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Abstract 

     A novel approach to the theory of a dipole is developed. The kernel of the integral 

equation of the axial current is represented in the analytical form. It consists of two 

parts–regular and singular, the latter being of the logarithmic kind and having an 

infinitely large peak. This makes possible to represent the kernel of the equation in the 

form of the  -similar function, which determined the transformation of this equation into 

the second kind Fredholm equation; the solution of the integral equation is given in the 

analytical form. The comparison of the theoretically obtained values of the axial current 

with the known experimental data, the agreement of which is rather good, is given. 

 

1. INTRODUCTION 

     As is known, the axial current of the hollow active dipole satisfies the following 

integral equation [1, 4] 

            

/2

/2

( ') (| ' |) ' cos sin( | |),

h

h

I z K z z dz A kz B k z


                                     (1)  

where z  and 'z  are the coordinates of two arbitrarily chosen points on the surface of the 

dipole, h  is the length of the dipole: 
2

k



 ;   - the wavelength in vacuum; A  - the 

unknown coefficient; 
( )

0

2 eV
B

i




 ;  ( )eV - the amplitude of the electro-motive-force 

(e.m.f) applied to the center of the dipole, where 0 120   , (| ' |)K z z  is the kernel 

of the integral equation given as follows: 
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 ,                          (2) 

where a  is the radius of the dipole. Assume that the following strong inequalities 

1ka   and a h  in equation (1) are valid; these conditions tempt to represent integral 

(2) in the approximate form [4] 

 2 2

2 2

exp ( ')
(| ' |)

( ')

ik a z z
K z z

a z z

  
 

 
,                                      (3) 

which has been till very popular till present days. 

     Mention that there is sufficient difference between expressions (2) and (3) (see 

below). Here we emphasize the fact that, at the 'z z  point, function  | ' |K z z  has 

infinitely great break  | (0) |K   , while
1

| (0) |K
a

 
   

 
. Since a  is small, function 

 | ' |K z z  has a very large peak, which, at a definite value, puts it close to peak 

properties of function  | ' |K z z . 

     If the kernel of equation (1) is given by (3), this equation holds the name of Hallen. 

     There are a lot of analytical and numerical methods of approximate solution of this 

equation (see, e.g., [2]-[4]). Work [4] also attracts attention due to the presence of 

physical interpretation and numerical results of the solution of Hallen’s equation by the 

analytical-numerical method, these results are in a very good agreement with the 

experimental data [5]. However, the theory developed is true only at 
5

2 4

kh 
 . 

     In scientific literature, integral (2) has not been presented in the analytical form yet. 

Thus, the interrelation between functions (2) and (3) is also unknown yet. 

     Therefore, in order to carry out the correct analysis of integral equation (1), it is 

necessary at first to represent its kernel (2) in the analytical form and, just in this way, to 

determine its main properties, which makes possible to reach definite progress in 

formation of the theory of a dipole. 

2. THE STRUCTURE OF THE KERNEL (2) 

     Consider Green’s function presented within integral (2) in the integral form [6]: 
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Substituting this expression into (2) and using the relation given in [6], we have 
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we get 

     1 2| ' | | ' | | ' |K z z ikK k z z kK z z      ,                          (5) 

where  
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      When deriving this expression, we used the following relations: 
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, 

where  0K t  is the complete ellipse function given by the following polynomial [7]: 

2 2

0 0 1 1 2 1 0 1 1 2 1 1( ) ( ) ( )ln ( )K t a a t a t b b t b t t t       ,                     (8) 

where  

     

1 02 2 2

2
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, 

3

1 2 0 1 20.1119723, 0.0725296, 0.5, 0.1213478, 0.0288729, ( ) 10a a b b b t       . 

Since   is small, expression (7) may be replaced by it’s approximate one: 

0 0 0 1( ) ln 0( )K t a b t    . 

Substituting expression (5) into (1), we pass on to nondimensional quantities: 

2

2 2
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2
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     .                        (9) 

Then, instead of (1) we have: 
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 . 

Further, we shall call (10) a modernized integral equation (MIE) of the dipole. 

     Now we have the possibility to compare functions  | ' |K z z  and  | ' |K z z . 

Expression (5) illustrates the sufficient difference between functions  | ' |K z z  and 

 | ' |K z z  both quantitatively and qualitatively. Mention that function  | ' |K z z  (i.e. 

the real kernel) consists of the regular  1 | ' |K z z  and singular  2 | ' |K z z  parts. 

Equation (7) shows that this singularity is of a clear logarithmic kind, while function 

 | ' |K z z  has no such singularity. The only property approaching  | ' |K z z  to 

 | ' |K z z  in its behavior is that it has a very high peak at the 'z z  point. 

     Before we pass on to construction of the approximate solution of the MIE, let us set 

one substantial remark, which we shall use further. 

     Kernel      1 2| | | | | |T T T            of the integral equation is determined 

within the square ( 1 , 1)    , being zero outside it. Therefore, if we introduce 

variable     , changing within interval  2 2   , function (| |)T   becomes finite, 

i.e., 

1 2

0, | | 2
(| |)

(| |) (| |), | | 2

when
T

T T when




   


 

 
 

Since this function has the infinitely great break at the 0   point, thus, using King’s 

well-known idea [4] that in this case the kernel of equation (1) must be the  -similar 

function, we can write: 
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2(| |) ( )T Q   ,                                                        (13) 

where coefficient Q  is determined from the normalization condition: 
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.              (14)                     

3. SOLUTION OF THE INTEGRAL EQUATION 

     According to (13) equation (10) can be rewritten as follows 

1

* *

1

1

( ) ( ) (| |) cos sin( | |)T d A B          


    ,                  (15) 

where  

* */ , / , 1/A A Q B B Q Q      .                                   (16) 

     Before finding the solution of this equation, let us make some useful remarks: 

introduce auxiliary function 1(| |)T  , where | |    , which varies within closed 

interval 2 2    and is finite in this interval, i.e., 1(| |) 0T    for | | 2   and 

1(| |) 0T    for | | 2  . Besides, due to (11) it is continuous within this interval. 

     Therefore, in view of the Dirichlet well-known theorem [8] it can be expanded into to 

the Fourier series with respect to cosines, i.e. 

