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Abstract 
In this paper an algorithm is presented for wild animals population estimation through background modelling and subtraction in vide-
os captured by thermographic cameras. In order to obtain low-rank and sparse representation of the video content on a frame-by-
frame basis several decomposition techniques are tested, namely the Robust Principal Component Analysis (RPCA) with its Go 
implementation (GoDec), Low-rank matrix completion by Riemannian optimization (LRGeomCG), Robust Orthonormal Subspace 
Learning (ROSL), and Non-negative Matrix Factorization via Nesterov’s Optimal Gradient Method (NeNMF). Promising results are 
obtained in terms of accuracy and the approach seems applicable in agronomy, protection of the natural environment, forestry and 
others. 
 

 
1. INTRODUCTION 
Thermography has been long employed into nu-
merous applications related to remote sensing, 
mechanical design at the stage of component 
durability testing, medical treatment, civil and mili-
tary surveillance and others. 
In [1] Yang and He investigate wide range of 
thermographic methods based on optical and non-
optical excitation to locate damages in composites 
as a non-destructive approach. They group the 
various implementations based on the nature of the 
heat inductor as optical, laser, eddy current, micro-
wave, vibro- and ultrasound. Classification of known 
realizations has also been provided according to 
the type of the heating function, style, position and 
motion. At the stage of registered signals pro-
cessing some of the designers rely on tensor de-
composition. Gao et al.[2] turn towards the estima-
tion of fatigue and residual stress by incorporating 
spatial-transient-stage tensor along with Tucker 
decomposition taking into account the variation of 
material qualities over time. Positive results are 
reported from analyzing gear fatigue. Further the 
authors [3] confirm the significant level of correla-
tion between the deviation of the physical properties 
of tested steel materials and the mathematical 
models based on tensor analysis when eddy cur-
rents are applied in a pulsed manner. 
Active thermography is another mean for compo-
sites exploration by analyzing captured images for 

detecting various defects [4]. Series of infrared 
pictures are ordered in time of recording and then 
adjacent pixels from consecutive planes are pro-
cessed. The first derivative over the selected spatial 
direction together with two-dimensional wavelet 
transform yielded most accurate results into detect-
ing cracks. 
Series of thermo-images are also under considera-
tion by Garbe et al. [5] who propose to have from 
them a complex motion estimation. Heat dissipation 
on a time scale as a diverging process undergoes 
analysis with the local gradient technique. Atmos-
pheric interaction with the ocean surface is the pri-
mary focus with a possible application to non-
destructive testing and botany as well. This method 
permit accuracies as high as one tenth of a pixel. 
Thermography allows not only pattern analysis but 
also separation from thermos-series [6]. Non-nega-
tive pattern discriminative scheme when eddy cur-
rent acts as a driver in pulsed thermography for 
detecting particular patterns and their temporal 
change is applicable in this unsupervised approach. 
It is known with its scale invariance. 
Aerospace composites are another object of testing 
under the use of eddy current [7]. In this approach 
signal reconstruction along with a pattern recogni-
tion techniques take place. Relatively large surface 
areas under processing and short time intervals  
are distinct properties of this method. Tucker de-
composition helps into near-surface defects spot-
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ting from a few hundred frames captured forming 
the three-dimensional tensor. 
Tensor regression based on engaged penalties are 
in the basis of an image-based prognostics ap-
proach [8]. Series of degradation images supports 
the prediction of the residual product lifetime. Ten-
sors give the opportunity for dimension reduction by 
projection to a sub-space with information sparing 
capability. Further, regression acts a mapping tool 
for the time-to-failure data and CANDECOMP/ 
PARAFAC (CP) along with Tucker decomposition 
serve as parameter estimator for the higher dimen-
sion configuration. Testing with a data from rotating 
machinery provides positive practical results. 
Another highly productive and current approach for 
nondestructive testing is the microwave termogra-
phy [9]. Zhang et al. present a review on various 
techniques employing it pointing out its advantages 
– selection of the area of heating, energy efficiency, 
power uniformity, volume affecting and ability for 
particular penetration. Despite being extremely use-
ful in quality control and industrial continuous moni-
toring its applicability in surveillance applications is 
not mentioned.  
Gear inspection in wind turbines at limited time in-
tervals during general maintenance for fatigue dis-
covery prove useful according to Gao et al. [10]. 
The implementation of the tensor apparatus over 
thermal data obtained by inductive principle it be-
comes possible to supply early warning on wearing 
out such components.  
Despite the vast amount of practical implementa-
tions of thermographic sequences, most often ap-
plying tensor decomposition schemes, in non-dest-
ructive testing, quality control, fault diagnosis or 
investigating complex interaction processes of phy-
sical nature it seems that thermography based sur-
veillance systems is another major field that de-
serves attention into employing these methods. In 
this study we are investigating the applicability of 4 
multidimensional decomposition algorithms for wild 
animals population estimation through background 
modelling and subtraction. The tested algorithms 
are presented in Section 2, followed by experi-
mental results in Section 3. The latter are discussed 
in Section 4 with useful guidelines about the future 
use of this algorithms and then the paper ends with 
a conclusion. 

