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Abstract 

Stochastic comparison of signals in electromagnetic form or in numerical one is 

addressed. Due to such a comparison, one can identify a stochastic signal with some 

binary unit of information. That is, each bit of information can be transmitted as a 

stochastic signal with or without carrier. At a receiver, the identification of bits (1s or 

0s) is proposed to do by measuring the correlation coefficient between received signal 

and two replicas, one of which corresponds to 1s and the other corresponds to 0s. 

This principle is used in the work for constructing a highly confidential scheme of 

communication, in which the security problem is solved on combined physical and 

mathematical level. Besides, stochastic comparison of electromagnetic signals is 

considered regarding to low-power radars and remote-managing locks. 

 
1. INTRODUCTION 
 

The safe communication problem is centuries old. Nowadays, it exhibits new 

features caused by impersonal electronic communications. For a gateway to the 

literature, one can see [1-3], for example. Because of these new features, the safe 

communication problem can be split into two parts: 

• Type I problem – the safe data distribution; 

• Type II problem – the computer's hard drive disk protection. 

These problems are commonly considering on three levels: 

• Mathematical level – encryption; 

JAE Vol 10 No 1  

mailto:tyzhnenko@ksue.edu.ua


SOME IMPLEMENTATIONS OF STOCHASTIC PRINCIPLES IN ELECTROMAGNETICS 

 
• Software level – that based on the Net and computer properties; 

• Physical level – that based on physical principles. 

To briefly outline the state of the art of safe communication problems, we 

consider some methods, the most interesting, as to our mind, from the wide variety of 

existed and potential ones. 

 The one-time-pad [1, 2, 3] is considering now as the most durable encrypting 

scheme. It solves the Type I problem. The most serious shortcoming is the key 

distribution problem, which causes the same security problem as that for data 

transmission. More than that, the key length must be exactly the same as that of the 

message that is not convenient. This method works on mathematical level. 

 The one-time-pad with quantum encrypting [3] is very interesting potential 

method, which is designing to solve the Type I problem on physical level. When this 

method will be completed, it seems to be a perfect encrypting method, which can 

completely solve the Type I problem.  

 The most widely used in practice encryption method is probably the public-

key scheme [3]. It solves the Type I problem on sufficiently high level with the aid of 

mathematical principles. This method is not perfect, but gives very strong and 

convenient encryption that is sufficient, in main, for the common workers in the 

Internet. 

 One else very interesting encryption scheme based on physical principle, 

named as chaotic communication [4-7], is nowadays developing.  This scheme is 

designing to perfectly solve the Type I problem. It seems to be the case after solving 

the synchronization signal safe transmission problem.  

 To solve both the Type I and Type II problems on software level the firewall 

schemes have been designed [1]. As any software scheme, a firewall does not provide 

perfect security. However, it can solve the safe communication problem on a high 

level sufficient for common using in the Net. 

  Summing, we can note that the safe communication problem is solved to date 

on some practically sufficient level for common utilization in the Net. What is 

remained unsolvable is totally safe communication problem needed for special cases. 

We propose in this work a new scheme that solves this problem on a combined 
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physical and mathematical level. Totally secure communication may be obtained at 

the expense of bit rate decreasing in the data exchange process. In the core of the 

method proposed lies a physical principle according to which a would-be 

eavesdropper or intruder has limited opportunity for bit identification compared to 

that at a receiver. Such identification level for an eavesdropper can be diminished 

intentionally to that one for which decrypting is impossible regardless of a computer 

system used for these purposes.  

 
2. BITS CAMOUFLAGING AND IDENTIFICATION PROBLEMS 
 

In the case of binary encoded information, each bit (1 or 0) is associated in our 

method with some definite information-bearing signal, which consists of the set of 

equidistant in time samples: 

1:{ }i i Nx x ==                     (1) 

If amplitude-modulated sinusoidal signal is used for communication, 

( ) ( ) sinu t x t tω= ,                  (2) 

then the samples, 

( )i ix x t= ,                     (3) 

are local extremum values spaced uniformly in time. 

 Alternatively, if wideband nonsinusoidals are used as information-bearing 

signals, ix  is associated with impulse extremal value at the moment . Also, the set 

 is spaced equidistant in time. 

it

1:{ }i i Nt =

 Thus, each bit of a message is supposed to be transmitted as the N-length 

signal of the type (1). Let all 1s are transmitted with the aid of any one but fixed N-

length realization of pseudorandom distributed signal,  

(1) (1)
1:{ }i i Nx x == ,                   (4) 

and all 0s - with the aid of any other fixed N-length realization from the same 

population, 

(0) (0)
1:{ }i i Nx x == .                   (5) 
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)

As the bit-bearing signals, we use in this work the Gauss normal distributed 

samples with population mean zero and standard deviation one of the type (4), (5). 