1

0

(| |) cos( )s

s

T X s  




 ,                                            (17) 

where sX  are the Fourier coefficients being defined by standard formula 

2

1

2

(| |)cos( )s sX T s d    


  ,                                    (18) 
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For 0s  , from (18) due to (11) we have 

2 2| | | |

0
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Therefore, we received table integrals [7], and finally we have  

2 2 1
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1 1 0

( 1) (2 ) (2 ) ( 1) (2 )
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    .              (19) 

The value of the integral (18), when 1s  , can be calculated due to the well-known 

quadrature [9] (see appendix) 

2 2 2

sin
4 (2)

4
sX f

s



 
 


 .                                            (20) 

Further, let us receive the approximate, but still correct, solution of integral equation (15) 

in the analytical form. Since     , then in view of (17) we have 

 1

0

(| |) cos( )cos( ) sin( )sin( )s

s

T X s s s s         




   , 

which, being substituted into (15), gives the following functional equation 

* *

0

( ) cos( ) cos sin( | |)s s

s

X x s A B       




   ,                     (21) 

where  

1

1

( )cos( )sx s d    


  .                                           (22) 

Since ( )   is an unknown function, then it is clear that ( 0,1,2,...)sx s   represents a 

sequence of unknown values too; they must be determined by the functional equation 

(21). According to the Fourier’s  inverse theorem from (22) we have 

 
0

cos( )s s

s

x s    




 ,                                         (23) 
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Substitution of (23) into the left side of (21) gives the following equation    

                     * *

0

( )cos( ) cos sin( | |)s s s

s

x X s A B      




   ,                        (24) 

which solution is 

* *

, ( 1 / )
1
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s s s

s s

A a B b
x

X
 




 


,                                           (25) 

where  

1 1

2 2 2

1

( 1)
cos( )cos( ) 2 sin

s
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 ,                           (26) 

1

2 2 2

1

1 ( 1) cos
sin( | |)cos( ) 2

s

sb s d
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 .                       (27) 

Further, substitute (25) into (21) and represent the received result in the form 

  * *

0 0( ) cos ( ) sin( | |) ( )A a R B b R               ,            (28) 

where  

0a 0 0

01

a X

X
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0
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,                                         (29) 
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 .                (30) 

After determining the unknown coefficient *A  from the condition ( 1) 0    we receive 

* * 2

1

sin ( ,1)

cos ( ,1)

x F
A B

F

   

   

 
 

 æ-
.                                       (31)  

By substitution of the latter expression into (28) and some algebraic transformations we 

obtain a unique solution of the integral equation (15)  
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( ) sin[ (1 | |)] (cos cos ) (sin | | sin )
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B
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                            2

2 2 2 2[ ( ,1)cos ( , )cos ] [ ( ,1) ( , )]F F F F             æ  

2

1 2 1 2[ ( , ) ( ,1) ( ,1) ( , )]F F F F        ,      (32) 

where  

1( ) cos ( ,1)F       æ .                                (33) 

4. CALCULATION OF FUNCTIONS 1( , )F    AND 2( , )F    

These functions are represented by series (30). According to (20) and (26), when 

1sX , we have approximate equality  

2
2

1 2 2 2 2
1

4 ( 1) cos( )
( , ) sin cos

( )

s

s

xs
F

s a


   








 


 ,                         (34) 

where we use the following notations x   and /a   . The series 

1 2 2 2
1

( 1) cos( )
( , )

( )

s

s

xs
S

s a
 









  

is well-known (see, e.g. [6], p. 731); its sum equals 

4 4 4

1 4 4 2
( , ) sin cos (1 | |)sin cos[ (1 | |]

4 4 2
S

  
        

  
       . 

Therefore, the expression (34) takes the form 

 2 2

1( , ) sin cos 2 [ cos sin (1 | |) sin cos (1 | |)]F                    . 

Analogously, we have 

2( , ) sin2 2 sin2 [sin cos (1 | |) sin( (1 | |))]F                    

                                           
2

1 2

4
sin sin 2 cos sin 2 ( , )S      




  


. 
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5. ANALYSIS OF THE RESULT 

The expression (32) explicitly describes the law of distribution of axial current of a 

dipole in the analytical form. It has a certain physical meaning: the term 

 
*

1( ) sin 1 | |
( )

B
   


    

,                                         (35) 

corresponds to a standing sinusoidal current wave on the surface of a dipole, which exists 

due to the electromotive force in the center of a dipole. The other terms, which are 

proportional to   and 2 ,  describe standing waves of complex structure; they are 

induced by the electromagnetic (interferential) interaction of the upper and lower sides of 

a dipole.  

    The intensity of these waves depends on the numerical value of the parameter   (see 

(16) and (14)), it is clear that for small values of the electrical radius of a dipole  

2 /ka a     the value of the parameter   is small too (in practical cases the value 

of /a   varies within 4 36 10 / 7 10a      ); therefore, for construction of the diagram 

of a dipole radiation we can use the formula (34) instead of (32), but it is useless for 

calculation of the admittance of a dipole ( ) / (0)e

iZ V   since in this case 

*(0) sin / ( )B     , while * ( )

02 /eB i V   , where ( )eV  is the amplitude of 

electromotive force applied at the center of a dipole, 0 120   , and, therefore, the 

admittance does not have a real part, that does not correspond to the reality. Because of 

the smallness of the parameter   it is acceptable to use the following approximate 

relationship instead of (35) 

  
*

( ) sin[ (1 | |)] (cos cos ) (sin | | sin )
( )

B
x          


      


æ .      (36) 

Since 
2

, ( ) ( )z J z
h

     , where z  represents the coordinate of a point of 

observation located on the surface of a dipole and ( )J z  is the axial current, then instead 

of (36) we have  

            
| | 2

( ) sin 2 cos cos
2

h z z h
J z A x


  

   

          
              

        
 

2 | |
sin sin

z h
 

 

    
      

    
æ ,             (37) 
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* ( )

0/ ( ) 2 /eA B iV Q      . 

     By use of this formula, below we give the diagrams of norm current 

( )| ( ) / |e

nor

mA
J J z V

v

 
  

 
  for the cases 0.044  , / 0.5h   ; / 0.75h   ; / 1h   ; 

/ 1.25h   . By dotted curves are denoted the results obtained by experiments [4, 5]. As 

it is clear from the diagrams, the values received by theoretical approach and by 

experiments are in good concordance.   
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Fig. 1 Dependence of the modulus of the axial current on '/z   for different values of /h   

4. CONCLUSION 

     In this paper, the integral equation of a dipole with respect to the axial current is 

solved in approximate, analytical form with accuracy 2( ), ( 1)O   ; from the physical 

point of view the solution represents a superposition of the standing waves along a dipole 

with certain physical meanings.  
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     The law of distribution of the current theoretically obtained by us is in good 

concordance with the results obtained experimentally by others, which confirms the 

validity of the theory we offered. 

