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Abstract 

Convex optimization techniques are widely used in the design and analysis of 

communication systems and signal processing algorithms. In this paper a novel 

recurrent neural network is presented for solving nonlinear strongly convex equality 

constrained optimization problems. The proposed neural network is based on 

recursive quadratic programming for nonlinear optimization, in conjunction with 

homotopy method for solving nonlinear algebraic equations. It constructs generally a 

non-feasible trajectory which satisfies the constraints as  . The boundedness of 

solutions and the global convergence to the optimal point of the problem are proven. 

The correctness and the performance of the proposed neural network are evaluated 

by simulation results on illustrative numerical examples. 

 

 

1. INTRODUCTION 

The use of convex optimization is ubiquitous in communications and signal 

processing. Many problems in these fields can be converted into convex optimization 

problems, which greatly facilitate their analysis and numerical solutions [1]-[2].  

Consider the following equality constrained optimization problem: 

(P)                                                                              (1) 

where , A an matrix with    and b an m vector. We make the 

following assumption, standard for quadratic approximation programming: 

mailto:mbarbar@teipir.gr
mailto:maratos@ece.ntua.gr


“A NONFEASIBLE QUADRATIC APPROXIMATION …“           M. P. BARBAROSOU,  N.G. MARATOS 
 

 

2 

 

Assumption: (a) The function  is strongly convex and twice continuously 

differentiable in  .  (b) The matrix A has full rank. 

Since Tank and Hopfield’s pioneering work [3]-[5] on linear programming neural 

network and analogue circuits, the recurrent neural network approach for solving 

nonlinear programming has received a great of attention in the last two decades, see 

[6]-[13] and the references therein. Different approaches towards designing such 

networks have been developed. Some neural networks employed penalty functions 

[3]–[7], or the logarithmic barrier function [8], while others [9]-[10] make direct use 

of the Lagrangian function. In [11] a neural network for solving linear projection 

equations is described. More recently, neural networks based on gradient projection 

method for nonlinear programming are designed [12]-[13]. 

The proposed neural network does not make use of a penalty function or of a 

projection equation. It solves the problem directly, based on a combination of the 

recursive quadratic programming [14] and the continuous Newton-Raphson method 

[14] for solving the constraint equations.  

The reminder of the paper is organized as follows. The new neural network 

description is presented in Section II. In Section III we prove the global convergence 

to the optimal point of (P). Illustrative examples are given in Section IV. Finally 

Section V concludes the paper. 

 

2. DERIVATION OF THE PROPOSED NEURAL NETWORK 

Let    be the Lagrangian function for problem (P), 

where   is the vector of Lagrangian multipliers.  

Since    is strongly convex, it is well known [14] that if the optimal point of (P)  

 exists, then it is unique. It is also the only point that satisfies the first order 

necessary conditions of optimality (Lagrangian conditions) for (P) [14], i.e.  

   and     for some                (2) 

where  . 

In the first instance, we consider the following system consisting of first order 

partial differential equations and algebraic equations: 

                                       (3.1) 

                                      (3.2) 
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where  the solution of system (3) with initial point 

 and ρ positive constant. Obviously, the norms of  

and the equality constraints are decreasing along the solution of system (3).   

 Differentiation of (3) with respect to t gives: 

 

 

where stand for  and  respectively. Since 

 

 the above system in matrix form is written as: 

 

The system (4) is linear with respect to the vector . We solve the system via 

QR decomposition of the matrix A  [15]. Namely, A  is decomposed as: 

 

where   is an unitary matrix, R is an upper triangular matrix. The matrices 

 and  consist of the first m and the last n-m columns of A , respectively. Under 

the Assumption, the matrix  is invertible. So the system (4) can be solved 

for    yielding: 

(5.1) 

                          (5.2) 

where: ,  , 

 

  

In the following proposition a Lyapunov function for dynamical system (5) is 

given. 
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Proposition: Let the Assumption hold, then the function   be defined 

as:       

 

is decreasing along the solution of (5) and approaches zero as time tends to infinity, 

where   is the Euclidean norm. 

Proof: Finding the directional derivative of   in the direction of the solution 

of (5) we obtain 

 
where   and    denote the gradients with respect  to  and , respectively. 

Since the systems (4) and (5) are equivalent, from (4) we have 

 

which means that   

 

From (6) it follows that the function is decreasing exponentially along the 

solution of (5). This proves the assertions of the proposition.  

The dynamics of the proposed neural network are defined in explicit form, by the 

system of differential equations (5.1). This is an autonomous dynamical system for 

, since the multipliers  on its right hand side has been eliminated. A block 

diagram realization of our neural network is given in Fig.1.  
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Figure 1. Block diagram realization of the proposed neural network. 

 

3. GLOBAL CONVERGENCE  

The solution of a dynamical system is said to be globally convergent to a point  

if for any initial point     This result can be derived [16] 

by the boundedness of the solution , and the existence of a Lyapunov function 

with zero derivative at . 

Theorem: Let the Assumption hold, and let  be the unique minimize of problem 

(P). Then the solution of (5.1) starting from any initial point, is bounded, extends to 

infinite time and converges to  , i.e.  

Proof: The following relationships are used throughout this proof: 

, . 

We shall first show that the solution  of  (5.1) is bounded. It holds that  

  (7) 

Premultiplication (5.1) by and after simple algebra, we get 

 

which is equivalent to . This 

means that  is bounded ,  i.e. 

, for some finite K                                       (8) 

Similarly, premultiplication (5.1) by  , after simple algebra we get   

 
which is equivalent to  ,  where  . This implies 

that  is bounded  ,  i.e. 

, for some finite L                                       (9) 

At this point we use the strongly convexity of the objective function, so it holds that 

[14] 

   such that ,       

Then, by choosing  and  we obtain  

(10) 

From (8) and (9) and by using norm properties we get 
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where . Notice that  is twice differentiable and  

is bounded, hence Weierstrass’ theorem [14] yields that the quantity 

 exists and is finite.  

 Then, by (10) and (11), we get  , which means that  is also 

bounded. From this result and (7) and (8) we deduce that the solution of (5.1) is 

bounded, hence it extends to infinite time [16]. Since  is bounded, it can be 

proved easily from (5.2) that  is also bounded. Let the set D be defined as: 

 

where is the function of Proposition. Then from (6) we have    

 }, and from (2) it yields . 

Since  is bounded and satisfies Proposition, from LaSalle’s Theorem [16] 

it follows that ,  as . This competes the proof. 

 

4. NUMERICAL EXAMPLES 

The performance of our neural network is evaluated by using MATLAB for several 

test problems. In this section two illustrative examples are given.  Example 1 has 

quadratic objective function and satisfies both parts of Assumption. To demonstrate 

the effectiveness of our neural network in more general optimization problems, we 

choose Example 2, whose objective function is a Gaussian as shown in Fig. 2, that is 

pseudoconvex. So,  Example 2 satisfies only the part (b) of Assumption. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The 2D Caussian function of Example 2. 
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 Example 1: Consider the following strongly convex problem [6], with  and  

 : 

 

where     and   . 

This problem has a unique global minimizer at    [0.08824674 0.010828343 

0.27326648  0.50466163  0.38281032  -0.30970696], written to eighth decimal place.  

The trajectories  obtained by the proposed neural network with  , starting 

from five random non-feasible initial points in (-1 1), are shown in Fig.3a. Fig.3b 

shows the convergence of the cost function for each case. At the end of the 

simulation, all trajectories reach   with final error   of order 10
-6

.   
 

        

 

 

 

 

 

 

 

 

 

 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.  Example 1: (a) Trajectories  of the proposed neural network for 5 random initial points 

and (b) the corresponding cost functions, vs time. 
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Example 2: Consider the following pseudoconvex optimization problem [9], with 

 and   : 

 

where     and  . 

This problem has a unique global minimizer at   [0.62745172  0.500937796], 

written to eighth decimal place.  Fig. 4a shows the trajectories of the proposed neural 

network with , starting from fifteen non-feasible initial points, random 

generated from the uniform distribution over (0,1). Fig.4b shows the convergence of 

the cost function for each case. At the end of the simulation, all trajectories reach   

with final error   of order 10
-6

.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a)                                  

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 4. Example 2: (a) Trajectories  of the proposed neural network for 15 random initial points 

and (b) the corresponding cost functions, vs time. 
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5. CONCLUSIONS 

In this paper a recurrent neural network for strongly convex constrained 

optimization problem is presented, based on quadratic approximation method for 

nonlinear programming. If initial point is non-feasible, the proposed neural network 

defines a non-feasible trajectory which satisfies the constraints as . Global 

convergence is proven. Simulation on illustrative numerical examples substantiates 

the effectiveness and the correctness of the proposed neural network. 
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Abstract 

A relationship between generalized hypergeometric functions of a special type and modified 

Bessel functions has been established. Using this relationship the solution of inhomogeneous 

differential equations of Bessel type containing even degrees of an independent variable in the right-

hand part can be expressed in a form convenient for engineering and technical applications. 

 

1.  INTRODUCTION 

Within the frames of a relatively large class of problems [1-5] on restoration of 

the structure of quasi-stationary electromagnetic and temperature fields of a high-

frequency induction discharge from measured values of one of its components, a 

necessity arises to obtain exact analytical solutions of differential equations of the 

form  

n2x)x(Cy
x

)x(y
)x(y 


     (1) 

(here constbC 2   is a nonnegative constant depending on boundary conditions), 

to which Maxwell’s equations for electromagnetic field are reduced in the general 

case. In the case of С=0 (corresponding to one-dimensional statement of the problem 

from physical point of view), a particular solution of Eq. (1), apparently, reduces to a 

parabolic solution  

2n2

2
x

)1n(4

1
)x(y 


 .     (2) 

Let us introduce new variables xbxCx~  , in which the initial equation 

will be rewritten as  

)1n(2

n2

b

x~
)x~(y

x~
)x~(y

)x~(y





 .    (3) 
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It can be easily seen that written in such a form equation (3) is one of the 

variants of inhomogeneous Bessel equations for unknown function )x~( , the 

solution of which is given, for instance, in Ref. [6]. 

