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Abstract 

The exact analytical solutions of Maxwell's  equations are 
constructed by means of the method of generalized functions in 
vector form for unbounded uniaxial crystals. The fundamental 
solutions of a system of Maxwell's equations for uniaxial crystals 
are obtained. In particular, the solutions for elementary electric 
dipoles are deduced and the radiation patterns for  Hertzian radiator 
dipole in such media are presented. Validity of the solutions have 
been checked up on balance of energy by   integration of energy 
flow on sphere. 

 
1. Introduction 

Media with anisotropic properties are widely used in modern radio 
electronics, astrophysics  and plasma physics. In recent years artificial anisotropic 
materials with set of chiral properties are especially useful for the design of 
microwave integrated circuits and optical devices [1]. By virtue of tensor character 
of dielectric permeability the analytical solution of the system of Maxwell 
equations becomes complicated. Therefore it is effectively solved by means of 
numerical methods, for example, the finite-element method and the Galerkin 
method are applied in Ref’s [2], [3] and others. However numerical results do not 
provide a precise physical description of electromagnetic processes in anisotropic 
mediums. 

Therefore the rigorous solution of the system of Maxwell equations in an 
anisotropic mediums is of great importance until now [4] - [6]. Analytical solutions 
for unlimited  anisotropic mediums allow to construct the integral equations for the 
solution of the corresponding boundary value problems. 

This paper is organized as follows: in the following section, we present the 
Maxwell equations in an unbounded crystal medium in the frequency domain. In 
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section 3, we use the generalized method of Fourier transformation for solving the 
matrix form of Maxwell's equations [7], [8]. In section 4, we present radiation 
patterns in an unbounded crystal medium. Finally, in Section 5 conclusions and 
future related research are presented. 

 
 
 
  

2. Maxwell’s equations for a uniaxial anisotropic dielectric medium (one-axis 
crystal). 
 

 The electric and magnetic field strengths satisfy the following system of   
Maxwell's equations in frequency domain : 
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where  ω  is the frequency of the electromagnetic (EM) field, E and H are the 
intensities of electric and magnetic field respectively, J is the current density, D is 
the electric displacement vector and B is the magnetic induction. The relations 
between (D,E) and (B,H) for an unbounded uniaxial medium are provided below. 
 
Eq. (1) can be represented in matrix form as : 
 
 JMU = , (2) 
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where M is Maxwell's operator, I is a 3х3 identity matrix and μ represents the 
magnetic permeability. 

The linear relation between the dielectric displacement D and the intensity of 
electric field E in uniaxial anisotropic dielectric mediums is: 
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 ED 0εε
)= , (3) 

 
while the vector of magnetic induction is given by: 
 
 HB 0μμ=   (4) 
 

If we choose a frame in main axes of dielectric tensor, the constitutive 
equation will be written as: 
  
 xx ED 01εε= ,     yy ED 0εε= ,     zz ED 0εε= .  (5) 

The elements of the dielectric permeability tensor ε)  correspond to a one-
axis crystal, where the axis of the crystal is directed along axis x.  

Moreover, it is required to define the intensities of the electromagnetic field 
E ,  in the space of generalized functions, as described in Section 3, below. H

 
3. Problem Solution  
 

A method based on the theory of the generalized functions of the Fourier 
transformation is used for solving the matrix equation (2) [9]:  
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By means of direct Fourier transformation we write down the system of 

equations (2) in matrix form: 
 JUM ~~~ =  (8) 
 

The solution of the problem is reduced to the determination of the system of 
the linear algebraic equations for the Fourier-components of the fields, where U~  is 
defined by means of inverse matrix 1~ −

JMU ~~~ 1−

M : 
 

 = .  (9) 
 

By introducing new functions according to 
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the components of the electromagnetic field after transformations in Fourier space 
can be written as follows: 
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that is   kn  is the propagation constant along the axis of the crystal (x-axis), and  k0 
is the propagation constant along the  y  and  z  axis. 
 
It is possible to represent the electromagnetic fields in vector form :    
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where   i   is the unit vector along  x-axis. 
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Using the property of convolution: 
 
 JMJM *]~~[F 111 −−− =⋅  (16) 

 
and by considering the inverse Fourier transformation 
 ]~[-F 111 −− = MM ,      ]~[F 1 JJ −=   (17) 

 
it is possible to get the solution of the Maxwell equations (2) as: 
 
 JMU *1−=  (18) 
where symbol  “∗ ” denotes the convolution on coordinates x, y, z. 
 
The given solution is written in the form of the sum of two independent solutions: 
 
 21 EEE += ,   21 HHH +=   (19) 
 
The first of them, fields E1  and H1 , is defined by Green’s function  and the 
density of the current  along the axis of the crystal: 
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The second solution, fields E2  and H2 , can be written  by using the component of 
the density of the current ⊥j

~  perpendicular to axis x and Green’s functions 0Ψ , 1Ψ  
and  :  2Ψ
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We note here that the function 0Ψ , Eq. (23), is a fundamental solution of the 
Helmholtz operator for isotropic medium, while  1Ψ  , Eq. (21), corresponds to the 
function  for the space deformed along the axis of the crystal. 0Ψ

Furthermore, the following useful identities are valid : 

 

(

) (

1 1
0 0 0 02 2 2 2

0 00

0 0 0 0

1 1F F exp( ) Ci( (
8 k

               i( ( ))  exp( ) Ci( ( )) i( ( ))