APPENDIX.  DERIVATION OF THE FORMULA (20) 

     Taking into account (11) from (20) we receive 
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                                         (I) 

Using notation  
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e e
   

  
 

                                           (II) 

and taking into account that  
1

cos
2

i s i ss e e       , the expression (I) can be rewritten 

as follows 
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In view of (II) the integrand of (IV) can be represented as follows 
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.                           (VI) 

Therefore, (IV) can be rewritten as follows 
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 .                           (VII) 

Since ( )f   is continuous function in the closed segment  2,  2 , then for the integral 

(VII) we can use the Bakhvalov quadrature  [9], according to which we receive 

(1)

1 2( ) 2[ ( ) ( 2) ( ) (2)], ( 2) (2)s s sX D P f D P f f f      , 

where 

1,2 2
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i.e. 
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It is obvious that according to (V) 

(1) sin
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     Therefore, taking into account (III), finally we have 
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Abstract 

On the basis of theoretical analysis of distributions of the conductivity, current 

density and specific power of heat release in the high-frequency induction discharge, 

a law of crowding of maxima of these values has been established.  

 

 

1. INTRODUCTION 

In electro-plasma processes and power plants using high-frequency induction (HFI) 

plasma, the discharge zone is the main process zone. Information on distribution of 

main parameters of the discharge (conductivity, temperature, current density, specific 

power of heat release) and position of maxima of these values gives an opportunity to 

determine optimal conditions for heating the initial material and to manufacture a 

high-quality product.  

The results of experimental works [1]-[3] allowed us to suggest that for each 

section inside a plasmoid of the HFI discharge, the following inequality holds true   

r1<r2<r3,    (1) 

where r1=r(max), r2=r(j max) and r3=r(Wmax) are the radial coordinates corresponding 

to the maxima of physical quantities within the parentheses.  

In these relations  is the conductivity of the discharge, j=E is the eddy current 

density, E is the strength of the azimuth electric field, and 2E
2

1
W   is the power 

input to the discharge per unit volume averaged over a period of the high-frequency 

field. 
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Figure 1 shows dependences of the conductivity of the discharge (r), eddy current 

density j=E, bulk density of the power input to the discharge 2E
2

1
W   in various 

sections of a HFI plasmoid, starting from its central section downstream and 

illustrating the relation (1). The results are obtained on a stationary semi-commercial 

unit HFI-11/60 using a procedure described in Refs. [1-3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Radial distribution of conductivity  - ____, eddy current density  j - - - -   and heat power    

W ---- for  various cross-section of the plasmoid 
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2. THEORETICAL PART 

Inequality (1) can be analytically proven as follows. 

Let us assume that the conductivity of the discharge (r,z), current density 

j(r,z)=E and power of heat release 2E
2

1
W   are the functions, which at each 

fixed section of the discharge reach their maximum values only once on the interval 

Rr 0 . One may prove that in this case the relation      maxmaxmax Wrjrr    

holds true. 

At the point  max1 rr   

 
0

r

r

1r





, 

so 

 
0

r

r





 when 1rr  , 

and 

 
0

r

r





 when 1rr  . 

Then at the point  max2 jrr   we have 

 

 
    0

r

E
rrE

rr

E

222 r

22

rr














 




. 

 

Since    
 

r

rE
,r,rE








  are nonnegative values in the whole volume of a 

discharge, at the point r2 

 

 
 

0
r

E

rE

r

r
22 r2

2

r









 



, 

 



 

18 

 

and this means that the point  max2 jrr   is situated at the descending path of the 

function  r , i.e., on the interval r1 < r < R. Therefore, r2>r1. 

At the point r3=r(Wmax), in turn, we have: 

 

0
r

E
)r(E)r()r(E

r

)E(

r

)E(

333
r

333

rr

2














 




. 

Hence 

0
r

E
)r(

r

)E(

33 r

3

r









 
, 

and, consequently, r3>r2. 

Finally we obtain the relation r1 < r2 < r3, which was to be proven. 

Thus, one may state that inside the HFI discharge the radial coordinates 

corresponding to maximum values of the conductivity, eddy current density and 

power input to the discharge are arranged in increasing order. 

Note that using the method applied one can prove a more general result, 

,......21 ni rrrr              

(2) 

where   
max

1

 i

i Err ; i=1, 2,…, n, and n is integer number that can be made as 

large as is wished. Inequality (1) is particular case of (2). Therefore, there is a set 

coaxial cylindrical surfaces inside an HFI discharge that correspond to the maximus of 

1

 iE .  

Under conditions of local thermodynamic equilibrium, the surface of minimum 

radius  max1  rr  of the set of surfaces (2) corresponds to the maximal temperature 

 1max rTT   inside the plasmoid, because the relationship  T  between the 

temperature and the conductivity of the discharge is unambiguous in this case. 
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3. CALCULATED PROCEDURE 

Let us find a law of crowding of ri points corresponding to maxima of the 1iE 

  

(i=1, 2, 3) values on the r-axis in the direction of the plasmoid periphery, that is first 

three points r1, r2, and r3, most interesting to technical applications. 

Let us examine the function of the form  

1i

i Ey 

 . 

The changes of the E value can be approximated by a straight line 

1iraE 

  , 

while the   value is chosen in the form 
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In this case, from mathematical point of view, the problem of finding maxima of 

1iE 

  values as a function of the radial coordinate r reduces to the problem of finding 

maxima of the following function  
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which can be solved by standard methods of applied analysis.  
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so 
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The solution of this quadratic equation can be written as 

 

 
2

r)1i(2rr
r

22

00

2,1


  

or 

2

r

r
)1i(21rr

r

2

0

00

2,1








 


 . 

On physical grounds the positive sign should be used  
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4. RESULTS AND CONCLUSIONS 

Let us estimate the value of this crowding. The estimation procedure is illustrated 

in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Illustration of a technique of an estimation of value of a crowding 
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Analogous calculations have been performed for other sections.  
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The results of 1calc and 2calc calculations are summarized in Table 1. The 1emp and 

2emp values obtained directly from the plots are also given in the table. 