These signals are distributed from transmitter to receiver instead of 1s and 0s. While 

transmitting, original signals (4), (5) are altered due to presence of noise and boosting, 

and become as the following: 

(1) (1)(x a x z= +% ,                   (6) 

(0) (0)( )x b x z= +% .                  (7) 

Here,   is any realization of white Gaussian noise. Note that there are 

different realizations of noise z in (6) and (7) due to randomly affected noise 

environment. At the same time, the signals (4) and (5) are the same for all 1s and 0s 

correspondently. The amplitudes a and b may be not equal to one as in (4), (5) due to 

boosting, for instance. At a receiver, the coming signals (6), (7) are compared with 

known replicas, which are exactly the same as the original signals (4), (5). As the 

comparison method, we use the correlation coefficient between two signals, x and y, 

of the same length: 

1:{ }i i Nz z ==

( , ) cov( , ) / ( ) ( )r x y x y std x std y= .              

Such a comparison method is known as a robust and independent from 

multiplication of signals by constant value. The last issue is very important in 

communications because the received and original signals may have different 

amplitudes, a and b in (6), (7) compared to the ones in (4,5).  

 That is, the identification of bits at a receiver is done by measuring of 

correlation coefficients between coming signals and replicas: 

(1) (1)
11 ( ,r r x x= % )

)

)

)

,                   (8) 

(0) (0)
00 ( ,r r x x= % ,                   (9) 

(1) (0)
10 ( ,r r x x= % ,                   (10) 

(0) (1)
01 ( ,r r x x= % .                   (11) 

The measurements are fulfilled at N equidistant snapshots , (3), if we know 

exactly the beginning moment of the message. Otherwise, we have to measure the 

1:{ }i i Nt =
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(1)k

correlation coefficients at N equidistant snapshots as well, but in this case, we have to 

do this 10 times, for example, on the interval between samples. Such a discretization 

is approximately optimal. 

 It is clear that the coefficients  and  are close to one but the remains are 

close to zero. To identify the bit 1, we define the threshold  as follows: 

11r 00r

(1)
11 10( )k r r= + / 2

(0)k

.                  (12) 

Analogously, to identify the bit 0, we define the threshold  as follows: 

(0)
00 01( )k r r= + / 2 .                   

Here, the quantities 11 10 00 01, , ,r r r r  are the corresponding mean values of 

coefficients (8)-(11) and can be estimated with the aid of the Monte Carlo experiment 

for known noise level. Technically, the coefficients (8)-(11) are measured on N-points 

set  for each simulation by snapshot period or by one tenth of this period. If 

the correlation coefficient, , measured in real time exceeds the critical value 

, (12), then the N-length signal {

1:{ }i i Nt =

(1)( , )r x x
(1)k }ix  represents the bit 1 on some confidence level 

that can be estimated theoretically. Analogously, if measured  exceeds the 

critical value , then the N-length signal {

(0)( , )r x x
(0)k }ix  represents the bit 0 on the same, 

practically, confidence level. 

 Worth noting that if we are not warring about security, we can use the above-

depicted scheme for noise-protected communication. Table 1 demonstrate the Type I 

errors, namely the errors of rejecting the true zero hypothesis, : the received 

signal, which has been verified with the aid of replica (4), really represents bit 1, for 

some signal to noise ratio (SNR) and bit-bearing signal lengths. The results are the 

same for both 1s and 0s. 

0H

 
Table 1. Identification errors of 1s or 0s represented by N-length signals in noise environment. 

N SNR 10 5 1 1/5 1/10 
10 Type I error 0 1.5 4710−⋅  1.1 410−⋅  0.31 0.33 
50 Type I error 0 0 7.2 1110−⋅  0.08 0.12 
100 Type I error 0 0 1.1 1810−⋅  6.5  310−⋅ 0.07 
200 Type I error 0 0 2.4 5110−⋅  4.5  410−⋅ 3.5  310−⋅
300 Type I error 0 0 1.2 8110−⋅  5.1  910−⋅ 1.0  310−⋅
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As we can see from this table, to realize the communication in noise environment 

we have to use more samples in bit-bearing signal. Theoretically, this issue can be 

realized by increasing both the modulation frequency and the bit-bearing signal 

length. Worth noting that noise may be caused not only due to fluctuations of medium 

features, but also due to other signals propagated along the same transmission line. 

Because of that, increasing in noise protection gives potentially an opportunity to 

transmit several signals at the same time on the same carrier.  

 The new scheme of secure communication is based on above considerations. 

However, with the goal of increasing security level, we enlarge intentionally the SNR 

to definite level. Then, a cryptanalyst have to compare two signals with noise, 

namely, x z+  and 'x z+ , where z and z' are two different noise realizations. Because 

of that, the maximum correlation coefficient, which a cryptanalyst can find during 

scanning the message, is the following:  

( ,crr r x z x z= + + ')

)z+

.                          

On the other hand, a receiver registers significantly larger correlation coefficient 

(0,1) (0,1) (0,1)( ,recr r x x=                    

because replicas at a receiver do not contain noise. Here, x represents the part of a 

message used by a cryptanalyst for scanning the message with the goal of finding bits. 