.ex~s
b

)1(
)x~( 2

i

0,1n2)1n(2

1n






















    (4) 

where )x(s ,  is a so-called Lommel function usually defined as [7] 
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x
xs  (5), 

where 21F  is a generalized hypergeometric function [8]. So taking account for Eq. 

(6), Eq. (4) can be rewritten as follows  

  
















 

 4

x~
;2n,2n;1Fx~

b)1n(2

1
)x~(

2

21
)1n(2

21n
. (6) 

Solutions in the form of Eqs. (4) and (6) are inconvenient for technical and 

engineering applications since Lommel functions as well as hypergeometric functions, 

are not included into a standard tool kit of special functions used in reference tables 

and routine libraries. However, these expressions can be reduced to the form, which is 

more familiar for experts in the field of mathematical and engineering physics. 

 

2.  METHOD OF SOLUTION  

Let us examine expansion of generalized hypergeometric functions qp F  into 

their Maclaurin series. In particular, for 21 F  function the series reads as  
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For natural values of a  and 2,1b , we obtain  
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The last expression with an accuracy to the factor  
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preceding the sum, coincides with a well-known expansion [9, 10] of a modified 

Bessel function of the zeroth order 0I  into its Maclaurin series and, therefore, 
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(the relationship which first establishes a link between generalized hypergeometric 

functions of the special kind and modified Bessel functions) and 
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Finally we end up with 
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3.  RESULTS AND CONCLUSION 

The obtained relationship is a final formula for unknown function )x(y , 

written in a rather simple and physically transparent form. In particular, the expression 

in square brackets is nothing but a difference of the modified Bessel functions and the 

sums of the first (n+1) terms of the function expansion into its Taylor’s series near the 

point x=0. It is easy to verify that in the limit 0C , Eq. (8) gives us exactly Eq. (2), 

and at 1b  , we obtain an especially simple solution  
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Let us note that the results obtained in this work can be useful both for experts 

in the field of mathematical simulation of various plasma devices based on the 

principle of inductive gas heating and, perhaps, in several adjacent regions of 

engineering and mathematical physics. 
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Abstract 

The integral transform method based on joint application of a fractional gene-

ralization of the Fourier transform and the classical Laplace transform is applied for 

solving Cauchy-type problems for the time-space fractional diffusion-wave equations 

expressed in terms of the Caputo time-fractional derivative and the generalized Weyl 

space-fractional operator. The solutions, representing the probability density 

function, are obtained in integral form where the kernels are Green’s functions 

represented in terms of the Fox H-functions. It is shown that the results derived 

include some well known results as particular cases. 

 

 

1. INTRODUCTION 

Fractional calculus is nowdays a significant topic in mathematical analysis as a 

result of its broad range of applications. Operators for fractional differentiation and 

integration have been used in various fields such as: hydraulics of dams, potential 

fields, diffusion problems and waves in liquids and gases [1]. The use of half-order 

derivatives and integrals leads to a formulation of certain electrochemical problems 

which is more useful than the classical approach in terms of Fick’s law of diffusion 

[2]. The main advantage of the fractional calculus is that the fractional derivatives 

provide an excellent instrument for the description of memory and hereditary 

properties of various materials and processes. In special treaties like [3], [4], [5] and 

[6], the mathematical aspects and applications of the fractional calculus are 

extensively discussed. 

The modeling of diffusion in a specific type of porous medium is one of the most 

significant applications of fractional derivatives [6], [7]. An illustration of this is the 

fractional-order diffusion equation studied by Metzler, Glöckle and Nonnenmacher 

[8], as well as the fractional diffusion equation [9], [10] in the form 

 

mailto:boyadjievl@yahoo.com
mailto:k-b-s@hotmail.com
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introduced by Nigmatullin. The equation (1) is known as the fractional diffusion-wave 

equation [11], [12]. When  the equation becomes the classical diffusion 

equation, and if , it becomes the classical wave equation. The case  

regards the so-called ultraslow diffusion whereas the case  corresponds to 

the intermediate processes [13]. 

A space-time fractional diffusion equation, obtained from the standard diffusion 

equation by replacing the second order space-derivative by a fractional Riesz 

derivative, and the first order time-derivative by a Caputo fractional derivative, has 

been treated by Saichev and Zaslavsky [14], Uchajkin and Zolotarev [15], Gorenflo, 

Iskenderov and Lucko [16], Scalas, Gorenflo and Mainardi [17], Metzler and Klafter 

[18]. The results obtained in [16] are further developed in [19], where the fundamental 

solution of the corresponding Cauchy problem is found by means of joint application 

of Fourier and Laplace transforms. Based on Mellin-Barnes integral representation, 

the fundamental solutions of the problem are expressed in terms of Fox H-functions 

[20]. 

The Fourier-Laplace transform method was developed in a number of papers by 

Saxena et al. [21], [22], [23] and Haubold et al. [24]. The same approach was also 

implemented in [25], where solutions of generalized fractional partial differential 

equations involving the Caputo time-fractional derivative and the Weyl space-

fractional derivative are obtained. 

We employ in this paper a fractional generalization of the Fourier transform that 

acts on a fractional derivative as the conventional Fourier transform does when 

applied on a standard derivative. By means of a joint application of this transform and 

Laplace transform, we study the Cauchy-type problems for the time-space fractional 

diffusion-wave equation expressed in terms of the Caputo time-fractional derivative 

of order  and a generalized Weyl space-fractional operator. We distinguish also the 

cases of ultraslow diffusion  and the intermediate processes  

to obtain the space-time probability density function in terms of the Fox H-functions. 

We show that the results obtained include some of the already known results as 

particular cases. 
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2. PRELIMINARIES 

For a function u of the class S of rapidly decreasing test functions on the real axis 

R, the Fourier transform is defined as 

 

whereas the inverse Fourier transform has the form 

 

Denote by V(R) the set of functions v(x)  S satisfying 

 

Then the Fourier pre-image of the space V(R) 

 

is called the Lizorkin space. As it is stated in [26], the space  is invariant with 

respect to the fractional differentiation and integration operators. 

For a function , we employ the fractional generalization of the Fourier 

transform called Fractional Fourier Transform (FRFT) of order 

 as introduced in [26], 

 

where 

                                         (5) 

If , the kernel (5) of the FRFT (4) reduces to the kernel of (2) and thus 

                            (6) 

where 

                                           (7) 
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Therefore, if 

 

then 

                                (8) 

For our considerations in this paper we adopt the Caputo fractional derivative 

defined as [27] 

 

where n > 0 is integer. 

This definition was introduced by Caputo in the late sixties of the twentieth century 

and utilized by him and Mainardi in the theory of linear viscoelasticity [28]. 

The method we follow makes the rule of the Laplace transform 

 

of Caputo derivative of key importance [6], 

 

For ,  and , we consider the following generalized Weyl 

fractional operator 

                        (12) 

where 

 

are the left-sided and the right-sided Weyl fractional operators of order  + 1 

respectively [5]. 

The choice  = 0 leads to a standard derivative since (12) becomes 
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We take also the advantage of the rule of integration by parts [5], according which 

for functions  and  

 

The one-parameter generalization of the exponential function was introduced by 

Mittag-Leffler [29] as 

 

Its further generalization is credited to Agarval [30] who defined the two parameter 

function of the Mittag-Leffler type in the form 

 

The effect of the application of the Laplace transform (10) on the function (15) is 

provided by the formulas [6, 1.2.2, (1.80)] 

 

By Fox’s H-function one means a generalized hypergeometric function represented 

by the Mellin-Barnes type integral 

 

 

where 
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and the contour of integration L can be defined as in [21]. In terms of the usual 

notations ,   and C being the complex 

numbers field; the orders  with   

 or C (i = 1,2,…, p;  j = 1,2,…, q) such that 

 

The empty product is always interpreted as unity. 

It has been established in [31] that, if , for  

                           (17) 

If we set in (17)  = 1, we see that 

                   (18) 

According to [32], [33], the cosine transform of the H-function is given by 

 
where 

 

 

 

We also refer to the following property [34] 

 

where  > 0. 
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3. FRFT OF GENERALIZED WEYL OPERATOR 

The application of the Fourier transform (2) in solving fractional differential 

equations leads in most of the cases to multi-valued complex factors that the transform 

produces when applied on a fractional derivative [18], [19]. To avoid such 

complications, we employ the FRFT (4) instead, showing that it acts on a fractional 

derivative exactly the same way as (2) does once applied on a standard derivative. To 

describe the effect of the application of the FRFT (4) on the generalized Weyl operator 

(12) we use that if  and  [26], 

 

and 

 

Lemma 3.1: Let  and . Then 

 

Proof: From (22) it follows readily that 

 

  

 

In like manner, by using (21) it is possible to prove also the following auxiliarly 

statement [35]. 

Lemma 3.2: Let  and . Then 

 

Theorem 3.1: If   and   then for any  

 

where 
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Proof: If  and , according to (6), 

 

and the assertion of the theorem agrees with the classical result for the Fourier 

transform (2). 

Consider now the case   and . Since  is closed 

with respect to fractional differentiation, it becomes clear from (4) and (13) that 

 

Let   and . Then (4), (5), (14), Lemma 3.1 and Lemma 

3.2 yield 

 

 

               

               

                 

In the same way we consider the case    and by (4), (5), 

(14), Lemma 3.1 and Lemma 3.2 we get 

 

that accomplishes the proof. 

Remark: If  and  Theorem 3.1 reduces to the result obtained by Lucko 

at al. [26]. 
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4. FRACTIONAL DIFFUSION EQUATION 

Here we apply the FRFT (4) to solve the Cauchy-type problem for the 

nonhomogeneous fractional diffusion equation of the form 

                  (23) 

subject to the initial condition 

                                              (24) 

where  and  is a diffusivity constant. 

Theorem 4.1: Let  and for t > 0,  and 

. Then for any , the Cauchy-type problem (23) – (24) is solvable 

and for    the solution is given by 

 

where 

 

 

Proof: Denote  and  where 

. First consider the case  and  According to (11) and 

Theorem 3.1, the application of the Laplace transform (10) followed by the FRFT (4) 

to the equation (23) and the initial condition (24) leads to the Laplace-FRFT transform 

of the solution 

 

By means of (6), (8) and (16), the equation (25) converts into  
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Then the convolution theorem for (2) implies 

 

 

where 

 

and 

 

The formulas (18) and (20) with   allow us from (26) to obtain 

 

Taking into account (19) and (20), we get 

 

In a like manner, by (17), (19) and (20), we obtain from (27), 
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We accomplish the proof with the remark that the validity of the statement in the 

case  and  was confirmed by the results obtained in [21] and [36]. 