Table 1. 

Z, cm 0 1 2 3 4 5 6 7 

1emp 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 

1calc 0,21 0,20 0,20 0,19 0,19 0,19 0,19 0,19 

2emp 0,2 0,2 0,2 0,2 0,1 0,1 0,1 0,1 

2calc 0,17 0,17 0,16 0,16 0,16 0,16 0,16 0,16 

 

Apparently, the best agreement of empirical data with the calculated ones is 

observed for the first four plasmoid sections downstream. This fact can be explained 

by more precise approximation of the amplitude of the azimuth electric field in this 

area of a plasma bunch.  

Procedures described in the present paper can be useful for a broad circle of experts 

in different fields of low-temperature induction plasma physics and engineering. 
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Abstract 

Principles of the iterated turbo coding with combination of two or more composite 

codes have been considered in the article. Also fundamental statistical measures, such as a 

posterior probability and likelihood, which use for the description of the transfer reliability 

of the decoder with a soft entry and a soft exit, have been discussed. 

 

1. INTRODUCTION 

 

As a method of a high-performance code's obtaining the concatenated coding 

scheme by means of two or more composite codes combination has been offered by 

Forney [1]. Such codes can adjust errors in much longer codes, and they have structure 

which allows it to carry out decoding of average complexity rather easily. Sequential 

concatenated codes often use in systems with limitation of power, such as space 

sondes. The most widespread scheme contains an external Reed-Solomon code (the 

code is carried out first and removed last) which follows from an internal convolution 

code (it is carried out last and removed first) [2]. A turbo code is upgrade of the 

concatenated coding structure with iterated decoding algorithm of the linked code 

chain. A turbo coding is possible to present as a separate class in the reticulated 

sequences [3]. 

Turbo codes were first suggested in [4] by Berrou, Glavieux, Thitimajshima and 

then published in [5]. In the presented scheme the probability of emersion of errors 

attained 10
-5

 at coding extent equal 1/2 and BPSK modulations in the channel with 

additive white Gaussian noise (AWGN) with 7.00 NEb dB. Codes are formed by 

combination of two or more composite codes which are different interleaving 

alternatives of the same informational sequence. In a case of convolution codes at a 

final stage the decoder gives out rigidly decoded bits or generally - the decoded 

symbols. In the turbo coding the decoding algorithm should not limit itself, 

submitting on decoders the rigid scheme of decisions. For the best use of the 

information received from each decoder, the decoding algorithm should apply, first of 

all, the soft scheme of decoding, instead of the rigid. For two-compound codes 
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systems the turbo decoding principle consists in transmitting the soft decision scheme 

from one decoder exit  to an input of another and repeating this procedure until reliable 

decisions will be received. 

 

2. PROBLEM DEFINITION 

Likelihood functions. The applied systems, including AWGN channels, 

represent the greatest interest in communication. The most widespread form of a 

mathematical substantiation of hypotheses check criterion is the Bayes’s Theorem, 

which expresses a posteriori probability (АРР) solutions through a casual continuous 

variable х as [3] 

Mi
Xp

idpidxp
xidP ,,1,

)(

)()/(
)/( 


          (1) 

and 





M

i

idPidxpxp
1

)()/()( ,            (2) 

where  

P(d = i / x)  is a posteriori probability; 

d = i  presents data d, belonging to the class i of signals from a set M of classes;  

p(x/d = i) is a probability density function of an accepted analogue signal with 

noise x, at  d = i; the parameter p (d = i) is called as a priory probability and means 

probability of emersion of class i of signals. 

Usually x represents observable casual variable or statistics underlying 

criterion, which is gained on an exit of the demodulator or any other processing 

device of signals. Therefore p(x) is probabilities distribution function of the accepted 

signal x, giving test statistics in full space of signals classes. In the equation (1) at 

concrete observation the parameter p(x) is scaling factor because it is gained by 

averaging on all classes of space.  The small letter p is used for a designation of 

probabilities distribution function of a continuous casual variable and big letter P - 

for a probability designation (a priory and a posteriori). A posteriori probability 

definition of the accepted signal from the equation (1) is possible to represent as 

result of experiment. A priory probability P (d = i) usually exists or is sized up before 

experiment. In experiment the equation (1) is used for calculation of a posteriori 
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probability, P (d = i / x). It is possible to consider it as "updating" of the available data 

gained at studying of the accepted signal х. 

Example of the class from two signals. Let binary logical units 1 and 0 are 

represented by electric voltage +1 and -1. The variable d represents bit of the 

transmitted data (level of voltage or a logical unit). Let binary 0 (or electric voltage -

1) will be a zero element at addition. The conditional function of probabilities 

distribution at a signal transmission on channel AWGN, presented as a likelihood 

function, is shown in a Figure 1. 

 

 

 

 

 

 

 

Figure 1 – Likelihood Function 

 

Function p (x / i = +1), shown on the right, represents probabilities distribution 

function of a  casual  variable  х  which  is  transmitted  provided  that d = +1. 

Function, p (x / i = –1), shown at the left, represents the same function provided that d 

= –1. On an axis of abscissa the full range of possible values of test statistics х, 

forming in the receiver, is shown. In Figure 1 one value xk is shown. Here index  

represents the observation which was made at value of time equal k. The 

perpendicular, lowered in a point xk, intercrosses two curves of likelihood functions. 

As a result two values of a likelihood ll = p (xk / dk = +1) and l2 = p (xk / dk = –1) are 

received. According to a likelihood maximum principle, the maximum value chosen 

from two available values ll or l2. For each bit of data during the moment k we see that 

dk = +1 if  xk  gets on the right leg of a line of the decision-making designated 0 , 

otherwise – dk = –1. 

The analogous rule of decision making known as a maximum a posteriori 

probability (MAP), can be presented as a minimum probability of an error, taking 

into consideration a priory probability of data. In general case rule can be expressed 

as follows:  

Likelihood d = -1                                           
p(x/d = -1) 

Likelihood d = +1                                          
p(x/d = +1) 

x 

0
-1 

1l

2l

kx +1 
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hypothesis Н1 is chosen at d = +1, if a posterior probability 

P (d = +1 / x)> P (d = –1 / x),             (3) 

and hypothesis Н2 is chosen, at d = –1, if  

P (d = +1 / x) <P (d = –1 / x).            (4) 

Taking into account the equation (1), a posteriori probability can be substituted in 

the equations (3) and (4) by an equivalent expression. We shall receive the following 

equations: 

hypothesis Н1 is chosen at d = +1, if  

)1()1/()1()1/(  dPdxpdPdxp ,           (5) 

and if  

)1()1/()1()1/(  dPdxpdPdxp ,          (6) 

then hypothesis Н2 is chosen, at d = –1. 