If (1)x x= , for example, then cryptanalysts sees (1) (1)( ,crr r x z x z ')= + + , but receiver 

registers , and (1) (1) (1)( ,recr r x x= + )z

|(1)| | |cr recr r<< .                    

This issue is due to presence of artificial noise added to bit-bearing signal 

transmitted. This one permits to identify bits at a receiver on darn small Type I error 

level, which depends on both the SNR and bit-bearing signal length. On the other 

hand, a cryptanalysts can identify bits only on sufficiently high error level. As it will 

be further shown, namely this physical issue prevents a would-be cryptanalysts from 

finding bits with fidelity.  

 However, only this issue cannot prevent completely the bits identification by a 

cryptanalyst. This is because we cannot add so strong noise to bit-bearing signals that 
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the Type I error of bits identification for an eavesdropper will be large enough to 

prevent totally such identification. If we will do that, the bit error rate at a receiver 

will not be sufficiently small.  To improve the situation, we use 2N-length packet to 

transmit each N-length bit-bearing signal. The N, from each 2N randomly distributed 

samples of each packet, consist of bit-bearing samples, 1:{ }i i i Nx z =+ , placed randomly 

among all other samples. Other N samples are white Gaussian noise ones, . 

Full packet, which represents a bit, can be then represented mathematically as  

1:{ }m m Ng =

{ } {i i m}x z g+ U .                    

The distribution of bit-bearing signal samples, 1:{ }i i ix z = N+ , among 2N places in 

the packet is unique and known at transmitter and receiver only. A noise {  is 

much stronger than that of {  in bit-bearing signals. Such camouflaging scheme can 

be so optimized that it can become totally unbreakable regardless of cryptanalysis 

method employed and computer possibilities. To prove this, consider the bit 

identification process at a receiver and compare it to that which can be used by a 

cryptanalyst. At a receiver, the presence of additional noise {  does not change the 

identification process because receiver knows the bit-bearing samples distribution 

inside the packet. An eavesdropper, on the other hand, does not know this one. To 

find bits, he has to investigate the message's structure. However, as is clear from 

above, this structure is statistically uniform. Indeed, both bit-bearing signals (4), (5) 

are some fixed realizations from the same normal population. To prevent repeating of 

these signals in the message, we add to them random realizations of white Gaussian 

noise with signal to noise ratio about one. Hence, the bit-bearing signals (5), (6) have 

the same statistical features and non-repeating structures. This one prevents to find 

bits with the aid of finding the structure repeated. Because of that, the only one 

method for a cryptanalyst to find bits is the same that uses a receiver while registering 

bits, viz., the correlation coefficient measuring. To this end, a bit-finder has to take a 

part of the message as a base M-length signal and scan step by step the rest of the 

message finding the sharp increasing in the correlation coefficient. 

Phenomenologically, this is only one way to find bits. However, this way can produce 

no result if the base signal does not contain some bit-bearing samples. Hence, the 

length of a base signal, M, must be large enough. If a bit-finder wants to have S bit-

bearing samples in the base signal, he should take M at least more than 2S. Further, 

}mg

}iz

}mg
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we take 2M S=  while estimating the complexity of bit-finder's efforts, regarding it 

will be an underestimation. That is, let us consider that from 2S chosen samples, S 

samples belong to the bit-bearing signal, but an analyst does not know which of them 

specifically. In this case, he has to try various combinations from 2S samples by S 

ones. Such combinations will be . With each such a combination in hand, an 

analyst should evaluate the correlation coefficients between the base signal and each 

2S-length part of the message while scanning this one step by step using the chosen 

part as the base. Such steps should be at least 10

2
S
SC

2N⋅ . If such a search will be 

successful, a bit-finder should continue the finding of all other bit-bearing samples. 

Hence, an approximate number of trials will be of about 

 2 220 ( )S S
2 2
N S

N S N SN C Cν −
−= ⋅ ⋅ + .                  

 Inverse number to the 2
S
Nν  estimates approximately a theoretical probability of 

finding the needed distribution of all N bit-bearing samples in the packet. 

Realistically, it may happen only if the correlation coefficient between the base signal 

with the found S bit-bearing samples and corresponding part of the message, let , 

can be significantly distinguished from the background, let . Here, there arises the 

second crucial point, which prevents bits identification with fidelity. Indeed, because 

of huge amount of trails, 

b
Sr

0
Sr

2
S
Nν , in the finding process, the significance level of bits 

identification must be darn near to zero, in order to identify bits with fidelity by an 

analyst. However, due to the added noise, { , in each packet, the Type I error of bit 

identification for a cryptanalyst can be maintained on very high level, namely, about 

of (1-10)%. This issue completely prevents a cryptanalyst from bit identification on 

some acceptable level. There exists, however, another one potential opportunity for a 

cryptanalyst to find bits. He can use the whole 2N-length signal as the base one. Such 

signal contains both all bit-bearing samples with noise, 

}mg

(0,1){ i }x z+ , and strong noise 

ones, . However, due to existence of strong noise samples { , the correlation 

coefficient between the base and message signals is not distinguished on sufficiently 

significant level from background correlation in this case. This point is demonstrated 

further. 