Corollary 4.1 ([35], [37]): If ,  ,  and 

, the solution of the Cauchy-type problem (23) – (24) is given by the 

integral 

 

where 

 

By (17), (19) and the formula [37, p. 611, (5)] 

 

it is possible to see that the solution provided by Theorem 4.1 contains as particular 

case the fundamental solution of the classical diffusion problem. 

Corollary 4.2 [35]: If  ,  ,  and , the 

solution of the Cauchy-type problem (23) – (24) is of the integral form 

 

 

5. FRACTIONAL WAVE EQUATION 

Let consider the Cauchy-type problem for the equation (23), assuming that 

 and , subject to the initial conditions  

                                           (28) 

Theorem 5.1: Let   and for t > 0,  and 

. Then for any , the Cauchy-type problem (23) – (28) is solvable 

and for its solution is given by 
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where 

 

 

 

Proof: As in Theorem 4.1, let us consider first the case  and . 

Because of (11) and Theorem 3.1, the application of the Laplace transform (10) 

followed by the FRFT (4) of order  to the equation (23) and the initial 

conditions (28) leads to the following joint Laplace-FRFT transform of the solution 

 

 

By (6), (8), (16) and the convolution theorem for the Fourier transform (2), the 

equation (29) becomes 
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where 

 

 

 

From Theorem 4.1 we know that 

 

and 

 

The application of (17) and (20) with  implies 

 

Then from (19) and (20) with  it follows that 
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The validity of the theorem for the case  and  is provided by the 

results obtained in [37, 6.7, (b)]. 

Corollary 5.1 ([35], [38]): If ,  ,  and 

, the Cauchy-type problem (23) – (28) has a solution of the form 

 

 

 

* Acknowledgements: This survey is partially supported under Project DID 

02/25/2009 „Integral Transform Methods, Special Functions and Applications“ by the 

National Science Fund – Ministry of Education, Youth and Science, Bulgaria. 

 

REFERENCES 

[1] W. R. Schneider, W. Wyss, Fractional diffusion and wave equation, J. Math. 

Phys. 30, #1, pp. 134-144, 1989. 

[2] J. Crank, The Mathematics of Diffusion (2
nd

 Ed.), Claredon Press, Oxford, 

1979. 

[3] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 

1974. 

[4] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional 

Differential Equations, Willey, New York, 1993. 

[5] S. G. Samko, A. A. Kilbas, O. I. Marichev, The Fractional Integrals and 

Derivatives Theory and Applications, Gordon and Breach, Amsterdam, 1993. 

[6] I. Podlubny, Fractional Differential Equations (An Introduction to Fractional 

Derivatives, Fractional Differential Equations, to Methods of Their Solution and 

some of Their Applications), Academic Press, San Diego, 1999. 

[7] B. Mandelbrot, The Fractal Geometry of Nature, Freemann, San Francisco, 

1982. 

[8] R. Metzler, W. G. Glöckle, T. F. Nonnenmacher, Fractional model equation for 

anomalous diffusion, Physics A211, pp. 13-24, 1994. 



JAE, VOL. 14, NO.2, 2012  JOURNAL OF APPLIED ELECTROMAGNETISM 

 

30 

 

[9] R. R. Nigmatullin, To the theoretical explanation of the “universal response”, 

Physical Status Solidi (B) 123, pp. 739-745, 1984. 

[10] R. R. Nigmatullin, The realization of the generalized transfer equation in a 

medium with fractal geometry, Physica Status Solidi (B) 133, pp. 425-430, 

1986. 

[11] F. Mainardi, On the initial value problem for the fractional diffusion – wave 

equation, In: Rionero, S&Ruggeri, T. (Eds), Waves and Stability in Continuous 

Media, World Scientific, Singapore, pp. 246-251, 1994. 

[12] F. Mainardi, Fractional relaxation-oscilation and fractional diffusion – wave 

phenomena, Chaos, Solitons and Fractals 7, pp. 1461-1477, 1996. 

[13] R. Gorenflo, R. Rutman, On ultraslow and intermediate processes, In: Rusev, P., 

Dimovski, I.&Kiryakova, V. (Eds.) Transform Methods And Special Functions, 

SCT Publishers, Singapore, 1995. 

[14] A. Saichev, G. Zaslavsky, Fractional Kinetic equations: Solutions and 

applications, Chaos 7, pp. 753-764, 1997. 

[15] V. V. Uchajkin, V. M. Zolotorev, Chance and Stability, Stable Distributions and 

Their Applications, VSP, Utrecht, 1999. 

[16] R. Gorenflo, A. Inskenderov, Yu. Lucko, Mapping between solutions of 

fractional diffusion – wave equations, Fract. Calc. Appl. Anal. 3, #1, pp. 75-86, 

2000. 

[17] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time 

finance, Physica A 284, pp. 377-384, 2000. 

[18] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A 

fractional dynamic approach, Phys. Reports 339, pp. 1-77, 2000. 

[19] F. Mainardi, Y. Lucko, G. Pagnini, The fundamental solution of the space-time 

fractional diffusion equation, Fract. Calc. Appl. Anal. 4, #2, pp. 153-192, 2001. 

[20] F. Mainardi, G. Pagnini, R. K. Saxena, Fox H-functions in fractional diffusion, 

J. of Comput. and Appl. Mathematics 178, pp. 321-331, 2005. 

[21] R. K. Saxena, A. M. Mathai, H. J. Haubold, Fractional reaction-diffusion 

equations, Astrophys. Space Sci. 303, pp. 289-296, 2006. 

[22] R. K. Saxena, A. M. Mathai, H. J. Haubold, Reaction-diffusion systems and 

nonlinear waves, Astrophys. Space Sci. 305, pp. 297-303, 2006. 

[23] R. K. Saxena, A. M. Mathai, H. J. Haubols, Solution of generalized fractional 

reaction-diffusion equations, Astrophys. Space Sci. 305, pp. 305-313, 2006. 



“FRACTIONAL FOURIER TRANSFORM …“           L. BOYADJIEV, B. AL-SAQABI 

 

31 

 

[24] H. J. Haubold, A. M. Mathai, R. K. Saxena, Solution of reaction-diffusion 

equations in terms of the H-functions, Bull. Astron. Soc. India 35, pp. 681-689, 

2007. 

[25] S. D. Purohit, S. L. Kalla, On fractional partial differential equations related to 

quantum mechanics, J. Phys. A Math. Theor. 44, 2011 (to appear).  

[26] Y. F. Lucko, H. Martinez, J. J. Trujillo, Fractional Fourier transform and some 

of its applications, Fract. Calc. Appl. Anal. 11, #4, pp. 1-14, 2008. 

[27] M. Caputo, Linear models of dissipation hose Q is almost frequency 

independent, II Geophysical J. of the Royal Astronomical Soc. 13, pp. 529-539, 

1967. 

[28] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity , Imperial 

College Press, 2010. 

[29] G. M. Mittag-Leffler, Sur’la nouvelle function ),(xE  C. R. Acad. Sci. Paris 

137, pp. 554-558, 1903. 

[30] R. P. Agarval, A propos d’une note de M. Pierre Humbert, C. R. Seances Acad. 

Sci. 236, #21, pp. 2031-2032, 1953. 

[31] R. K. Saxena, A. M. Mathai, H. J. Haubold, Unified fractional kinetic equation 

and a fractional diffusion equation, Astrophys. Space Sci. 290, pp. 299-310, 

2004. 

[32] R. K. Saxena, A. M. Mathai, H. J. Haubold, On generalized fractional kinetic 

equations, Physica A 344, pp. 657-664, 2004. 

[33] A. P. Prudnikov, Y. A. Bryckov, O. I. Marichev, Integrals and series, vol. 3, 

More Special Functions, Gordon and Breach, New York, 1989. 

[34] A. M. Mathai, R. K. Saxena, The H-function with applications in statistics and 

other disciplines, Halsted Press [John Wiley and Sons], New York, London, 

Sydney, 1978. 

[35] L. Boyadjiev, B. Al-Saqabi, Solutions of fractional diffusion-wave equations in 

terms of H-functions, Mathematica Balcanica (New Series), vol. 26, 2012 (to 

appear). 

[36] L. Debnath, Fractional integral and fractional differential equations in fluid 

mechanics, Fract. Calc. Appl. Anal. 6, pp. 119-155, 2003. 

[37] L. Debnath, D. Bhatta, Integral Transforms and Their Applications (2
nd

 Ed.), 

Chapmann&Hall/CRC, 2007. 



JAE, VOL. 14, NO.2, 2012  JOURNAL OF APPLIED ELECTROMAGNETISM 

 

32 

 

[38] L. Debnath, Nonlinear Partial Differential Equations for Scientist and Engineers 

(Second Edtition), Birkhäuser Verlag, Boston, 2005. 

 



JAE, VOL. 14, NO.2, 2012  JOURNAL OF APPLIED ELECTROMAGNETISM 

 33 

PHASE CODING IN LOW INTENSITY MAGNETIC FIELDS FOR 

MRI APPLICATIONS 

 

K.V. Kotetishvili*, K.G. Kapanadzei**, G.G. Chikhladze**, 

Georgian Technical University, 0175, 77, M. Kostava st., Tbilisi, Georgia, 

K.V. Kotetishvili*, Professor, GTU, Faculty of Informatics & Control Systems, 

0177, 20, Chikovani st., Tbilisi, Georgia, ketinooo@hotmail.com, 

K.G. Kapanadze**, Post-graduate, GTU, Faculty of Informatics & Control Systems, 

0160, 34, 4, 20, Dadiani st., Tbilisi, Georgia, 

G.G. Chikhladze**, Professor, GTU, Faculty of Informatics & Control Systems, 

0173, 23, 4, A. Kazbegi st., Tbilisi, Georgia. 