х х
k k

i ik x k r x
k k

i S k r x ik x k R x i S k R x

π
⎡ ⎤⎡ ⎤− Ψ ⋅ = Ψ ⎡⎢ ⎥⎢ ⎥ ⎣− ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎤⎦

−∗ = − ⋅ −
−

+ ⋅ − + − ⋅ + + ⋅ +

%

)

))+

 (25) 

 

 

(

) ( )

1 1
1 1 02 2 2 2

0 00

0 0 0 0

11F F exp( )  Ci(
8 k

i( - )  exp( ) Ci( ) i( )         

n
х х

n n n

i ik x k r k xk k k k

i S k r k x ik x k r k x i S k r k x

π
⎡ ⎤⎡ ⎤Ψ Ψ ⎡⎢ ⎥ ⎣⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎤⎦

− − ′= ∗ = − ⋅− −

′ ′ ′+ ⋅ + − ⋅ + + ⋅ +

%
0- )+

 (26) 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−∗Ψ−−⎥
⎦

⎤
⎢
⎣

⎡
−

−∗Ψ−=Ψ−
22

0

1
1

1
22

0

1
0

1
2

1 1F]~[F1F]~[F]~[F
õõ kkkk

  (27) 

 
Therefore, by also using Eqs. (25), (26) above we find that the function  is given 
by: 

2Ψ
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where integral cosine and integral sine functions are defined by the following 
formulae: 
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and  Euler constant 5772,0=γ . 
 

The  solutions (19), (20) and (22) can be also  represented with the help 
of vector potentials ,  and as follows :     0A 1A 2A
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where  i  is the unit vector along  x-axis. The vector potentials ,  and 

satisfy the following equations: 
0A 1A

2A
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where  Δ   is the Laplacian operator. Finally, the solutions of  Eqs. (30), (31) can 
be written as follows: 
 0 0 0 1 0 1 2 0,      ,     μμ μμ μ⊥ ⊥= − ⋅ ∗Ψ = − ⋅ ∗Ψ = − ∗ΨA A A μj j j   (32) 
 
 
4. Radiation patterns of a Hertzian dipole in uniaxial anisotropic media. 
 

On the basis of the results obtained above, we shall consider the radiation of 
the electric Hertzian dipole in unbounded  one-axis crystals. The point dipole 
moment is given by 
 )ехр(e tip ⋅−= ωnp , (33) 

 
where ep  is a constant,   n is a unit vector parallel to the direction of the dipole 
moment, and the current density  is defined by means of Dirak delta-functions:  
 
 )(rpj δω ⋅−= i ,    ⊥+= ppp 0   (34) 

 
The last formula of current density follows from the expression of charge 

density for the point dipole, as given by : 
 
 )()( rp δρ ∇−=   (35) 

 
and also from the charge conservation law, which can be written as : 
 

 0div =− ωρij . (36) 
 

Furthermore, the expression of the radiated  electromagnetic field for 
electric Hertzian dipole will take the following form, when the direction of the 
dipole moment  is parallel to the axis x of the crystal (Fig.1): 0p
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Also, when the direction of the dipole moment is perpendicular to the axis x, 

we obtain (Fig. 2.): 
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Furthermore, we note here that the numerical calculation of the above 
solution of Maxwell equations satisfies the energy conservation law.  

 
Moreover, we note that the independent solutions (20) and (22) define the 

corresponding polarization of electromagnetic waves. In addition, when 1ε  tends 
to ε , from Eq. (10) it follows that the potential 2Ψ  tends to zero and the well-
known expressions of electromagnetic field follow from formula (20):  
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where the well - known vector potential of  the electromagnetic field for isotropic 
media  is calculated from (32)  as: 
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The obtained generalized solutions of the Maxwell equations are valid for 

any values of 1ε  and ε , as well as for sources of the electromagnetic waves, 
described by discontinuous or singular functions. The radiation pattern of the 
Hertzian dipole in isotropic medium is shown in Fig. 3, which of course  
possesses rotation symmetry around x-axis. 
 
 
 

5. Conclusions  
 

In this paper we have investigated the problem of propagation of electromagnetic 
(EM) waves in unbounded uniaxial anisotropic media. The solution of the 
problem was analyzed in Fourier space and closed form analytical solutions were 
 50



derived in Section 3, above. Then, when the current (source) distribution is 
defined in such a medium, the corresponding radiated electric and magnetic fields 
can be calculated anywhere in space. As a specific application, radiation from a 
Hertzian dipole in such a medium was examined in Section 4, and the 
corresponding radiation patterns were presented (figs. 1,2) and were verified 
through the energy conservation criterion. Finally, the governing equations and 
radiation pattern in the case of an unbounded isotropic medium were obtained as a 
special case. 
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 a) 91 =ε   b) in meridian surface 
 

                           
 c) 251 =ε  d) in meridian surface 

 
Fig. 1.  Radiation patterns of a Hertzian dipole inside an unbounded uniaxial 
anisotropic crystal. The axis of the dipole (x-axis) is parallel to the axis of the 
crystal. 
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 a) 5=R   b) in meridian surface 
 

                           
  c)    d) in meridian surface 10=R
 
Fig. 2.  Radiation patterns of a Hertzian dipole inside an unbounded uniaxial 
anisotropic crystal. Here the axis of dipole (z) is perpendicular to axis of the 
crystal (x-axis). The value 1 7= is chosen here.   ε
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Fig. 3. Radiation pattern of a Hertzian dipole in the limiting case of an isotropic 
medium, .11 =ε  On the left, the three – dimensional radiation pattern is shown, 
while on the right the radiation pattern at the meridian surface is depicted. 
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