2. ALGORITHMS DESCRIPTION 

2.1. GODEC 
When establishing certain relations among parame-
ters describing processes it is practical to use com-
pressed representations and most of the processing 
is done by matrix completions. The latter are done 
by low-rank formations ℒ and sparse entities 𝒮. 
The Go decomposition [11] is efficient tool in esti-
mating these parts given the input matrix as: 

 𝒳 = ℒ + 𝒮 + 𝒢,        (1) 

where 𝒢 is the present noise within the data. Alter-
native association is made according to: 

 �ℒ ≅ 𝒳 − 𝒮
𝒮 ≅ 𝒳 − ℒ

�. (2) 

Speeding up the whole process comes from bilat-
eral random projections [11]. It is also applicable to 
matrix completion. Given the objective function: 

 𝑓 = ‖𝒳 − ℒ − 𝒮‖𝐹2  (3) 

Zhou and Tao [11] prove that it goes to a local min-
imum while  ℒ and 𝒮 strive to their optimums. The 
procedure is robust as the authors report compared 
to Robust PCA and OptSpace. 

2.2. LRGEOMCG 
LRGeomCG [12] represent low-rank matrix comple-
tion where the optimizing procedure is implemented 
directly given  a multitude of matrices with a fixed 
rank. This task may be expressed as: 

 �
minimize𝒳 𝑓(𝒳) ∶= 1

2
‖𝑃Ω(𝒳 −𝒜)‖𝐹2 ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒳 ∈ ℳ𝑘 ∶=
{𝒳 ∈ ℝ𝑚𝑥𝑛: 𝑟𝑎𝑛𝑘(𝒳) = 𝑘}.

� (4) 

In (4), applying the Frobenius norm F, 𝒜 is mxn 
matrix on subset Ω, part of entire set of inputs 
{1÷m}x{1÷n}. The holistic minimizer has a rank of k. 
ℳ𝑘  is a smooth manifold over ℂ∞ and the optimi-
zation function is denoted as f. The author reports 
good scalability in solving large-scale tasks with 
higher efficiency than some of the other well known 
algorithms of the same type. 

2.3. ROSL 
Computational sparing low-rank recovery is possi-
ble by applying ROSL [13] in the case of lacking 
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samples from the input data. The approach is quite 
practical within the computer vision field. A new 
measure considering the rank of the sparse repre-
sentation over orthonormal subspace and a coding 
algorithm for rank minimization makes it possible to 
have quadratic complexity of the matrix size for the 
procedure. Shu et al. [13] prove that the new rank 
measure is limited from below by the nuclear norm. 
Random sampling leads to linear complexity in 
further optimizing the algorithms according to the 
authors and outperforms some of the earlier de-
compositions. 

2.4. NENMF 
Non-negative matrices could undergo decomposi-
tion using a product of a couple of factors in two-
dimensional form with the condition to be also non-
negative. NeNMF [14] uses Nestorov’s optimal 
gradient approach over one factor optimizing it al-
ternatively with another of fixed form. Matrix factor 
is recalculated at each step by the projected gradi-
ent method over a predetermined position for a 
search and a Lipschitz constant determines the 
amount of increment. Approximation accuracy and 
computational time efficiency are proved to be 
higher than that of multiplicative update rule and 
projected gradient method alone [14]. 