Abstract 
The phase coding procedure in low intensity magnetic fields at the process of MRI 

is considered. Some arising problems are revealed related to the presence of 

attendant gradients in inhomogeneous magnetic fields in longitudinal direction. It is 

stated that the coding is obligatory for reception of the perfect imaging and maximal 

decrement of arising distortions. 

 

1. INTRODUCTION 

As it is known, in Magnetic-Resonance Imaging low magnetic fields possess 

some advantages, but at the same time some problems arise while utilization of these 

fields. Mainly they appear due to presence of attendant gradients in inhomogeneous 

magnetic fields in the direction of zB  transverse component of the basic 0B


 field. 

These transverse components of the attendant field are created by the same gradient 

coils, which generate zB  gradients of the needed imaging. At MRI the great attention 

is paid to selection of the gradient of axial slice as well, as to frequency and phase 

coding [1-3]. Coding is necessary for reception of the total pattern of investigation 

object within FOV and for minimization of image distortions, as to the attendant 

magnetic field creates the definite distortions even at the ordinary magnetic field of 

1.5 Tesla. Earlier investigations revealed the results of slice selection of ellipsoid form 

rather than of plane-parallel slice. It had been revealed as well that presence of 

longitudinal fields arrive us to inhomogeneous arrangement of magnetization in the 

selected fragment. 

In presented paper the phase coding is considered, while the gradients are 

presented in the form of excited impulses. 

mailto:ketinooo@hotmail.com
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2. PHASE CODING AND GRADIENTS 

2. 1. Phase coding procedure  

 Consider the phase coding by the coding gradient, which is used along y 

(ordinate) axis: 

                              yGb yz  .                           (1) 

The coding gradient is accompanied by the attendant field  

                              zGb yy  .                           (2) 

 The resultant B


 magnetic field is located now on yz plane composing   angle 

with z axis 

                          
yGB

zG

y

y






0

tan .                        (3) 

 Assume as well that after excitement of radio-frequency RF  impulses the spin 

magnetization vector M


 will be oriented on xy  plane composing   angle with x  

(abscissa) axis (in Cartesian reference frame), i.e. 

   0,sin,cos0  MM 


. 

 Due to influence of the magnetic field M


 magnetization vector starts 

precession around B


 vector with Larmor frequency 

                       2
1

22
0 zGyGBB yy  


,               (4) 

in adiabatic regime this arrives us to the phase accumulation during   period of the 

phase coding 

                              




0

dtt ,                         (5) 

where the frequency (4) is given as depending on gradient time. 

 After the phase coding M


 magnetization vector returns on xy  plane and is 

presented as follows: 

                   00 exp,,,,,, iMzyiMzyMzyM yxt  .       (6) 

 When the period of free acceleration of the device is short, while the 

investigated object is still in the adiabatic regime, the phase accumulation (5) 

depending on   phase coding gradient duration transform into the following: 
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2

1
22

0 zGyGB yy .                (7) 

In this case the dependence of the phase on the position of the spin is not 

linear any more. 

 If the attendant fields are ignored M


 magnetization vector is given by the 

standard formula: 

         ,,,,,,, zyiMzyMyMzyM yxtt  

                      yGiBiM yexpexp 000 .             (8) 

 As a rule in such case surfaces of the constant phase correspond to 0yy   

planes and 0y  is determined from the equation 

                             0yGy .                         (9) 

 Though, taking into account the attendant fields, these selected planes 

transform into cylinders just in the same way as it is described in the works [2,3] 

(slice selection and frequency coding). Respectively, at the phase coding the gradients 

are located along z axis and investigated planes will transform into ellipsoids. 

 The situation becomes complicated at the regime of fast switching. Indeed, 

during   period of gradient signal (impulse) spins initially are located on xy  plane 

and rotate with   angle around B


 vector. It is easily proved that due to this 

precession the components of spin magnetization vector are given as follows: [4]: 

      

   
    

    













.sincoscos1sincossin,,

,sincoscossincoscossin,,

,sincossincoscos,,

0

22
0

0







MzyM

MzyM

MzyM

z

y

x

    (10) 

 As it is seen, 1) z component of space heterogeneity of M


 appears in (10) 

formula; 2) the absolute value of the projection of M


 on xy  plane also depends on 

location; 3) the phase formally is defined as 














 

x

y

M

M
1tan  

and is not located on 0yy   plane, though gives more complicated curvilinear 

surface, particularly, in the private case, when 00  , this surface is given by the 

following equation: 

                          tan,tan,cos  zyzy ,                    (11) 
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where the dependence of   angle and   Larmor frequency on y and z is given by the 

expressions (1) and (2). Evidently, the surfaces of constant   frequency present the 

cylinders with joint axis 













 0,, 0

yG

B
xr


, 

directed parallel to x abscissa axis, while the surfaces of constant   angle are the 

planes located at the same  













 0,, 0

yG

B
xr


 

axis. 

 In spite of it, the geometry of the planes of the constant   phase even in the 

simplest cases, when 00   (see (11)), is rather complicated and, thus, coded spins 

of the phase-coding gradients are hardly distinguished from the transverse phases. 

 

2. 2. Gradients as excited impulses  

 One more special singularity of MRI in case of low magnetic fields is creation 

of impulse gradients at the fast switching regime, considered as “excitement of 

impulses”. Indeed, existence of attendant gradients arrive us to the effective magnetic 

field, which is shifted relative to the initial 0B


 direction due to the presence of 

attendant fields, this effect causes the precession of the magnetization vector in the 

shifted field [5]. 

 As an example, consider the magnetization vector, initially oriented along z 

axis, suffering inspiration and being used as the gradient impulse yGb yz   during 

  time. The corresponding attendant field is given as zGb yy  . 

 During   time the magnetization vector rotates with   frequency with new 

space orientation 

                      

 
   

   













,coscossin

,cos1cossin

,sinsin

2
0

0

0







MM

MM

MM

z

y

x

              (12) 

where 
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yGB

zG

y

y






0

tan . 

 Thereby, even without gradient the radio-impulse creates heterogeneous 

magnetization as along the longitudinal zM  direction, as along yM  and xM  

directions. After switching the gradient into zero regime this heterogeneous 

magnetization vector stats the precession around 0B


 and emits the magnetic-

resonance signal. Evidently, the shift angle is located in the heterogeneous space, 

while it reaches the maximal value at the edges of FOV and is proportional to   

parameter, called the distortion coefficient 
0B

LGx   [2]. 

 

3. CONCLUSION 

 Once again must be underlined the problems arising at MRI in low magnetic 

fields. All these problems are related to the transverse components of the attendant 

magnetic field, appearing at the space coding during the application of gradients 

visualization methods in MRI. These attendant transverse components are created by 

the gradient coils, creating the image patterns as well. Longitudinal and transverse 

attendant components have the same amplitudes. Existence of the attendant gradients 

arrive us to the concept of distortion of pattern of the real object. Standard actions 

listed below: slice selection, frequency and phase coding, provide the cylinder and 

ellipsoid surfaces, rather than plane. The magnetization is heterogeneously distributed 

over these surfaces. 

 In low magnetic fields at MRI the method of overcoming the arising problems 

consists in utilization image gradients with small amplitudes. In this case the image 

distortion coefficient 
cR

L , 
G

B
Rc

0  may be rather small, that should support 

the exactness of geometric parameters of the image. 

 When the fast switching of gradients takes place, the gradients of given image 

play the role of just the same exciters that are radio-frequency RF impulses in shifted 

magnetic field. The final result is that the magnetization vector shifts from the 

longitudinal direction relative to the transverse plane during the gradient period 

(formula (12)). This effect becomes entirely stronger near the edges (boundaries) of 

the pattern of the object. At the end of gradient period the total transverse 
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magnetization vector (induced by gradients rather than by RF impulses) emits adverse 

(parasite) signal in the coil and this may sufficiently reform the available signal 

incoming from investigated sector.  
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Abstract 

Application of the Method of Auxiliary Sources (MAS) for solution diffraction problem 

of the plane electromagnetic waves on 2-dimensional periodic infinite lattice is 

considered. The lattice element represents a conductor wire with electrically small radius 

and resonant properties. At certain resonant frequencies such lattice has interesting 

properties, similar to complex materials layer as well as frequency dependent surface. 

Motivation is to improve the MAS for investigation such infinite lattices, by construction 

the auxiliary source’s field for periodic structure (periodic Green's function). Possible 

application of such structures to the practice is studied. For this reason program package 

has been created to use computer simulations and numerical experiments to get optimal 

parameters of the infinite lattices with desired properties for the practice.  

 

1. INTRODUCTION 

Investigation of the infinite periodical lattice’s electrodynamic properties is the topical 

problem, because these kinds of structures at some resonant frequencies have properties, 

similar to the layer of complex material [1 - 3]. In nature it is seldom to find materials 

with desired complex materials properties. To create artificial complex materials with 

desired properties and in right range of the frequency is beneficial. From the application 

point of view the main goal of the paper is to create the program package to investigate 
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desired properties of artificial complex materials by means of computer simulation and 

numerical experiments for the purpose of further its fabrication. 

In practice we deal with the lattices of finite length, but if the number of elements of 

this lattice is big, simulation of this structure needs big computer resources. The easy way 

to solve this problem is to consider the diffraction on the infinite periodic structure. 

Mathematically it is easy to solve and at the same time, the near field (as well as the field 

on the distance less then wavelength), practically do not differs with the case of finite 

lattice. 

Investigation of the periodic structure’s electromagnetic properties intensively began 

in the middle of the XX century. In 1954 J. Wait considered the lattice consisted of 

infinite length wires with finite conductivity [4]. In former USSR using the method of 

factorization L. Vainshtein was considered the lattice of infinite length strips which width 

was two times less than the period [5]. By V. Shestopalov [6] with his group using the 

Riemann-Hilbert’s method there were solved different types of elements periodical 

structures for interested applied problems [7]. Conventional method of the auxiliary 

sources (MAS) [8] was used to study different type of the periodical structures [9-11]. In 

the works mentioned above there were considered the lattices which were periodical only 

in one direction. As opposed to the last papers, this article introduces an elementary 

auxiliary source of the infinite periodic structure as 3-D Green function. This approach 

makes easy to study lattice with complicate elements, therefore, it is the next step to 

improve the application of the MAS. 