{ }mg }mg

It is very important to note that this scenario does not depend on computer 

possibilities. This issue is, really, a result of following causes: 

JAE Vol 10 No 1  



A.G. Tyzhnenko 

 
• The presence of noise in bit-bearing signals; 

• The random distribution of bit-bearing samples among strong noise samples in 

bit-bearing packets. 

This issue depends only on the length N of bit-bearing signals and signal to noise 

ratio in both the bit-bearing signal and other samples in the packet. Due to the first 

cause, a receiver's correlation coefficients for bits are significantly larger than those 

for a cryptanalyst. Due to the second cause, to find bits a cryptanalyst has to try huge 

number of combination. This one prevents to identify bits with fidelity because the 

identification error (α ) is sufficiently large, and erroneous identification could be 

realized many times in the finding process. 

 Regarding to the above, we have to note that the proposed method has 

supposed unconventional data acquisition scheme in which magnitude of signal 

samples are measured and represented further as numbers in floating point format. 

After that, computer analyzes these numbers. Such a scheme prevents from 

transmitting some illegal bit-represented information inside the computer area. The 

latter one prevents completely a computer from any intruding. Note that this issue is 

due to a new data acquisition scheme, which alters the physical principle of 

communication between two computers. 

 
3. NUMERICAL SIMULATIONS OF THE SAS 
 

 Now, we demonstrate some possibilities and merits of the above considered 

stochastic communication scheme (SAS). At first, we should note that, as known, the 

correlation coefficients are normally distributed. This one permits to estimate with 

fidelity the identification error (the Type I error, α ) at a receiver and for a would-be 

cryptanalyst. Because of principle importance of this issue, this point has been 

justified in our research with the aid of the Kolmogorov-Smirnov criterion.   

 From the bit-rate point of view, the length of bit-bearing packets should be as 

shorter as possible. On the other hand, the sorter is the packet the harder is to 

camouflage bits completely in noise. The compromise can be achieved in each 

specific case separately. Consider the more or less optimal case when the bit-bearing 

signal consists of 50 samples (N = 50). In this case, it is rational to chose the signal to 

noise ratio in bit-bearing signal, SNR = 0.8, and the signal to noise ratio in the rest 
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C

part of the bit-bearing packet, SNRN = 0.2. To calculate statistical features of 

correlation coefficients measured at a receiver and by an eavesdropper, we use the 

Monte Carlo experiment on 1000 trials. 

 Suppose a bit-finder takes a part of the message as a base for scanning the 

message. Let it contains S = 25 samples of the bit-bearing signal. Further, let this part 

be of 2S length that will be really so in average. A bit-finder does not know the 

distribution of S bit-bearing samples in the taken 2S-length part of the message. 

Because of that, he must do  trials in finding theirs distribution choosing each 

time a new combination of samples (S from 2S). A bit-finder has to do such 

procedures step by step at least 20N times while comparing the taken base part with 

all other 2S-length parts of the message – approximately 

2
S
S

220 S
SN C⋅  measurements. 

Each measurement has to be compared with the mean background correlation 

coefficient with the goal of finding outlier, which might represent bit. At a receiver, 

on the other hand, the distribution of bit-bearing samples is known and it takes only a 

few measurements to identify bits. The Monte Carlo simulation of bit identification 

process at a receiver and for a would-be eavesdropper, which has taken an S-length 

part of the message as a replica, is shown in Fig. 1 for S = 25 from 50 samples of a 

bit-bearing packet. Fig. 1 a) shows the correlation coefficient of the replica and a bit-

bearing signal measured at a receiver (upper set) and the background (lower set), 

which consists of the measurements of correlation coefficients of this replica with 

other signals. We can see here a very good separation of bit-identifying correlation 

coefficients (upper values) and the background coefficients (lower values). Fig. 1 b) 

shows the correlation coefficients measured by a bit-finder, which takes a large part 

of the message that contains supposedly all samples of bit-bearing signal. We can see 

here that in this case the measured correlation coefficient (solid black curve) is buried 

in the background noise. 
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Fig. 1. Monte Carlo experiment on 1000 trials for N = 50, SNR = 0.8, SNRN = 0.2, and S = 25. a) The 
correlation coefficient of the replica and a bit-bearing signal measured at a receiver (upper set) and the 
background (lower set), which consists of the measurements of correlation coefficients of this replica 
with other signals. b) The correlation coefficient of a large part of the message taken by a bit-finder as 
a replica and other parts of the message. c) The correlation coefficient of an S-length part of the 
message taken by a bit-finder as a replica and other S-length parts of the message. 
 