Here the probability distribution function р(х) from of both parts of an 

inequality has been excluded. The equations (5) and (6) define a check of the 

likelihood functions ratio, which can be written in following form: 

hypothesis Н1 is chosen at d = +1, if  

)1(

)1(

)1/(

)1/(










dP

dP

dxp

dxp
,             (7) 

and if  

)1(

)1(

)1/(
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dP

dP

dxp

dxp
,             (8) 

then hypothesis Н2 is chosen, at d = –1. 

These relations can be rewritten into 

1
)1()1/(

)1()1/(






dPdxp

dPdxp
.             (9) 

1
)1()1/(

)1()1/(






dPdxp

dPdxp
.           (10) 

Log-likelihood ratio. Let apply taking the logarithm to a ratio of the likelihood 

functions which obtained in the equations (3) – (10). We will receive a metric 

convenient in many respects which is named as a log-likelihood ratio (LLR). This real 

representation of the soft solution out of decoder is defined by following expression 
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so that 




























)1(

)1(
lg
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)1/(
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dP

dP

dxp

dxp
xdL         (12) 

or 

)()/()/( dLdxLxdL  ,           (13) 

where L (x / d) is LLR of the test statistics х, obtained by measurements х on a 

channel exit at an  interleaving of  conditions that  it  can be  transmitted d = +1 or d = 

–1, a L (d) – a priori LLR of the bit data d.  

For denotations simplification we will rewrite the equation (13) as follows: 

)()()ˆ( dLxLdL c  .           (14) 

here Lc (x) is obtained in a result of the channel measurements made in the receiver.  

The equations (1) – (13) are received only from detector data. Further decoder 

introduction gives standard advantages of a decision scheme. For systematic codes it 

has been shown in [4], that LLR (the soft exit) out of the decoder is equal to the 

following: 

)ˆ()ˆ()ˆ( dLdLdL e .           (15) 

here )ˆ(dL  is data bit's LLR out of the demodulator, i.e. on the decoder's entry, and 

)ˆ(dLe  is named external LLR and represents the external information from the 

decoding process.  

An output sequence of the systematic decoder is formed by data bits or 

parity bits. Taking into account the equation (14), equation (15) can be rewritten into 

)ˆ()()()ˆ( dLdLxLdL ec  .          (16) 

The equation (16) shows that output LLR of the systematic decoder consists of 

three components – channel measurement, a priori knowledge of data and external 

LLR of the decoder. In order to obtain )ˆ(dL , it is necessary to add separate 

contributions LLR, as shown in the equation (16) as all three components are 

statistically independent [4, 6]. The soft exit of decoder )ˆ(dL  is the real number 

providing adoption of the rigid solution and its reliability. Sign of the )ˆ(dL  sets the 

rigid solution: the solution will be equal d = +1 at positive sign )ˆ(dL , and d = –1 at 

the negative sign. Magnitude )ˆ(dL  defines reliability of this solution. Often 
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magnitude )ˆ(dLe  owing to decoding has the same sign, as )()( dLxLc   and 

consequently increases reliability of the )ˆ(dL .  

3. RESULTS 

Principles of iterated (turbo) decoding. In the typical receiver the 

demodulator often develops for solutions obtaining under the soft scheme and then 

the solutions will be transferred to the decoder. In AWGN channel increase of the 

transfer reliability in system, in comparison with a rigid decision scheme, is 

estimated approximately in 2 dB. Such decoder is the decoder with a soft entry and 

a rigid exit because final decoding process should be completed by bits (the rigid 

scheme). In the turbo codes two or several composite codes are used, and for 

iterations implementation the exit of one decoder is jointed to an entry of another, 

but the decoder with a rigid exit is undesirable. It is a consequence of that the rigid 

scheme in the decoder, in comparison with the soft scheme, reduces productivity of 

system. Therefore the decoder with a soft entry and a soft exit  is necessary for 

implementation of the turbo decoding. Such decoder is shown in a Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Decoder with a soft entry and a soft exit  

 

Let the data on such decoder during the first iteration are equiprobable. Then 

for the third member of the equation (12) initial a priori value LLR L (d) will be equal 

0. If to take the log of the ratio of magnitudes ll and l2 for defined values x (see a 

Figure 1) we will obtain channel value LLR Lc (x) which is the second member of the 
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equation (12). Exit of the decoder L(d) in a Figure 2 is formed from LLR of the 

detector )ˆ(dL  and external LLR of the exit )ˆ(dLe  and show the data from decoding 

process. As is shown in a Figure 2 for iterated decoding, external likelihood is 

transferred back to an entry of other composite decoder for upgrade of a priory 

probability of the next iteration information.  

Algebra of log of a likelihood function.  To consider in detail the iterated 

feedback of the soft decoders exits, let's enter an algebra of log of a likelihood 

function [6].  

Theorem: for statistically independent data d the sum of two log-likelihood 

ratios is defined as follows: 

)( 1dL  
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or 

)( 1dL       )(,)(min)(sgn)(sgn)1()( 21212 dLdLdLdLdL  ,    (18) 

where sign «» means the sums modulo 2 of the data, which presented by binary 

digits; 

sign  uses for the sum denotation of logs of a likelihood functions or, the same, the 

mathematical operation presented by the equation (17). The sum of two LLR is 

defined as the sums modulo 2 basic statistically independent data bits.  