The MAS has been successfully used to design and analyze finite 2D and 3D metal-

dielectric structures [9-12]. In order to apply successfully the MAS, it is important to 

properly select the type of the auxiliary sources and their fields. In case of the infinite 

periodic lattice it is important to introduce the periodic Green’s functions as auxiliary 

source’s field, which could represent the scattered field of the periodic structure. The 

main ideas of this problem were presented and discussed at the conference [13]. In 

theoretical part, solution of the stated problem is presented in general case, considering 

complicate shape of the lattice element. For validation results of calculations convergence 

and satisfaction of the boundary conditions we are looking for best algorithm of solution. 
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Farther, numerical study of electrodynamic properties of several lattice are studied on the 

resonant frequencies, to get total reflecting or transparent system as frequency dependent 

surface. 

 

2. THEORETICAL PART 

Problem statement. In the free space, consider 2D infinite lattice, with 
1d  and 

2d  

periods along the OX  and OY  axes (figure 1a). The element of this lattice represents 

conductor wire with electrically small 0dr  radius and resonant properties at some 

frequencies. The resonant element of the lattice, can be dipole, or open rings and so one 

(figure 1b). 

 

 

 

 

 

 

 

 

 

The geometry of the lattice elements is given in parametric form: 

      1 2, ,pq pqr r x pd y qd z     ,   (1) 

1 2    , p   , q   . 

This lattice is irradiated by the plane electromagnetic wave, harmonic in time: 

 0 expincE E ik r  ,  0 expincH H ik r  ,   (2) 

0 0 0 0H E  ,  , ,x y zk k k k k , 

time dependence is  exp i t . Here  , ,r r x y z  - is the radius-vector of the 

observation point, k  - is the wave vector. We are looking for the scattered E , H  field in 

immediate proximity of the lattice in 0z   and 0z   semispaces and also the scattered 

Figure 1. a) The lattice geometry, b) examples of the lattice element 

b) a) 
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field in the far zone. Along each lattice element’s   surface, scattered field must satisfy 

the boundary condition: 

  0incE E

   ,    (3) 

where   - is the unit tangent vector along each lattice element (figure 2). 

 

 

 

 

 

 

Because of the infinite periodicity and as the incident field is a plane wave, each lattice 

element is in the same conditions and on all of them excite the currents with the same 

amplitudes. These currents can differ only in phases, depending on the direction of the 

incident wave. That’s why scattered field is periodical and in each 1 2d d  area, along the 

OZ  axis, it has the same form. 

We have to investigate the lattice's diffraction properties dependence on its 

parameters. In particular, R  reflection and T  transmission coefficients dependence on 

the lattice periods. 

Solution of the problem in general case. The method of the potentials is used in 

order to find the expression for the scattered field. The distribution of the charge 

 pq pql  and current  pq pqI l , induced along the pql  lattice element, creates the vector 

and scalar potentials 

       01 4 exp

pq

pq pq pq pq pq pq

l

r l ik r r r r dl     ,  (4) 

       0 4 exp

pq

pq pq pq pq pq pq

l

A r I l ik r r r r dl    .  (5) 

Also, there is the next relation between them: 

     pq pq pq pq pql dl i dI l  .   (6) 

Figure 2. The lattice element 
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As the lattice is infinite and the incident wave’s front is flat, these charge and current 

distributions can be expressed using the distributions along the central element l , 

considering the phase shift: 

     1 2exppq pq x yl l i pd k qd k    
 

,      1 2exppq pq x yI l I l i pd k qd k  
 

. 

Thereby, for these potentials we will have 

       0 1 21 4 exppq x y pq pq

l

r l i pd k qd k k r r r r dl        
  , (7) 

       0 1 24 exppq x y pq pq

l

A r I l i pd k qd k k r r r r dl       
  . (8) 

Summing over the p  and q , for the total potentials we get 

       0 1 21 4 exp x y pq pq

p q l

r l i pd k qd k k r r r r dl  
 

 

     
    ,   (9) 

       0 1 24 exp x y pq pq

p q l

A r I l i pd k qd k k r r r r dl 
 

 

     
    .     (10) 

Well known Poisson transformation is used in order to improve convergence: 

     , , exp 2
p q n m

F p q F i n m d d      
    

     

         . 

After transformation we get: 

       0 1 2 02 ,mn

n ml

r i d d l G r r dl  
 

 

   ,   (11) 

       0 1 2 02 ,mn

n ml

A r i d d I l G r r dl
 

 

   ,   (12) 

where 

    2 2 2

0 0 , ,, expmn mn n x m yG r r ik r r k k k     
 

, 

  2 2 2

, , , ,, ,mn mn n x m y n x m yk k k k sign z z k k k      , 

      0 0 , ,r r x y z   , , 12n x xk k n d  , , 22m y yk k m d  . 

In these expressions the integration is performed along the central element of the lattice. 

The index of double summation, expresses the summation by the scattered field’s spectral 
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components. Each spectral component is the plane wave, with the unit amplitude and its 

propagation direction is determined by the mnk  wave vector. 

For further calculations and also for finding the  I l  current’s and  l  charge’s 

distributions is used the MAS. The lattice central element is divided on small jl  

segments ( 1,2,...,j N ) (figure 3). 

 

 

 

 

 

 

 

 

 

The length of each jl  segment should be small enough to consider jI  current as 

constant along this segment. But if along the jl  segment, the current's amplitude is 

constant, then this segment must be similar to the dipole, at the ends of which j jl   and 

j jl   charges with opposite signs are accumulated. According to this, integrals in (11) 

and (12) must be replaced by the sums. For the scalar potential we must write 

       0 1 2

1

2 , ,
N

j j mn j j j mn j

j n m n m

r i d d l G r r l G r r   
   

   

    

 
    

 
     , 

where jr 
 and jr 

 - are the radius-vectors of the jl  segment’s ends (figure 3). According 

to the (6) expression,  j j jl i I   ,  j j jl i I    . 

So 

       , , ,j j mn j j j mn j j mn j

n m n m n m

l G r r l G r r i I G r r  
     

    

     

           

         , , ,j mn j j mn j mn j

n m n m

i I G r r i I G r r G r r 
   

  

   

    
      

Figure 3. The segment’s geometry 
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   1 ,j mn j mn j

n m

I G r r k l
 

 

    , j j jl r r    , 

          0 1 2

1

2 ,
N

j mn j mn j

j n m

r i d d I G r r k l 
 

  

     .  (13)  

For the vector potential we will have: 

                 0 1 2

1

2
N

j mn j j

j n m

A r i d d I G r r l
 

  

     .  (14) 

The scattered field can be found as 

     E r r i A r    ,      01H r A r  . 

Considering the final expressions (13) and (14) for the potentials, we get 

   
1

,
N

j E j

j

E r I G r r


 ,    
1

,
N

j H j

j

H r I G r r


 ,  (15) 

where  ,E jG r r  and  ,H jG r r  are periodic Green’s functions for the electric and 

magnetic fields [14]: 

        2

0 1 2, 1 2 ,E j mn j mn mn j j

n m

G r r d d G r r k k l k l
 

 

     
   ,    (16) 

     1 2, 1 2 ,H j mn j j mn

n m

G r r d d G r r l k
 

 

    ,  (17) 

           2 2 2

, ,, expmn j mn j n x m yG r r ik r r k k k     
 

,  (18) 

  2 2 2

, , , ,, ,mn mn n x m y j n x m yk k k k sign z z k k k    , , 12n x xk k n d  , , 22m y yk k m d  . 

So, according the (15)-(18) formulae, scattered field is presented as the sum of the spatial 

harmonics. Each harmonic has certain direction in the space and it represents the plane 

wave. Their character depends on the relation between the lattice periods 1d , 2d  and 

incident wave length  . Because of the periodicity, we consider scattered field just in 

1 2d d  area, which contains the lattice central element. 

To find current’s unknown  jI  amplitudes, the boundary condition (3) is used for each 

segment: 
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   0 0s s inc s sE r dr l E r dr l      , 1,2,...,s N . 

Using formula (15), we get the linear equation’s system 

   0 0

1

,
N

j E s j s inc s s

j

I G r dr r l E r dr l


      , 1,2,...,s N , 

or in matrix form 

 s j j sZ I U       ,     (19) 

where 

 0 ,s j E s j sZ G r dr r l   ,  0s inc s sU E r dr l    ,   (20) 

0 0dr dr  - is the radius of the lattice elements. This system is solved using computer 

simulation. After finding these amplitudes we calculate unknown scattered field. 

 

3. RESULTS OF THE NUMERICAL EXPERIMENTS 

Calculation accuracy testing. To be sure that, results of investigation are valid, it is 

important to choose lattice element’s auxiliary parameters: the optimal length of small 

segments and the radius of the wires per wavelength, ( jl  , 0dr  ). In other words to 

prove, that our approach is good and the accuracy of the solution has to be predefined and 

well controlled. Since the auxiliary sources and their linear combination satisfy the wave 

equation and Poisson transformation is mathematically correct, the accuracy of the 

solution can be easily determined by evaluating how accurately the boundary conditions 

between the collocation points are satisfied. Knowledge of these optimal parameters 

allows proper investigation structure’s electrodynamics properties using numerical 

experiments. 

Figure 4 shows the character of boundary condition’s satisfaction along thin wire and 

the numerical error, when the number of collocation points increase. 

 

 

 

 

 

Figure 4. Calculation accuracy test 
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The value of the deviation normalized on maximum value in case of 14 points per 

wavelength. High deviation between the collocation points decrease when the numbed of 

the collocation points increases. It is obviously, that 20n    already provide accuracy 

sufficient to get reasonable results of calculation to study electrodynamic properties of 

the lattice. The study of the optimal auxiliary parameters has shown, that the best 

approximation to the electrically thin wire is, when the wire radius 0dr  is between 0.02  

and 0.035  (figure 5). 

 

 

 

 

 

 

 

 

 

Finally, figure 6 shows the convergence of the curve of reflection coefficient 

dependence on the 2D  for the collocation points different numbers, for considered lattice 

of open rings. Similarly to the figure 4, could be drawn a conclusion; that 20 25n     

already provides accuracy sufficient to get reasonable properties of the studied system. 