Fig. 1 c) shows the most important case when a bit-finder takes smaller part of the 

message, let it be of S-length. With this part in hand, he scans the rest of the message 

with the goal of finding bits. Obviously, he wants to use the least possible length of 

such a part to find bits because the number of trials is proportional to . However, 

as we can see in Fig. 1 c), one cannot take sufficiently small S-length and, at the same 

time, identify bits with fidelity. Figure shows that in any case for  such 

identification is impossible. Really, the correlation coefficient measured by a bit-

finder (solid black curve) is buried partially in noisy background. These heuristic 

results can be justified on formal mathematical level. To this end, we note that 

correlation coefficients are distributed normally. This one can be easily verified using 

the Kolmogorov-Smirnov criterion. This issue permits to calculate the Type I error of 

identification (

2
S
SC

25S =

α ) for both a receiver and a bit-finder. To this end, the mean 

correlation coefficients and theirs standard deviations are calculated by averaging all 

magnitudes exhibited in Fig. 1. With known statistical features in hand, we calculate 
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)

)

)

the threshold magnitudes for receiver and bit-finder as the mean of corresponding bit-

bearing and background correlation coefficients (  for a receiver, and  for a 

bit-finder). Then, an identification error at a receiver: 

(0,1k (0,1)k%

(0,1) (0,1)1 (P r kα = − > ,                 

and for a bit-finder: 

(0,1) (0,1)1 (P r kα = − > %% .                 
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Fig. 2. Monte Carlo experiment on 1000 trials for N = 50, SNR = 0.8, SNRN = 0.2, and S = 50. a) 
The correlation coefficient of the replica and a bit-bearing signal measured at a receiver (upper set) 
and the background (lower set), which consists of the measurements of correlation of this replica 
with other signals. b) The correlation coefficient of a large part of the message taken by a bit-
finder as a replica and other parts of the message. c) The correlation coefficient of an S-length part 
of the message taken by a bit-finder as a replica and other S-length parts of the message. 
 For considered case of N = 50, SNR = 0.8, and SNRN = 0.2, the identification 

error of bits identification at a receiver, (0,1) 12~ 2.5 10α −⋅ . As to a bit-finder, if he 

takes accidentally the whole 2N-length packet as a base signal for scanning, the 

identification will be not possible at all (see Fig. 1 b)). If a bit-finder takes sufficiently 

small 2S-length signal with S = 25 as a base one, he has to try  times 

for finding bits. However, all these trials are of little use because the identification 

17
2 2.5 10S

Sν ≈ ⋅
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error in each trial, . Hence, while finding the needed distribution of bit-

bearing samples, a bit-finder might be in error approximately  

times. It is obvious that in this case he cannot find bits with fidelity. A bit-finder can 

identify bits with minimum error if he takes exactly 2N-length part of the message as 

a base signal and such a part will contain S = N samples of bit-bearing signal. To find 

theirs distribution among 2N samples of the bit-bearing packet, a bit-finder has to try 

 times while finding bits. Bit identification error in each trial for S = N 

= 50, . Then, finding the needed distribution of bit-bearing samples, a bit-

finder might be in error approximately  times. This situation is 

demonstrated in Fig. 2. The identification error at a receiver in this case is naturally 

the same as in Fig. 1. A situation changes in Fig. 2 c) only. As a bit-finder takes larger 

base signal, the obtained correlation coefficient, , in the case of coincidence of bit-

bearing samples in base and test parts, becomes larger. This issue we can see here in 

increasing value of its mean level. However, the magnitudes of correlation 

coefficient, , and background coefficients are notably overlapped. It is sufficient to 

completely prevent bits from finding due to a huge amount of trials needed in finding 

process. 

(0,1) ~ 0.1α%
16

20.1 2.5 10S
Sν⋅ ≈ ⋅

31
2 1.0 10N

Nν ≈ ⋅

(0,1) ~ 0.02α%
29

20.02 2.0 10S
Sν⋅ ≈ ⋅

crr

crr

 As to identification at a receiver, we have completely another situation. First, 

the bits identification error is very small, (0,1) 12~ 10α − , and if the beginning moment 

of the message is known, we try only ones, else we try ten time as a maximum. 

Hence, a receiver's identification error is quite acceptable. Worth noting that one can 

drastically diminish this error at the expense of the bit-bearing signal length 

increasing.  

 As to efficiency of the SCS considered, it is clear that its communication rate 

is lower than that of existed schemes. On the other hand, the SCS can ensure totally 

safe communication inside some special Nets. Such a Net can be easily developed by 

reorganizing existed input/output protocols. Such I/O protocols must ensure on 

physical level the receiving and transmitting the above-considered bit-bearing packets 

instead of traditional bits. Because of an eavesdropper cannot decamouflage bits and 

use them for intrusion into the computer system, the SCS can completely solve both 

the safe data transmission and data storing problems. More than that, the key-

combinations of bit-bearing packets can be loaded into the cipher/decipher code 

JAE Vol 10 No 1  



SOME IMPLEMENTATIONS OF STOCHASTIC PRINCIPLES IN ELECTROMAGNETICS 

 
electronically from a floppy disk immediately before the communication, and then it 

may be deleted. This issue prevents keys from stealing by other persons. In addition, 

the key-combinations can be changed from a transmitter only if a receiver is not 

accessible to human contacts.   