The proof of the Theorem. Let's write log-likelihood ratio of  a posterior 

probability of that the data bit is equal +1, to a posterior probability of that it is 

equal-1. As the hyperbolic logarithm basis is equalе then  log-likelihood ratio can 

be written as follows:  
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From here follows, that 
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From the equation (23) follows, that  

)()(

)(

1

1

1
1)1(1)1(

dLdL

dL

ee

e
dPdP





 .       (24) 

Let d1 and d2  are two statistically  independent data bit, which set by voltage 

levels  +1 and -1, corresponding to logic levels 1 and 0. Then addition d1 and d2 

modulo 2 gives –1 if d1 and d2 have equal value, i.e. both are equal +1 or-1 

simultaneously, and +1 if d1 and d2 have different values. Then 
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Taking into account the equations (23) and (24), equation (25) can be rewritten 

into: 
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The equation (18) is an approximating of the equation (17). If one of LLR 

considerably exceeds second then an addition of LLR, defined by the equations (17) 

and (18), yields one very interesting result: 

L(d)    = –L(d)   и   L(d)  0 = 0 

Here because of other sampling of a zero unit the algebra of log of a likelihood 

function differs from that which uses in [6] a little. In our case for a binary set (1, 0) by 

a zero unit it is chosen . 
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4. CONCLUSIONS 

 

In the work the iterated turbo decoding principles are considered. The decision 

rule known as maxima a posterior probability is presented in the form of the 

minimum probability of an error. Also log-likelihood ratio and algebra of the 

probability function’s logarithm are considered. The fundamental statistical measures, 

such as a posterior probability and likelihood, are used for the description of the transfer 

reliability of the decoder with a soft entry and a soft exit. 

 It has been shown, how the transfer reliability increases at turning on of the cascade 

decoder with a soft exit in decoding iterative process. Mathematics of the decoder, which 

based on a principle of the maximum a posteriori, has been discussed. 
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Abstract 

Human to machine interfaces have received more and more attention of 

researchers in recent years. Electrooculography (EOG) is a new technology to sense 

eye signals and can be used as an efficient bio-based human computer interface 

(HCI). The paper is concerned with the design and implementation of an eye 

movement detection system for biomedical research. The described system includes 

several electronic units for acquisition, conditioning, amplification and noise filtering 

of measured voltage signals. Analog to digital conversion of such biopotentials is 

achieved with an Arduino BT board. With its built-in Bluetooth module, it allows for 

wireless communication to personal computers for further signal processing and 

analysis. Experimental results based on real-life EOG signals show that the 

developed system is efficient in terms of accuracy and applicability. The proposed 

solution is a low-cost general purpose EOG-based HCI system that can be used by 

patients with disabilities for communication. 

 

 

1. INTRODUCTION 

Traditional methods of control or communication between humans and machines, 

e.g. mouse and keyboard, require a certain control motor on the part of the users. 

However, many people with severe disabilities only retain their control capacity over 

the oculomotor system. Therefore, the focus on the development of new human 

computer interface (HCI) and communication systems based on the detection of eye 

position has increased in the last years. 

Electrooculography (EOG) is a new technology of recording both horizontal and 

vertical eye movements, by measuring, in real time, very small electrical potentials 

that exist across the cornea and the retina. Such signals are easily detected by placing 

electrodes on user’s forehead around the eyes. Also, the relationship between EOG 

waveforms and eye movements is almost linear. 
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EOG based HCI is becoming the hotspot of bio-based HCI research in recent years, 

since it provides users with a degree of independence in the environment. This method 

was used as the guidance strategy in assistive devices for controlling wheelchairs for 

disabled people [1]. It also represents an efficient computer interface to improve 

communication abilities of those patients [2,3,6]. EOG has also been used as a 

measurement device used in psychophysiological tests as research equipment for 

recording facial expressions during human emotion studies [4]. Furthermore, 

applications can be extended to normal persons as well, in robotics and entertainment. 

As a contribution in this area of biomedical research, we present a general purpose 

EOG based HCI system for online control. The proposed approach includes several 

electronic modules for acquiring and filtering EOG waveforms, generated from 

different eye movements such as looking up/down, right/left and eye blinking. The 

system also provides wireless data transmission to a personal computer (PC) for 

further signal processing and analysis. 

The paper is organized as follows: Section 2 introduces the fundamental principles 

of detecting and acquiring EOG signals. Section 3 describes the design of the 

proposed HCI system in detail. Experimental results of several eye movements and 

blinking are illustrated in Section 4 and the conclusion is given in Section 5. 

 

2. EOG DETECTION PRINCIPLES  

EOG is a method for sensing eye movement and is based on recording the standing 

corneal-retinal potential arising from hyperpolarizations and depolarizations existing 

between the cornea and the retina [1]. Such biopotential, commonly known as an 

electrooculogram, is captured by five surface electrodes placed around the eyes, as 

shown in Figure 1. 

 

 

Figure 1. Electrodes placement [2,5]. 
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Independent measurements can be obtained: two electrodes are placed on the 

temples to detect horizontal movements, while another pair above and below the eye 

is used to detect vertical motion and eye blinking. A reference electrode (ground) is 

placed on the forehead or at the mastoid [6]. 

The corneal-retinal potential is roughly aligned with the optic axis and hence 

rotates with the direction of gaze. When the gaze is shifted, positive or negative pulses 

will be generated when the eyes are rolling, e.g. upward or downward. The amplitude 

of EOG pulses will be increased with the increment of rolling angle, and their width is 

proportional to the duration of the eyeball rolling process. 

EOG values vary from tens to hundreds of V, with a frequency range of about 

DC-100 Hz. The EOG signal changes approximately 20 V for each degree of eye 

movement and is practically linear for gaze angles up to 30º [1]. Therefore, with 

proper calibration, EOG can be used to accurately specify the angular position of the 

eyeball in both vertical and horizontal channels. 

 

3. HCI SYSTEM DESIGN 

The block diagram of the proposed HCI system is shown in Figure 2. The system is 

microcontroller (C) based, battery powered, and is composed of four main parts or 

units: signal pre-amplification, signal filtering, analog to digital conversion (ADC) 

and data transmission to PC. 

 

 

Figure 2. EOG based HCI system block diagram. 

 

Five Ag/AgCl electrodes (two for each channel and one for ground) are used to 

acquire EOG signals. The pre-amplification circuit is intended to amplify the signals 

to appropriate amplitude. The EOG signal filtering unit includes a band-pass analog 
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filter (a combination of high-pass and low-pass filter) to remove the baseline and 

higher frequency interference. The total gain of the system is achieved by 

implementing signal amplification into two stages, each having a fixed gain. Analog 

to digital conversion is then performed, and horizontal and vertical EOG signals are 

finally transmitted to the PC serial port over Bluetooth wireless technology. Free open 

source is used to program the microcontroller and display EOG waveforms in real-

time. 

 

3. 1. Power Supply 

The whole circuit is operated from a single +5 V power supply, by using a 7805 

voltage regulator. The chip ICL7660 was used to perform supply voltage conversion, 

resulting in complementary output voltage –5 V. The circuit has been powered with a 

simple +9 V battery. 