Here, it must be mentioned, that this comparatively high number of collocation points 

need because of the resonant dipole’s length. In another case this on provides better 

accuracy. 

 

 

 

Figure 5. The errors of the solution dependents on number 

of collocation points per wavelength 
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During numerical study of the stated problem this algorithm was sustained even in 

case of curve wires. Besides, results of calculations were analyzed from physical point of 

view. Results of the computer simulation below are valid for a large frequency range, 

where Maxwell’s equations system can be used. In order to scale the investigated 

structures, geometric dimensionless values in   units are used. Particularly, 1 1D d  , 

2 2D d   and L l  , where l  - total length of the lattice element. 

 

Infinite periodic lattice of the dipoles. First there was considered infinite periodic 

lattice of the l  length dipoles, located in the free space along OX  axis (figure 7). 

 

 

 

 

 

 

  1 22 , ,0pq pqr r l pd qd  , 1 1   , p   , q   . 

Lattice is irradiated by the plane wave with x  polarization, propagating along OZ  

axis and with unit amplitude. Figure 8 represents series of curves - R  reflection and T  

transmission coefficients dependence on the lattice periods 2D  for different fixed values 

of the 1D . The length of the dipole was chosen as a resonant and is half of the wavelength 

( 0.5L  ). From the low of energy conservation the sum of reflection and transmission 

Figure 7. Lattice geometry 

Figure 6. Convergence of the R - reflection coefficient, for considered 

lattice of open rings. D1=0.5, R0/ λ=0.2, (N=10, 20, 25, 30)  

2D

 

N=10 

N=20 

N=25 

N=30 
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coefficients must be one: 1R T  . This condition is satisfied with high precision which 

is indirect evidence that obtained results are valid. 

 

 

 

 

 

 

 

 

 

 

In case of 1 0.51D  , dipoles almost touch each other along the OX  axis. As we can 

see, 1R   and 0T  , when 2 0.2D  . It means that lattice behaves as a scatterer. In case 

of other values of the 1D , there are some 2D , at which lattice reflects incident wave 

completely. These phenomena were studied very carefully because it is connected with 

some resonant effects. For these values of the lattice periods, some distances between the 

elements of the lattice are multiples of the  , i.e. are resonant (figure 9). 

 

 

 

 

 

 

 

 

 

 

It is interesting to investigate the current maximum’s behavior in the dipoles (figure 

10), according to the curves on the figure 8. As we can see, the values of the 2D , 

Figure 8. R - reflection and T - transmission coefficients 

dependence on the lattice periods. Dipole length 0.5  
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Figure 9. The resonant 

distance between the elements 

Figure 10. Current maximums dependence on the 

lattice period. Dipole length 0.5  
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corresponding to the curves maximums on the figure 10, don’t coincide with the values 

of 2D  for total reflection (figure 8). This non-coincidence was explained after 

investigation of the near field: in the near zone, high fields are forming because of the 

resonant effects, while in the far zone there is only one un-damped harmonic. 

  

 

 

 

 

 

 

 

Figure 11 shows the near field’s components distribution in 0z   plane, in one 

particular case of resonance, when lattice reflects incident wave completely: 1 0.55D  , 

2 0.70D  . Here we can see the standing wave along the lattice, which makes it bluff 

board on this frequency. It is obvious, that this phenomenon can be used in practice. 

Next was considered the case, when the length of the dipole isn’t resonant ( 0.3L  ). 

But in this case also there are some values of the 1D , 2D  periods, when some distances 

between the elements are resonant and occurs the same phenomena which makes this 

lattice frequency dependent. Figure 12 represents the R  reflection and T  transmission 

coefficients dependence on the 2D  period, for the different values of the period 1D . 

 

 

 

 

 

 

 

 Figure 12. R - reflection and T - transmission coefficients 

dependence on the lattice period. Dipole length 0.3  
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Figure 11. Near field components distribution 
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Figure 13 represents the similar dependence for the current maximums in the dipoles. 

The maximum on these curves corresponds to the resonant 1D , 2D cases. 

 

 

 

 

 

 

 

 

 

 

Infinite periodic lattice of open rings. Next we considered infinite lattice of open 

rings (Figure 14), with equal periods 1 2D D D  . This structure is irradiated by the 

plane wave of X  polarization. Figure 15 represents R  reflection and T  transmission 

coefficients dependence on the lattice’s periods for considered structure. Ring’s radius 

R0= 0.2 λ, angle of the open sector is 030  and number of points along the ring N= 20. As 

we can see at 0.44D   and 0.91D   appears full reflection of the incident field. In this 

case we have double resonance of lattice period and its element. The condition 1R T   

is also satisfied. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Lattice 

geometry and its 

parameters 

 

Figure 13. Current maximums dependence on the 

lattice period. Dipole length 0.3  
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Figure 15. Reflection and transmission coefficient 

dependence on the lattice period, R0/ λ = 0.2, N=20  
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Figure 17. Near field distribution in case of double resonant  

x 

y 

z 

The ring is in the perpendicular plane 

Figure 16 – shows the near field components distribution in case, when 1 0.62D  , 

2 0.54D  , 0 0.24R   . The field’s plane is shifted from the lattice’s plane at the small 

distance and doesn’t have scattered field’s singularities. 

 

 

 

 

 

 

 

 

 

 

 

 

The next figure 17 shows near field distribution in the perpendicular plane of the 

lattice for the same 0.91D   case. In the reflection area we get the standing wave which 

corresponds to the incident wave’s reflection. As we see from the figure the field 

penetrates partly in the second area but does not propagate. The reason of this is that the 

vectors of the electric and magnetic waves oscillate in the different phases in this area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 shows currents distribution in the ring at the double resonance, which occurs at 

the parameters 0.44D   and 0.91D  . 
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Figure 16. Near field components distribution 
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 Figure 20. Reflection coefficient dependence on the ring open sector angle  
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Figure 19 represents the R  reflection and T  transmission coefficients dependence on 

the 2D  period, for the different values of the period 1D , when R0= 0.2 λ, 030  , N= 20. 

 

 

 

 

 

 

 

 

 

Our interest was also to study reflection coefficient dependence on the open angle of 

ring’s sector. This dependence is shown on the Figure 20. As we see, when increase the 

open sector, the maximums of the reflected field become sharper which corresponds to 

the highly frequency dependent surface.  

 

 

 

 

 

 

 

Figure 19. R - reflection and T - transmission coefficients 

dependence on the lattice period. R0/ λ= 0.2, N=20 
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Figure 18. The current distribution in the ring 
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3. CONCLUSION 

Motivation of this paper is to investigate 2-D infinite periodic structure with 3-D 

elements using the MAS. The article introduces an elementary auxiliary source of the 

infinite periodic structure as 3-D Green function which makes easy modeling lattice with 

complicate form of elements. This one gives ability to simplify the solution of the stated 

problems in order to use computational experiments. Therefore, this is the next step to 

improve the theoretical advantage of MAS. From application point of view, there were 

studied properties of the lattice with several types of the elements. Particular interest was 

to investigate the lattice properties and phenomena when the elements or/and distance 

between them are resonant. It was shown that in resonant cases the lattice becomes total 

reflector or transparent with comparatively open-space ratio. On some parameters studied 

lattice becomes frequency dependant layer.  
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Abstract

The regular fractional Coulomb wave function, advanced recently through the

infinite power series 





1

),()(
p

p
pau  in which the coefficients ),(  p

meet the recurrence relations   0),()1(/)12(),( 12   gaha ,

when 1p and 2, and     ),(]1)2[(/)1(),( 1  pp gahppa

0),(2  pa , provided 3p {  ,  ,  , h and g – real, 0 , 10   ,

1 and   0)1(/)1(  h , )( – the Euler gamma func-

tion}, is accepted as wave function for propagation of the normal nTE0 modes in the

azimuthally magnetized circular ferrite waveguide. The discussion is focused on the

special case 1 ,   ,  1 LLh and 2g in that the function in question

reduces to the classical regular Coulomb wave function ),( LF , specified by M.

Abramowitz for  and  – real, ( 0 ,   ) and L – a non-negative

integer, ( ,...2,1,0L ). The investigation extends the Georgiev and Georgieva’s

pioneering idea to use in the theory of waveguides the function ),( LF with

5.0L which is in agreement with the Thompson and Barnett’s comprehension for

it, by virtue of that the same has sense for any complex  ,  and L . The fractional

function thrashed out is employed to count the field distribution of the first of the set

of modes referred to along the structure radius. The results are presented in a

graphical form and are debated.

1. INTRODUCTION

According to the classical Abramowitz definition [1,2] the Coulomb wave equation

and the Coulomb wave functions  ,LF and  ,LG are determined for  and

 – real, ( 0 ,   ) and L – a non-negative integer, ( ,...2,1,0L ). In their

fundamental study “Coulomb and Bessel functions of complex arguments and order”
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[3] I.J. Thompson and A.R. Barnett widened it for any complex ,  and L . Adopting

this novel concept for the aforesaid notions, G.N. Georgiev and M.N. Georgieva [4,5]

manifested that the first of the functions cited of real  , real, positive  and real

positive and negative fractional L plays an important role in the theory of waveguides.

A short while back, Y. Nikolova et al. [6], restricting to the real area, made a

fractional generalization of the Coulomb wave equation, considered in the broader

Thompson and Barnett’s sense [3], and called it Fractional Coulomb equation.

Employing the Fröbenius’ method, they found also its regular solution in a power

series form [6]. They proved, as well [6] that the function  ,LF in the new mean-

ing, of any real positive and negative fractional L and in particular 5.0L , could

be regarded as a special case of the solution mentioned of the fractional equation.