 The effectiveness of the SCS can be drastically improved if we encode letters 

with the aid of above-mentioned set of samples. In this case, we need not use the 

binary encoding of information at all. To this end, we need to have as many latter-

bearing packets as those of different letters and separate signs used. Noting that 

evaluation of correlation coefficients is not computationally expensive, one can use 

30-40 keys in the SCS without problems. Worthwhile to emphasize that the problem 

of letters repeating with definite frequencies, which commonly arises in letters 

encoding process, is not the case for the SCS. On the other hand, the letters repeating 

frequencies can be easily done identical at the expense of the letter-bearing packets 

number increasing. 

 Besides above-mentioned opportunities, the SCS gives rise to completely 

secure private communication by e-mail. To this end, the recipients should have 

simple software developed in the MATLAB, for example. An encrypted in the 

MATLAB message can be represented as a MAT file, which can be sent simply by e-

mail. Such a file consists of a string of numbers in floating point format, which 

represent latter-bearing packets. To prevent the hard drive disk from hacking, one can 

encrypt and decrypt messages using a standalone computer. More than that, such a 

computer might have only the main frame of the encrypting/decrypting code without 

keys. The keys may be loaded from a floppy disk. Using the considered version of the 

SCS, to transmit one encrypted standard page of a text, which contains 4500 signs, 

one has to send by e-mail a MAT file of about 3.5 MB volume.  

Summing, we can note that safe data distribution and store problems can 

potentially be solved with the aid of proposed method due to the following points: 

• An eavesdropper can measure a far lower correlation coefficient than that at a 

receiver due to noise mixed into transmitted bit-bearing signal. Therefore, a bit 

identification error probability at a receiver is darn near to zero, but that at a 

cryptanalyst device is usually more than 0.01, and can easily be done more 
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than 0.1 if it is needed, but at the expense of more samples in bit-bearing 

signals. 

• To identify bits at a receiver, one has to measure correlation coefficient only 

ones, if the beginning of a message is known, or ten times maximum, 

otherwise. At the same time, a cryptanalyst has to try huge amount times in the 

bit-finding process due to unknown distribution of signal samples between all 

other samples of the bit-bearing packet, and this one leads to realization of 

erroneous identifications many times even for arbitrary small probabilities.  

In addition, as it follows from general considerations, to prevent illegal intrusions 

inside a computer system, we have to break any direct bit-based connection between 

computers. Nowadays, all safeguard software systems, such as firewalls, for example, 

and intruder's codes are operated in the same computer area. If this situation will 

continue in future, the war between defenders and intruders will continue forever. The 

method proposed in this work permits to break direct bit-based connection between 

computers. Therefore, neither one can send any illegal information, which can be 

comprehended by computer. To do that, one has to decamouflage and identify bits 

buried in noise. 

These issues ensure theoretically both the safe communications and safe data 

storing on hard drives.   

 
4. LOW-POWER RADARS 
 

Identification and localization of weak radar signals returned from a target and 

buried in noise are steel of great importance [9-11]. To this end, the wavelet analysis 

has been used in [9], the higher-order statistics has been implemented in [10], and the 

hybridization of these two has been developed in [11]. Many other methods are also 

used for this purpose. In this work, we propose a simple statistical method 

identification of weak radar pulses buried in noise. We consider here sufficiently long 

impulses with carrier frequency 0f  (Fig. 3). Here, the samples considered above 

exhibit step-wise behavior. Conditionally, theirs magnitudes can be put to . At a 

receiver, we measure permanently the samples in N equidistant snapshot points 10 

times a half-period. A distance between snapshot points equals to the half of a period 

of the carrier. Theoretically, we need to measure samples of coming signal in 

1±
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extremal points only. However, due to signals are buried in noise, it is possible that 

we do not know exactly where are these extremal points. Because of that, we need to 

measure samples permanently by time interval 00.1/ 2 fΔ = . At that, maximum time 

shifting from extremal points for at least one from 10 measurements is less or equal to 

. The measured N samples provide the evaluation of correlation coefficient between 

incoming signal and a replica. As a replica, we can use a set of ones with 

interchanging signs, which correspond to transmitted signal. Received signal has 

other amplitude, and more, it acquires a random commodity. Signal attenuation that 

diminishes its amplitude is equivalent to multiplication by a number and hence do not 

affect the correlation coefficient. This is not the case for random component. Its 

presence reduces drastically the correlation coefficient, and, in principle, can prevent 

coming signals from identification and localization. 

Δ

 

τ-long impulse

Time

Am
pl

itu
de

Sample=1 

Sample= -1 

t t+τ 

f0 - frequency carrier 

 
                  Fig. 3. Conventional τ - long impulse with 0f - frequency carrier. Here, samples are  
                             step-wise behaved.  

 
Despite the same principle of stochastic comparing of electromagnetic signals as 

we have used for safe communication, its utilization for radars has some peculiarities. 