 

3. 2. Pre-amplification 

According to the characteristics of EOG signals, the differential amplifier chip 

INA126P was selected for the acquisition and pre-amplification step, as it can handle 

EOG signals in V range. The INA126P is a precision instrumentation amplifier for 

accurate, low noise differential signal acquisition. The gain of the INA126P is set by 

simply adjusting the value of a single external resistor RG: 

  1 G5 80 kG R    (1) 

A protection system in the form of an RC low-pass filter was also implemented at 

the INA126P’s inputs, in order to remove electro-static discharge and radio frequency 

interference [2]. 

 

3. 3. Reference Electrode 

To improve the INA126P’s common mode rejection ratio (~94 dB), a driven-right 

leg circuit was implemented. Here, a low-noise high-precision OPA2227 dual 

amplifier was used. This circuit reads what it believes to be noise and transfers a 

minute signal back to the body through reference electrode to negate its effect. This 

technique is normally used in medical operations when reading a very small electrical 

potential from the body. 
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3. 4. Signal Filtering 

A critical issue in accurately acquiring and amplifying the EOG potential, is 

overcoming a substantial DC offset generated by the potential difference between the 

reference electrode and each of the active electrodes. For reducing DC offset and 

some other shifting resting potentials, an active high-pass filter is employed with 

cutoff frequency at 0.20 Hz. Once DC component is removed, an OPA227 amplifier 

circuit is designed to complement the entire magnification required. The formula for 

gain depends on two resistors RA and RB: 

  2 1 B AG R R   (2) 

The power line noise and high frequency components of EOG signals are then 

greatly reduced with low-pass filtering. A cutoff at 32 Hz was selected due to 

bandwidth of EOG signals. A single OPA4227 was used to implement both 4
th

 order 

Bessel filters. 

 

3. 5. Data Acquisition 

After all amplifications and filtrations, EOG signals are digitized and transferred to 

PC. Analog to digital conversion with 10 bits of resolution is done using a 

microcontroller board Arduino BT [7]. Since it supports wireless serial 

communication over Bluetooth, software was written in Processing [8] to read 

incoming data from the PC serial port and display the measured signals on the screen 

saved real-time. 

 

4. EXPERIMENTAL RESULTS  

In building the whole circuit, number of components was tried and final component 

selection was based on optimal performance. Therefore, the two-stage signal 

amplification was implemented by using RG = 806 , RA = 994  and RB = 55.8 k. 

From equations 1 and 2, G1 = 104 and G2 = 57. Thus, for each EOG channel, the total 

gain of the system was set to G = G1*G2 = 5928. Some examples of EOG waveforms 

acquired from horizontal and vertical eye movements and eye blinking are shown in 

Figure 3. 

All signals were sampled at 100 Hz (10 ms per sample), which rightly follows the 

Nyquist rate. Experiments with higher sampling frequency (500 Hz and 1 kHz) were 

also performed. In all cases, similar results were obtained.  
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Figure 3. EOG waveforms. From top to bottom: Center–RIGHT, Center–RIGHT–LEFT, 

Center–UP, Center–UP–DOWN and eye blinking. 
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5. CONCLUSION  

A general purpose EOG based HCI system for eye movement detection was 

presented. With a simple design, the system is C-based, battery powered and 

supports wireless data transmission to PC. The results show that the proposed system 

has stable performance and can be used as an effective low-cost solution for online 

control applications. 
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Abstract 
       We report on the design of a refractometric optical sensor based on a quasi-one 

dimensional photonic crystal structure etched in a Si3N4 ridge waveguide grown on top of a 

SiO2 substrate. A photonic crystal based on this kind of structure exhibits a photonic bandgap 

for TE polarized light. The finite difference time domain method (FDTD) is employed in order 

to design the device and investigate its transmission spectra and sensitivity characteristics. 

The shift in the central wavelength of the reflectivity spectrum, due to change in the refractive 

index, when the low-index areas of the photonic crystal are infiltrated with different fluids, is 

found to be linear and hence, suitable for refractrometric sensing applications.  

 

 

1.  INTRODUCTION 

Integrated optical sensors have a high potential to be employed as devices in many 

areas such as, microbiology, environmental safety, defence and aerospace technology. 

Their main advantages are immunity to electromagnetic interference, high 

compactness and robustness and prospects of mass production, and also they have fast 

responsivity and higher sensitivities when compared to Micro-Electro-Mechanical 

Systems (MEMS). In a variety of environmental, biomedical and aerospace 

applications, the measurement of the refractive index is very important since is 

strongly related to structure composition. 

     Photonic crystals (PC) and photonic band gap structures (PBG) [1] are very 

promising building blocks for photonic components of submicron scale which is 

comparable to that of their electronic counterparts. Two-dimensional (2D) PCs 

formed in a dielectric slab waveguide structure have attracted much interest recently 

for realizing novel micro-optoelectronic devices [2-5]. A structure having a periodic 

index modulation in one dimension is known as a one-dimensional photonic crystal 

(1D-PC). If the structure has non-periodic features in the other two dimensions, it is 
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denoted as a quasi-1D PC which is essentially a „Bragg grating‟. A Bragg grating with 

a strong index modulation shows a typical property of PCs: an extended transmission 

stop-band. The width of this stop-band and the steepness of its edges increase with the 

strength of the refractive index modulation. For sensing applications, one has to 

exploit the steep edges of the stop-band in a strong grating [6]. 

     In this paper, motivated by the recent interest in developing quasi-1D PC sensors 

[7,8], we designed and simulated a wide ridge-type channel waveguide of silicon 

nitride with a 1D PC etched into the core layer. The reflectivity spectrum of the 

device has been obtained using the FDTD method. The sensitivity of our device is 

determined by observing the shift in the central wavelength of reflectivity spectrum as 

a function of the change in effective refractive index. 

 

        

Figure1. Schematic 3D drawing of the waveguide with a 1D photonic crystal (a) and Cross-section of 

the quasi one-dimensional photonic crystal sensor with a cuvette placed on top (b). 

