burst of the received raw data  with a reference signal 

of the form 

( , )nS p m

[ ]( ) exp 2 ( 1)ref ms m j f m Tπ= − , 1,m M= , i.e. a SF burst starting to be transmitted 

at . The result is one range profile for each received burst. 0t =

The cross-correlation based range compression is mathematically described by 
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where 1 0 ( )
cclm n cclf f m n f− + = + − ⋅Δ  and max1, 1ccln L= +  ( ( ){ }pLL maxmax = ) is the cross-correlation 

lag. 

 

3. 2. Time-Frequency Transform Based Azimuth Compression 
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Our basic goal is the generation of a clear ISAR image of the moving target. In order 

to achieve this goal, a TF transform with superior resolution and low cross-term 

interference is needed. To apply the TF transform based image formation, we need a 

transform specially designed for computing time-varying spectrum and retrieving 

instantaneous Doppler frequency information. Having achieved a high-resolution 

time-varying Doppler spectrum, it is not necessary to flatten out the distribution of the 

radar frequency spectrum and to compensate for the individual motions of target’s 

scatterers [3]. 

The range profiles, obtained by range compression of the received ISAR signal, 

constitute the input data for the TF transform based azimuth compression technique. 

For each range cell, a time history series, with length equal to the number of SF bursts, 

is transformed to a range and instantaneous Doppler image (image frame). 

In our numerical experiments, an averaging of all image frames, produced from the 

TF transformation, is carried out to obtain a high-resolution ISAR (or range-Doppler) 

image. 

 

3.2.1. Linear Transformation 

One of the most known linear TF transforms is the Short Time Fourier Transform 

(STFT).  STFT is based on the Fourier transform and its basic idea is the application of 

a moving time-domain window ( ). Mathematically expressed )(tw

 

∫ −−= ')d'j)exp()w(s()STFT( tωttt't'ωt,                                     (4)     

 

In our simulations, a Hamming window is applied. 

 

3.2.2. Bilinear Transformations 

The most classical bilinear TF transform is the Wigner-Ville Distribution (WVD) 

[4]. In the WVD, the time-dependent autocorrelation function is given by the following 

equation.  

 

( ) *' 'W V D t, s(t )s (t ) exp{ j t'}d t'
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t tω = + − ⋅ −∫ ω                                   (5) 
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Even though the usefulness of the WVD for signal processing purposes has been 

well recognized for a rather long period, its applications are limited mainly due to the 

“cross-term interference” problem.   

 In order to reduce the problem of cross-term interference, a wide variety of bilinear 

TF transforms has been proposed in the literature [3]. Of particular importance is the 

Cohen’s class of bilinear TF transforms [5]. The TF distributions, according to Cohen, 

can be written in a more generalized form, each using a different two-dimensional 

kernel function called the “parameterization function”. 

A member of Cohen’s class is the Pseudo Wigner-Ville Distribution (PWVD). Its 

mathematical definition is given in [6] 

 

∫ −−+= t't'tt'tt'ωt, ωt d/2)e(/2)s)s(h()PWVD( 'j*                         (6) 

 

It is obvious that the PWVD is a windowed version of WVD. The new parameter 

 is a regular window, which typically results in frequency-domain smoothing of 

the WVD [6]. This means that the interference terms of the basic Wigner-Ville 

Distribution, because of their oscillatory nature, are attenuated in this new distribution. 

A Hamming time-domain window is used in our simulations. 

)'(th

By considering a separable smoothing function [6], we add a degree of freedom in 

the PWVD. This smoothing function is mathematically described by 

 

))H(g()Π( ωtωt, −=                                                            (7) 

 

where  is the Fourier transform of a smoothing window . In this way, we 

allow for independent control of the smoothing applied on the WVD, in both time and 

frequency. This becomes obvious in the following distribution 

)(ωH )(th
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which is known as the Smoothed Pseudo Wigner-Ville distribution (SPWVD) [5]. The 

SPWVD allows the smoothing spreads, Δt and Δω, to be adjusted independently. This 
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distribution is characterized by a separable smoothing kernel with two windows, whose 

effective lengths independently determine the time and frequency smoothing spread [5]. 

In our simulations, Hamming windows are used for time and frequency smoothing.                                    

Furthermore, another important form of bilinear TF transformations is the 

Butterworth Distribution (BUD). Its parameterization function is defined as 

 2M2NBUD
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It acts as a 2-D low-pass filter with a variably flat passband and narrow transition 

region. Thus, it results in simultaneous reduction of the cross terms and preservation of 

the auto-terms [8]. Butterworth distribution is defined as 
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4.  SIMULATION RESULTS 

In our numerical experiments, we have simulated the 2-D SF ISAR scenario with the 

specific parameters included in Table 1.  

For all TF transforms, except for the STFT, averaging of all generated image frames 

is carried out and the resultant ISAR images are presented below (Figs. 1-6). The 

middle image frame is shown for the STFT case (Fig. 2). 

Notice that the image focusing efficiency is significantly increased for the PWVD, 

the SPWVD and the BUD, compared to the conventional FFT technique. 
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Table 1. 2-D SF ISAR Scenario 

Simulation Parameter 
 

Parameter 
Value 

aircraft type Mirage 2000C 
aircraft length 15.5 [m] 
aircraft wingspan 8.5 [m] 
target grid cell dimensions 

X YΔ = Δ  
 

0.5 [m]  
“reference” point coordinates 
{ } 00 00(0), (0)x y

 
{0, 10} [Km] 

vector velocity magnitude 
V  

 
300 [m/sec] 

vector velocity angle 
a  

 
180 [o] 

target orientation angle 
ϕ  

 
40 [o] 

initial carrier frequency 

0f  
 

10 [GHz] 

square resolution 

s cr rΔ = Δ  
 

0.5 [m] 

radar bandwidth 
B  

 
300 [MHz] 

number of pulses 
M  

 
64 

frequency step 
fΔ  

 
4.6875 [MHz] 

pulse repetition interval 
T  

 
26.562 [μsec] 

burst duration 

bT  
 

1.699 [msec] 

number of bursts 
N  

 
768 
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Figure 1. Reconstructed ISAR image via FFT based azimuth compression 
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Figure 2. Reconstructed ISAR image via STFT based azimuth compression 
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Figure 3. Reconstructed ISAR image via WVD based azimuth compression 

 

 

 

30 35 40 45 50 55

310

320

330

340

350

360

370

380

390

10

20

30

40

50

60

70

80

90

100

110

 
Figure 4. Reconstructed ISAR image via PWVD based azimuth compression 
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Figure 5. Reconstructed ISAR image via SPWVD based azimuth compression 
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Figure 6. Reconstructed ISAR image via BUD based azimuth compression 

 

5.  CONCLUSIONS 

 

In this paper, we have applied several TF transforms for realistic ISAR imaging. 

Bilinear transforms result in quite clear images, while circumventing the motion 

compensation necessity. For the simulated ISAR scenario, PWVD, SPWVD and BUD 

transformations have outperformed the classical FFT based azimuth compression. 
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