Consider now these new features. Let { }ix  be a N-length set of signal samples in 
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}extremal points, ( ){ ix Δ  - samples in the same points but shifted by one Δ -period, and 

 - the same length set of white Gaussian noise samples. During permanent 

measuring of correlation coefficients by period 

{ }iz

Δ , we can obtain the following 

correlation coefficients with replica { }ix : 

( , )sr r x x z= + ,                     (13) 

for "signal+noise" samples measured in extremal points, 

( )( , )r r x x zΔ
Δ = + ,                    (14) 

for "signal+noise" samples measured in shifted by one  Δ -period points, 

( , )nr r x z= ,                      

for noise samples only. Note that the other shifted sets of points we do not consider 

because the identification and localization of returned signal should be done by the 

maximal correlation coefficient. The latter will be in between of the two, (13) and 

(14). We demonstrate later these two coefficients do not differ significantly. 

Accounting for normally distributed correlation coefficients, we can estimate signal 

identification error probability (α ) for given signal to noise ratio (SNR). Some of 

such probabilities are given in Table 1 for 40(1, 3, 6) 1N = ⋅ . 

 
                                      Table 1. Identification error probabilities. 

SNR (dB) -18  -21 -24 
E  3.39 2.17 ~1 
EΔ 3.17 2.02 ~1 

 
 41 10N = ⋅

α  244.3 10−⋅ 115.2 10−⋅ 58.4 10−⋅
αΔ  212.6 10−⋅ 91.0 10−⋅ 43.0 10−⋅

SNR (dB) -21 -24 -27 
E  4.81 1.78 1.44 
EΔ 4.53 1.65 1.53 

 
 43 10N = ⋅

α   471.3 10−⋅ 83.4 10−⋅ 67.5 10−⋅
αΔ  422.6 10−⋅ 73.1 10−⋅ 53.6 10−⋅

SNR (dB) -24 -27 -30 
E  4.62 2.97 1.71 
EΔ 4.34 2.77 1.58 

 
 46 10N = ⋅

α  449.3 10−⋅ 181.3 10−⋅ 71.2 10−⋅
αΔ

396.5 10−⋅ 161.8 10−⋅ 78.9 10−⋅
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Besides the identification error probabilities, we give in this table the statistical 

excess magnitudes, namely, for non-shifted measurements: 

( ) 3 ( )
( ) 3 ( )

s s

n n

mean r std rE
mean r std r

−
=

+
,                

and for shifted by one  -period ones: Δ

( ) 3 ( )
( ) 3 ( )n n

mean r std rE
mean r std r

Δ
Δ

−
=

+
Δ                 

The excesses E and  demonstrate the identification error probability less than 

 if these quantities are more than one, which is due to the 

EΔ

3σ67.2 10−⋅ -rule. Note that 

the identification error probabilities, as well as mean and standard deviation values, 

were calculated with the aid of the Monte Carlo experiment on 1000 trials.  

 As we can see in Table 1, the sifting of measuring by period less than Δ  

increases the identification error probability but not significantly. Due to this issue, 

one can use this method in the case when exact location of returned impulse is a 

priory unknown. Also, we can see that if a large number of samples are used, one can 

identify and locate very weak radar pulses. Note that the larger is a number of 

samples, the larger is a pulse length for the same carrier frequency, and the larger is 

the detection range of radar system. Then, if we used 0 3 GHzf = , the pulse length 

would be at least 1.7  for , 5.0  for 41 10N = ⋅ 43 10N = ⋅sμ sμ , and so on. . If we used 

, the pulse length would be at least 0.50 10 GHzf =  for 41 10N = ⋅sμ . That is, if we 

want to identify weaker signals, we have to use more samples. At that, to prevent the 

detection range from increasing, we have to increase the carrier frequency.  

 A brief comparison with the paper [11], in which the state of the art in this 

field is exhibited, shows the proposed method can identify weaker signals with less 

computational efforts. For example, to identify signal of SNR = -18 dB with fidelity, 

in [11] were used 131072 samples, which were treated with the aid of sufficiently 

complex techniques. More to the point, it seems that technique in [11] does not permit 

to diminish SNR beyond –24 dB. Our method permits to do that without additional 

computational burden.   
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5. REMOTE-MANAGING LOCKS 
 

Unbreakable remote-managing locks are of great importance, but not developed to 

date. A wide variety of secret schemes have been developed, but all have some 

shortcomings and are not perfect. The main problem here is the same as that for safe 

computer: all safeguard software systems and intruder's codes are operated in the 

same computer area. The method proposed in this work permits to break direct bit-

based connection between locks and remote keys. This one becomes possible due to 

altering the data acquisition scheme, in which the transmitted samples are measured 

and transformed into numbers in floating point format, and, after this procedure only, 

represented in binary form. Therefore, neither one can distribute any illegal bit-based 

code into a lock's microprocessor area. To do that, one has to decamouflage and 

identify bits buried in noise. The latter one is impossible, as we have demonstrated 

above. 

 Note that implementation of the new data acquisition scheme needs to alter the 

physical principle of communication between locks and keys. 