 
 

2.  DEVICE DESIGN AND MODELING   

     A schematics of the 3D-structure as well as the cross-section of the device is 

shown in Fig.1. The sensing element is a strong grating in a Si3N4 ridge waveguide 

(ng=2.01) with period Λ=628.2 nm grown on top of a SiO2 substrate (ns=1.46) 

resulting in TE single-mode operation at wavelengths around the modern 

telecommunications wavelength of λ=1.55 μm. The light is guided by the photonic 

crystal structure in the horizontal plane and is confined by the classical ridge 

waveguide in the vertical direction. The sensitivity of the sensor for changes in the 

refractive index can be simulated by infiltrating the grooves of the grating with 

different fluids through the cuvette, as it is shown schematically in Fig. 1(b). 

    The simulation is performed using the Finite Difference Time Domain Method 

(FDTD) with Perfectly Matched Layer (PML) boundary conditions. Since the 

waveguide thickness is very small and there is no structural variation in the y-

direction uniformly over the x-z plane, the structure can be analyzed as a quasi-1D 

a) b) 
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device without losing much generality. FDTD method relies on the discretization of 

Maxwell‟s equations and provides the description of the time evolution of the 

electromagnetic field without any assumption about the number and the 

characteristics of the propagating modes.    

     According to FDTD method on a Yee cell [9], the following simple set of discrete 

field equations is obtained: 

                    ( ) ( ) ( / ) ( / )
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where Δt and Δx are the finite difference cells in the temporal and spatial domain, 

respectively. A 1D-mesh grid with size of Δx=12.035 nm is used in the simulation. 

The time step is based on the Courant‟s condition 2/t x c   , where c is the 

velocity of light in vacuum. The simulation is run for 131.072 (2
17

) time steps to get a 

fine spectral resolution. Vector-based computations are employed instead of element-

based ones using MATLAB technical language in order to reduce the computation 

time considerably. The source employed was a Gaussian modulated continuous wave 

at the central wavelength of 1.55 μm having a broad spectral bandwidth. By Fast-

Fourier-Transforming (FFT) the electric field component, sampled at the output, the 

frequency response of the device under investigation was obtained, with just a single 

simulation run.   

 

Figure 2.  Spectral dependence of the electric field intensity when the grooves are filled with air. 

 The dashed line represents the spectral dependence of the input pulse. 
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In order to get an exact Bragg wavelength from the FDTD simulation, the effective 

index corresponding to TE-mode propagating in the ridge waveguide, is set to a value 

neff=1.61 which is obtained from a Beam Propagation Method (BPM) mode solver 

[10]. For first-order gratings like in Fig. 1(b), the Bragg conditions are expressed as 
 

                                          

, ,

Λ , Λ
4 4

Bragg Bragg

groovetooth

eff tooth eff groove

λ λ

n n
                                  (3)    

  

For the desired Bragg wavelength of 1.55 μm, Λtooth=240.7nm and Λgroove=387.5 nm 

so that a grating period Λ= 628.2 nm, is obtained. The number of periods chosen was 

64, resulting in an overall grating length of 40.2 μm. 

 

 

 

Figure  3. Computed reflectivity spectra when the refractive index of infiltrated grating grooves is  

(a) nc=1.0  (b) nc=1.1, (c) nc=1.3 and (d) nc=1.4 
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3. RESULTS AND DISCUSSION   

Figure 2 shows the spectral intensity of both the input and the transmitted electric 

field for air-filled grooves. The wide stop band in the transmission spectrum would 

allow a high free spectral range, so that the Bragg wavelength can be tuned over a 

wide range of wavelengths. Table I reports the shift of the central wavelength when 

the grating grooves are infiltrated by different fluids with increasing refractive indices.  

Experimentally, a continuous change in refractive index could be realized by mixing 

together two fluids with different indices. As it is seen, the central wavelength i.e. the 

wavelength exactly in the middle of the stop-band defined by the -3 dB point of the 

stop-band edges, is shifted towards higher wavelength values as a consequence of the 

change of the guided mode effective index.  

       Figures 3(a)-3(d) illustrate the effect of fluid refractive index change on the 

reflectivity of the quasi-1D photonic crystal structure. Both edges of the stop-band are 

shifted toward longer wavelengths. A small wavelength shift of such an edge can 

cause a large change in the transmitted power from a source having an appropriate 

wavelength.  

     Grating sensitivity describes the device efficiency when it works as a sensor. In 

this work, we define the sensitivity as 

                                                        centre

c

λ
S

n





                                                         (4) 

and therefore, it can be easily calculated using the data of Table I.  

 

 

Table I: Resonance central wavelength for different refractive indices. 

 

 

 

 

  nc λlow (nm) λhigh (nm)  λcentre (nm)

1.00 1356.7 1857.8 1607.2

1.05 1409.6 1874.8 1642.2

1.10 1466.4 1881.4 1673.9

1.15 1520.2 1896.0 1708.1

1.20 1576.0 1912.0 1744.0

1.25 1631.5 1929.7 1780.6

1.30 1687.3 1944.4 1815.9

1.35 1749.5 1956.4 1852.9

1.40 1806.5 1974.8 1890.7

1.45 1863.2 1993.9 1928.5

1.50 1921.0 2013.5 1967.3
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Fig. 4 presents the central wavelength shift (Δλcentre) as a function of the change in 

fluid refractive index by infiltration of the grating grooves, where the reference 

wavelength is the central wavelength for air-filled grooves. From the graph, it is 

observed a 7 nm shift of the centre wavelength for a change in refractive index 

δnc=0.1 and therefore an average sensitivity S~70 nm per unit refractive index change 

is obtained. Furthermore, the central wavelength shift is linear and hence, the device 

is extremely suitable for sensing applications. 
 

    

Figure 4. Sensitivity characteristic curve showing the simulated changes in central  

wavelength versus changes in refractive index.        

 
 

4.  CONCLUSION 

We have designed and simulated a very compact refractometric sensor based on 

quasi-1D photonic crystal. The FDTD simulation method is employed, in order to 

investigate its transmission spectra and sensitivity characteristics. For the working 

wavelength of ~1.55 μm, the transmission spectrum has been calculated by changing 

the refractive index of different fluids in the grooves of the grating. It is found that, 

increasing the refractive index, the wavelength position of both the lower and upper 

band edge are shifted with the largest shift appeared in the lower wavelength band 

edge. The shift in the central wavelength is found to be approximately linear and 

hence, the device is extremely suitable for sensing applications. The simulated 

structure shows good performance in terms of compactness, sensitivity and free 

spectral range. The performance of the designed device as temperature, pressure or 

strain sensor based on the thermo-elastic and thermo-optic effects [11] will be 

reported in a future paper. 
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