This research constitutes a further development of the Georgiev and Georgieva’s

innovative suggestion to take advantage of the regular Coulomb function in the

modern understanding in the investigation of the circular ferrite transmission line with

azimuthal magnetization, propagating normal nTE0 modes. It demonstrates how,

harnessing the outcomes of generalized analysis [6], corresponding to the special case

touched on, the same could be done. Unlike the previous works, devoted to the

figuring out of the phase characteristics of this kind of configurations [7-19], to the

elaboration of schemes for computation of the differential phase shift, produced by

them [20-30] and to its effective calculation [25,31], here the attention is concentrated

on the examination of the field pattern lengthwise the radius of geometry. Graphical

results for the 01TE mode are given. What’s more, the fresh approach is confronted

with the existing manners for inspection of the structure treated, using the ordinary

Bolle function [7,8,20,32-34] and the complex Kummer [9-11,14,18,25,26,28-31,35]

and Whittaker first confluent hypergeometric ones [9,35].

2. AZIMUTHALLY MAGNETIZED CIRCULAR FERRITE WAVEGUIDE

The point at issue is an infinitely long, lossless perfectly conducting circular wave-

guide of radius 0r , entirely filled with latching ferrite, magnetized along the azimuth

to remanence by a central switching conductor of a negligible thickness. The

argument is confined to propagation of normal  zrn HEHTE ,,0  modes

( ,...3,2,1n ) of phase constant  . A cylindrical co-ordinate system  zr ,, is

accepted, whose z – axis coincides with the pivot of the transmission line. The
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anisotropic load is identified by a scalar permittivity r 0 and a Polder

permeability tensor  ij 0


, i , j 1, 2, 3 in which 0 8.854187817. 1210 F/m

[   9
0 10.36/1   F/m] and 7

0 10.4   H/m are the free space permittivity and

permeability, respectively. Two models for the latter are proposed in the literature in

connection with the solution of the problem formulated [5,9-20,22-35].

2.1. Bolle-Heller-Bernues model

In the works by D.M. Bolle and G.S. Heller [20], and F.J. Bernues and D.M. Bolle

[32] the tensor has been written through the matrix:





























10

010

01

0

j

j


, (1)

where

22 







c

cm , (2)

22 







c

m . (3)

 is the angular frequency of the wave and the quantities Sm M  and dcc H  ,

depending on the saturation magnetization SM and on the applied inside the medium

in  – direction magnetic field dcH (assumed uniform), are called its characteristic

frequencies [ 710765.1    1. sOe – gyromagnetic ratio] [32]. In the authors’

opinion, a good approximation for 


is obtained, if it is thought that rS MM 

( rM – the remanent magnetization) and that 0dcH (the hysteresis loop is almost

square which is valid for the latching ferrites). Under this condition 0c , 0 ,

rm M  ,  /rM [32]. The indicated simplified representation of the non-zero

elements of 


has been preferred by A. J. Baden-Fuller, too [34]. (For reasons which

will become apparent below, the original notation  from Refs. [20,32], is replaced

here by  ).

2.2. Georgiev-Georgieva-Ivanov model

G.N. Georgiev and K.P. Ivanov [9,10], and later on G.N. Georgiev and M.N.

Georgieva-Grosse [5,11-19,22-31] adopted the Polder tensor of the shape:
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010

01

0







j

j


, (4)

where  /rM , 11   . As above, they considered that rM is equal to the

saturation magnetization sM . Further, they reckoned, as well that the whole anisot-

ropic load is magnetized to remanence by a suitable current pulse in the switching

conductor, notwithstanding the distance to the geometry axis. Besides, they took the

sign of rM as positive (negative), if it is oriented counterclockwise (clockwise) with

respect to the nTE0 mode transmission. [A comparison shows that the elements 13

and 31 in the expressions (1) and (4) have opposite signs and their magnitudes

coincide, if   , (see the simplified model at the end of the previous Sub-Section.)]

3. ELEMENTS OF THE THEORY OF THE AZIMUTHALLY MAGNETIZED

CIRCULAR FERRITE WAVEGUIDE

The different choice of the form of the wave equation (of the wave functions for

propagation used) lead to the appearance of several varieties of the theory of the

structure regarded, based on the boundary-value approach, for the modes brought up

[4,5,7-11,32-35].

3.1. Bolle function representation

The method lies on the Bolle-Heller-Bernues model of the tensor 


. It springs up

from the differential equation for the E – component of the wave, panned out from

the Maxwell equations, solved in the azimuthally magnetized ferrite [32]:

0
11
2

2
2

2









 E

rr

sK
K

dr

d

rdr

d
(5)

where 2
00

22   reK ,
 











1

1 22

e is the effective relative permeability

of the medium analyzed and
 





1K
s . Applying the Fröbenius’ scheme, the

regular integral of Eq. (5) (named Bolle function) [32]:

1

0
1 );( 




 n

n
ntbtsB (6)
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in which 2/10 b , 3/01 sab  and     42/12   nnbsbb nnn , Krt  , is

constructed. The fields are given by the expressions [32]:

 
 








rE

dr

d

r
EH r

11
2
0

2
0




 , (7)

);(1 tsABE  , (8)

 







rE

dr

d

r
jE

j
H z

11
2
0

2
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 (9)

in that

      11 0
22

0
2
0 e (10)

and the characteristic equation of the configuration reads [32]:

0);( 01 tsB , (11)

with 00 Krt  .

This style has been propounded by D.M. Bolle and G.S. Heller [20] and

subsequently was developed by F.J. Bernues and D.M. Bolle [21,32], W.J. Ince and

G.N. Tsandoulas [7], G.S. Mueller and F.J. Rosenbaum [8], and S.N. Samaddar [33],

and summarized by A.J. Baden-Fuller [34]. A circular [32] and a coaxial [8]

waveguide, thoroughly filled with ferrite, two- [20], three- [7] and five-layered [21]

ferrite-dielectric circular geometries in which the anisotropic load is placed around the

axis [20], in contact with the structure wall [20] or between them [7] and a ferrite-

coated wire [8] have been investigated. F.J. Bernues and D.M. Bolle published some

graphs, depicting the function );(1 tsB and its derivative with respect to t vs. this

variable with s as parameter, the zeros of );( 01 tsB in 0t in the 0ts  – plane, the

differential phase shift provided, as well as the field and Poyting’s vector distribution

longways the radius of the first of the enumerated geometries [32]. The main

advantage of the method sketched, compared to those, described in points 3.2. and

3.3., is that the Bolle function, put into practice, is real, while the Kummer and

Whittaker first ones are complex, and that its independent variable is twice smaller

than theirs [32].
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3.2. Kummer function representation

The forms of the theory to come employ the equation for the zH – component of

the normal nTE0 mode [5,9,10]:

0
11 22 






  zfrr H
r

rDD
r

 (12)

in which efff  2
1

2  , r 2
0

2
1  , 00

22
0   , ( f , 1 and 0 are the phase

constants of the unlimited space, occupied with the azimuthally magnetized ferrite

considered and with dielectric of relative permittivity r , and of the free space) and

21  eff is the effective relative permeability of the anisotropic medium in

question. Setting jzx  , rz 22 ,   2/122
2   f – radial wavenumber in the

ferrite and   2/x
z exyH  reduces Eq. (12) to the Kummer confluent hypergeometric

equation [36,37]:

0)(
2

2

 ay
dx

dy
xc

dx

yd
x (13)

with 1c , jkca  2/ and  22/ k ( k , z – real,  k , 0z ).

This is the most widely used by now way of writing the wave equation (the one for

zH ), governing the fields thrashed out [9-11,35]. Since the transmission takes place

in a single-connected region, the latter [35]:
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  2/;, x
z excaDH  , (16)

are represented only in terms of the Kummer confluent hypergeometric function

[36,37]:

 

  !
);,(
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 x

c

a
xca 





 . (17)

The same is defined for all real or complex a , c and x , save for ,...2,1,0 c where

it has simple poles; )(/)()1)...(1()( aaaaaa   is the Pochhammer’s

symbol and )(a is the Euler gamma function; 1)( 0a and D is an arbitrary constant.
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Accordingly, the characteristic equation of the anisotropic waveguide is [9-11,35]:

  0;2,1 0  xca . (18)

Here a and c acquire the values, pointed out above, 00 jzx  and 020 2 rz  .

Eq. (18) holds, if for its n th root  2
,




c
nk in 0x (in 0z ), ( ,...3,2,1n ), it is fulfilled

 
02

2
, 2 rc
nk  


. (Throughout the paper the subscripts “+” and “–“ designate quantities,

corresponding to 0k and 0k , i.e. to positive ( 0 , resp. 0rM ) and

negative ( 0 , resp. 0rM ) ferrite magnetization (to the notations 0 and

0 , resp. to 0g and 0g which will appear below). This approach has been

advocated by G.N. Georgiev, M.N. Georgieva-Grosse and K.P. Ivanov [9-11]. Its

application gave almost all the information, available at present about the phase

characteristics and the differential phase shift, afforded by the structure [9-19,22-31]

and enabled tracing the borders of the areas in which it may sustain the normal nTE0

modes and may operate as a phase shifter for them [26].

3.3. Whittaker first function representation

The special case ( 0m ) of the Whittaker confluent hypergeometric equation [38]:

04

1

4

1
2

2

2

2
















 
 w

x

m

xdx

wd 
(19)

can also be harnessed to study the propagation problem in question. It might be

obtained from Eq. (12) by the substitutions jzx  ,   2/1 xxwH z and jk or

from Eq. (13) under the transformations    xwxexy cx 2/2/  , mc 21 and

   ma 2/1 , ( z and k , resp. 2 have the very meaning as earlier) [9]. In this

case it is valid [35]:
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in which
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is the Whittaker first confluent hypergeometric function [38] and P is an arbitrary

constant.

For complex x )(, xM m is multiple-valued in the complex x – plane with a

branch point at the origin 0x and with an essential singularity at infinity x . Its

principle branch is specified by the condition xarg . )(, xM m is analytic for all

 , m and x , save for ,...2,1,021  m The components (14)-(16) and (20)-(22)

are easily recovered from the ones (19), (25), (26), resp. (20), (27), (28) [9], putting in

them the integration constants before the part of the relevant expressions, involving

the Tricomi  xca ;, and the Whittaker second function )(, xW m [9], equal to zero.