In spite of the same principle as for safe computer, which can be used for 

developing safe lock, the latter one has its own specific features. As lock opening 

code, an amplitude-modulated signal, which contains 2N samples, is to be used. The 

first N samples represent an electronic key (old e-key), which opens a lock. The 

second one is used for creating a new e-key.  

The old e-key consists of a definite N-length realization of pseudorandom value, 

which is distributed by definite law, and noise with signal to noise ratio, SNR = 1, 

which has the same distribution law.  

 The second N-length signal is a definite N-length realization of pseudorandom 

value as well, quite analogously to the first one. 

The old e-key is altered each time, but after opening the lock only. A new e-key is 

constructed at the lock and key from samples of the second transmitted N-length part 

by definite permutation of its samples and adding noise with SNR = 1. The 

permutation law is unique for each lock and represents the main secret. 
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Fig. 4. Remote managing lock's block-diagram. 
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Summing, the whole cycle of remote managing lock functioning can be depicted 

as follows.  Originally, the old e-key is contained both at the lock and key. To open 

the lock, the key transmits the old e-key with noise as the first N-length signal and a 

new N-length signal (NS) as the second one. Using the old e-key replica, the lock 

identifies the received e-key and opens doors. Note that added noise does not prevent 

e-key from identification as it has been shown in previous sections. After opening 

doors, the lock creates a new e-key using the NS, and transmits the received old e-key 

with noise back to the key as opening conformation. The latter one gives rise to create 

a new e-key at the key and replace the old e-key with it. At that, the cycle is over. All 

these are demonstrated in Fig. 4. 

As to the breakability of such a lock, consider some possible methods: 

• A breaker records two transmitted signals and compares their samples. 

Without noise added to the old e-key, he can recover the permutation scheme 

used for constructing a new e-key from the NS with the aid of simple 

comparing of samples, viz., those of the first N-length signal of the second 

transmission and the second one of the first transmission. Severe noise, with 

SNR = 1, added to e-key prevents completely such opportunity. 

• A breaker tries to find e-key by the Monte Carlo experiment or by consequent 

permutations of the NS N-length samples. This is not the case due to two 

causes. Firstly, the probability to guess the right combination is darn near to 

zero. For 50 samples, for instance, such a probability is of about . 

Secondly, in contradistinction to the stochastic communications, a breaker 

does not have an opportunity for finding the needed combination without 

addressing to the lock. However, the false attempts may be stopped on 2-3 

minutes after each 3 - 4 false trials, for example. 

653.3 10−⋅

Finally, the method proposed prevents a breaker from intruding into the 

microprocessor area. As we have demonstrated in Section 3, a breaker has no 

opportunity to distribute some bit-based information into operational area because it 

will be denied on physical level. At that, we consider this method permits to develop 

absolutely unbreakable remote-managing locks. 
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 Besides security problem, there are some problems regarding usage 

conveniences. One of these is a reserve key. The method permits to solve this 

problem without significant complication of the scheme. To design such a lock, one 

has to use separately two initial e-keys at the lock. If one key is lost, for instance, one 

can use the second key exactly in the same manner as the first one. More than that, 

the lost key can be easily disabled and one can use of this lock further. It is clear that 

the same principle can be used to design a common lock with many users, which can 

be utilized in private dwellings and offices.  

 
6. CONCLUSIONS 
 

Some applications of stochastic principles in comparing of electromagnetic 

signals or series of numbers in floating point format have been considered in the 

paper. One of such applications is safe communication, which is tied with the safe 

computer problem. Both these problems can be solved with the aid of the new method 

of information distribution. For this, a text may be transformed into binary code and 

then each bit transformed into series of random samples. Such series may be electrical 

signals or numbers in floating point format. It is also possible the other scenario: 

letters of a text are transformed directly into the series of random samples. Both the 

two are acceptable in different practical cases.  

As has been shown in the work, there is no opportunity to decamouflage bits or 

letters with the aid of cryptanalysis of intercepted message. More to the point, the 

communication line may be so designed that no one intruder can send any bit-based 

information into the computer area. These merits are possible only at the expense of 

significant diminishing of information exchange rate. However, high noise protected 

features of such communication lines can in part compensate this shortcoming.  

 Two other applications of stochastic comparing of electromagnetic signals 

have been considered in the paper. The first is connected with the weak radar signal 

detection and localization problem. Considering the carrier wave amplitudes of radar 

pulse as samples and measuring its correlation coefficient with replica, we can 

improve significantly the probability of identification and localization of a radar 

impulse buried in noise. This one is possible at the expense of radar detection range 

increasing. To prevent this increasing, one has to increase the carrier wave frequency 

as well. Theoretically, following this step, one can decrease the SNR far lower than –
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30 dB.  The second application is connected with unbreakable remote-managing locks 

for cars, dwellings, and offices. Such problems as lost keys and locks of common use 

can be solved without significant increasing in designing and manufacturing cost. 

Physical principle used in the method prevents any intrusion into the microprocessor's 

area, and that prevents locks from breaking.  
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