The characteristic equation of the geometry inspected now is written as [35]:

  001,  xM m , (24)

where  and m take the values, indicated above, 00 jzx  and 020 2 rz  . In view

of the relation [36-38]:








  


xmmexxM x
m

m ;21,
2

1
)( 2/2

1

,  (25)

the roots of Eq. (24) in 0x (in 0z ) are identical with those of Eq. (18). These results

are due to G.N. Georgiev and K.P. Ivanov [35].

3.4. Regular Coulomb wave function representation

Coulomb wave equation in the M. Abramowitz form is called the second-order

ordinary differential one [1,2]:

0
)1(2

1
22

2








 
 v

LL

d

vd






, (26)

determined for  and  – real, ( 0 ,   ) and L – a non-negative integer,

( ,...2,1,0L ). It has a regular singularity with indexes 1L and L at 0 and an

irregular one at  . The first partial integral of Eq. (26), termed as a regular

Coulomb wave function, is given by the infinite power series [1,2]:

  ,)(),( 1
L

L
LL CF   (27)
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in which
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is the Gamow factor and
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qL A  . (29)

For the coefficients L
qA in expression (29) it is fulfilled [1,2]:

11 
L
LA , (30)

1
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L
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(31)

and

L
q

L
q

L
q AAALqLq 212)1)((    , )2(  Lq . (32)

As a second broader definition of ),( LF , true for all complex  ,  and L , I.J.

Thompson and A.R. Barnett [3] accepted the formula:

)2;22,1()(),( 1   jLjLeCF jL
LL   , (33)

yielding its connection with the Kummer function. Specifically, it allows to find the

same for any real  ,  and L , e.g. for 0 ,   and 5.0L .

The substitutions r2  ,   2/122
2   f and     2/1 vrH z make

possible to bring Eq. (12) to Eq. (26) with  22/   and 5.0L (  , 2 ,  ,

L – real, 0 , 02  , 0L ). Consequently, the Coulomb wave equation, resp. the

function  ,LF with, k , 2/z and 5.0L provide another opportunity to

investigate the problem stated. So, it could be written:
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Q is an arbitrary constant and   2/122
1   f is radial wavenumber in the
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circular waveguide, filled with isotropic dielectric of relative permittivity, equal to

that of the ferrite. Therefore, the characteristic equation of the transmission line

examined becomes:

  0, 01  LF , (37)

where 2/00 z . Obviously, if 2/1 cL  and k , the n th consecutive root of

Eq. (37) 1
,



L
n in 0 , ( ,...3,2,1n ) is twice smaller than that  2

,




c
nk of Eq. (18) (of

Eq. (24)). Thus, it holds:   2/2
,

1
,




 c
nk

L
n  . As in point 3.1., the function employed is

real and its independent variable is twice smaller than the moduli of the ones of the

Kummer and Whittaker first function [32].

3.5. Regular fractional Coulomb wave function representation

The differential equation:

0)()()( 22
0

2   


 uhguD (38)

in which  ,  , g and h are real, 0 , 10   and 

2

0 D is the Riemann-

Liouville fractional derivative of order 2 , is named Fractional Coulomb equation

[6]. Provided  is such that 1 and 0
)1(

)1(





h




, its regular solution

is presented in the following way [6]:
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where the coefficients ),(  p satisfy the recurrence relations:
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),( 12 
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)1(
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 ppp agah

p

p
a . (41)

On condition that 1 , 2g ,  1 LLh and L , ...,2,1,0L , Eq. (38)

sifts down to Eq. (26), correspondingly the regular fractional and classical Coulomb

wave functions coincide. Hence, it is valid:
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  ),(  LFu  . (42)

Keeping to the Thompson and Barnett’s concept [3], the last statements could be

generalized for any real L , e.g. for 5.0L .

Thus, with an eye to what has been said in the previous Section, Eq. (38) can also

be added to the list of forms of the wave equation for the normal nTE0 modes

transmission in the ferrite configuration treated. Its solution in the partial case

mentioned plays the role of a wave function for propagation and allows to describe

the fields through the infinite power series:
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R is an arbitrary constant, 1 , L and 5.0L . The coefficients  ,pa and

 1, pa are specified by the equalities (40) and (41), resp. The first of them is

linked with  ,LF and the second one in which 1 stands for  – with

 ,1LF .

The relevant representation of the structure’s characteristic equation is:

  01, 0
1

 



 Lp

p
pa  , (46)

where  and  acquire the values, pointed out above 2/00 z and 020 2 rz  .

Provided h
ng

,1,
,



  denotes the n th root of Eq. (46) in 0 ( ,...3,2,1n ), then

1
,

,1,
,

 


L
n

h
ng 

  , on the understanding that 1 , 2g , )1(  LLh , L and

5.0L .

4. FIELD COMPONENTS OF THE nTE0 MODES IN THE CIRCULAR

WAVEGUIDE WITH AZIMUTHALLY MAGNETIZED FERRITE

Using any of the sets (7)-(9), (14)-(16), (20)-(22), (34)-(36) and (42)-(44), the

distribution of the components rH , E and zH longwise the radius of waveguide
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could be computed. For the purpose, to get generalized results first the normalized

quantities   r 0/ , 2  r 02 / (  rKK 0/ in the Bolle

language, since 2K ), rrr 0 and rrr  000  , where 000   , are

introduced. Afterwards, the notion “reduced distance of a point from the guide cross-

section to the axis” 0/ rr , ( 10  ) is advanced. Next, values of the parameters

0r and  (  ) are chosen, satisfying the condition for phase shifter operation of the

configuration [11,14,25]:

     /,212/ 2
0

2
,0 ncLrc
n  (47)

which ensures wave transmission for both directions of the ferrite magnetization. Here

 ncL , (denoted also as  ncL ,1 in Ref. [18]) are certain positive real numbers [11,

14,23,26,28,35]. {Provided 1c ( 32 c ), 1n ,   2
,0
c
n 7.66341 19404 and

  ncL ,2 6.59365 41068 [11,14,23,26].} Since   1
,0

2
,0 2/   L

n
c
n  and h

n
L

n
,1,

,0
1

,0
  

in the aforesaid special case, the last sequence of inequalities reads:

   /,21 2
0

,1,
,0 ncLrh
n   . (48)

Apparently, if 1 , L , )1(  LLh , 5.0L and 1n , i.e. when 5.01

and 25.0h ,   h
n

,1,
,0
  25.0,5.0,1

1,0 3,8317059702. Besides, a value of r is also

selected.

Harnessing the iterative procedure, elaborated lately [25], the numerical

equivalents of normalized phase constants  and  , conforming to positive and

negative sign of g ( , resp. k , i.e. of  ) are reckoned for the pair  0, r fixed.

Simultaneously, the scheme brought up yields the pertinent values of parameters g

(  , resp. k ) and g (  , resp. k ). The ensuing step is to count for the latter the

roots of Eq. (46). Further, the normalized with respect to the integration constant field

expressions are rewritten in terms of the normalized quantities and the roots spoken

of. For example, in case 1 and L , 5.0L , Eqs. (43)-(45) and (46), presented

by means of the solution of the fractional Coulomb equation (39)-(41), take the form:
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 rff 0/ , 0 , 0 . Bearing in mind the equalities [6]:
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and relation (30), it is found out:
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Stipulating that 25.0,5.0,1
,0 ng

 , i.e. 25.0,5.0,1
,20 n  , it could be postulated:

25.0,5.0,1
,2 n  . Accordingly, since   2/121   f , expressions (49)-(51) become:
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5. FIELD DISTRIBUTION

Introducing the initially selected numbers, corresponding to  and r , the values

of  , relevant to the  0, r pair picked out, determined, employing the iterative

Figure 1. The function RjH r / vs.  in case of normal 01TE mode in the azimuthally magnetized

circular ferrite waveguide, assuming 40 r , 15r and discrete values of  .

Figure 2. The function RjH r / vs.  in case of normal 01TE mode in the azimuthally magnetized

circular ferrite waveguide, assuming 60 r , 15r and discrete values of  .
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technique, described above and those of 25.0,5.0,1
,2 n in the above formulae, and varying

 in the interval  10 , allows to reckon the functions, RjH r / , RjE / and

RH z / . Figs. 1-6 illustrate the outcomes of numerical investigation of the fields of

Figure 3. The function RjE / vs.  in case of normal 01TE mode in the azimuthally magnetized

circular ferrite waveguide, assuming 40 r , 15r and discrete values of  .

Figure 4. The function RjE / vs.  in case of normal 01TE mode in the azimuthally magnetized

circular ferrite waveguide, assuming 60 r , 15r and discrete values of  .
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the normal 01TE mode ( 1n ) for 40 r and 6, 15r and discrete values of  ,

subject to the criterion (48). The computations are performed, assuming  0,

2.0 , 4.0 and 6.0 . The case 0 , 0g answers to a dielectric load of

Figure 5. The function RH z / vs.  in case of normal 01TE mode in the azimuthally magnetized

circular ferrite waveguide, assuming 40 r , 15r and discrete values of  .

Figure 6. The function RH z / vs.  in case of normal 01TE mode in the azimuthally magnetized

circular ferrite waveguide, assuming 60 r , 15r and discrete values of  .
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permittivity r .The solid lines conform to positive and the dashed ones – to negative

sign of rM (of  ). It is seen that switching the latter changes substantially the field

diagram. This is more noticeable provided 0r increases when propagation at larger 

is realizable.

6. CONCLUSION

The theory of the circular waveguide, totally filled with azimuthally magnetized

ferrite, under normal nTE0 modes excitation, is presented as an area of application of

the special case of the defined of late regular fractional Coulomb wave function in

which the latter reduces to the classical Coulomb function, regarded in the extended

Thompson and Barnett sense, according to whom it exists for all complex values of its

parameters and variable. To distinguish the peculiarities of the new approach, it is

juxtaposed to the already available ones in literature, based on the Bolle function, the

complex Kummer and Whittaker first confluent hypergeometric ones. Its close rela-

tion to the novel method for analysis of the structure mentioned, suggested by G.N.

Georgiev and M.N. Georgieva which employs the generalized Coulomb function is under-

lined, as well. An original numerical technique, using the representation of the rH ,

E and zH components of the wave examined in terms of the fractional function, is

worked out. The same is applied to investigate the dependence of the field of the 01TE

wave on the parameters of configuration. The study is richly illustrated with graphs.
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