2.5. Motion-based multiple object tracking (MT) 
As a mean for comparison with the above four de-
scribed algorithms MT [15] has been tested to eval-
uate both the computational efficiency and the ac-
curacy provided. Working entirely in spatial domain 
it is widely used in the practice consisting of the 
following stages: entity objects construction, tracks 
initialization, detecting objects, predicting track 
changes, assigning tracks to objects, continuous 
update of generated tracks and outputting the re-
sults. 

3. EXPERIMENTAL RESULTS 
The experiments are implemented on a PC with 
Intel Core i5 x64 CPU (4 cores) operating at 3.1 
GHz, 12 GB operational memory. The OS is Linux 
Ubuntu 14.04 LTS and the testing environment – 
Matlab R2016a. All decomposition algorithms come 
from LRSLibrary v. 1.0.10 [16]. Testing database 
comprises of six thermographic videos (Tabl. 1) 
containing in various frames from one to tens of 
wild species. 

The average decomposition (DT) and full pro-
cessing time (FT) for all 6 videos, including input-
output operations to the hard drive, are given in 
Table 2. 

Table 1.  Testing videos 

Video Width, 
px 

Height, 
px FPS Frames 

1 320 180 29.97 211 
2 400 224 29.97 211 
3 400 224 23.98 145 
4 400 300 29.97 211 
5 400 300 20.00 141 
6 400 300 20.00 140 

 
There also appears the average animal detection 
accuracy (A). In Fig. 1 its distribution (p) for every 
video reveal how stable each of the tested algo-
rithms are. 

Table 2.  Average processing times and detection accuracy 

Algorithm DT, sec FT, sec Accuracy, % 
GoDec 1.96 5.54 98.53 

LRGeomCG 4.74 8.43 99.20 
ROSL 9.01 12.45 96.51 

NeNMF 0.36 4.01 99.30 
MT 4.22 - 63.55 

 

  
a) Video1–GoDec       b) Video1-RGeomCG 

  
  c) Video1-ROSL              d) Video1-NeNMF 

  
  e) Video2–GoDec          f) Video2-RGeomCG 
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      g) Video2-ROSL          h) Video2-NeNMF 

  
       i) Video3–GoDec      j) Video3-RGeomCG 

  
        k) Video3-ROSL         l) Video3-NeNMF 

  
        m) Video4–GoDec   n) Video4-RGeomCG 

  
        o) Video4-ROSL         p) Video4-NeNMF 

  
       q) Video5–GoDec      r) Video5-RGeomCG 

  
         s) Video5-ROSL         t) Video5-NeNMF 

  
        u) Video6–GoDec      v) Video6-RGeomCG 

  
          w)Video6-ROSL         x) Video6-NeNMF 

Fig. 1. Accuracy distribution across videos 

4. DISCUSSION 
The fastest algorithm is NeNMF and the slowest is 
ROSL, 25 times slower. The MT, a defacto industry 
standard in numerous practical surveillance applica-
tions, which we use to compare to the 4 tensor 
decomposition algorithms, falls somewhere in the 
middle as time performance with 4.22 sec (Table 2). 
Not so is the case with its accuracy – more than 
30% lower than all the other methods which are 
very close with a difference of no greater than 3% 
and in the same time nearing 100%. NeNMF is the 
most accurate approach with 99.30% followed by 
only 0.10% by LRGeomCG. With a few exceptions, 
the distribution of accuracy is relatively symmetrical 
(Fig. 1). 
The reason for the considerable lower performance 
of MT lays behind the actual content of the testing 
videos. While the accuracy for video 1 is 74,16% 
and may be considered as acceptable, the content 
of the video comprises of relatively large (in relative 
number of pixels)  objects of interest (deers) – Fig. 
2.a. In contrast, video 2 contains small objects for 
tracking (wild boars) closely located, significant 
portions of which are being missed or tracked as 
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one object (Fig. 2b). Only 2 objects for tracking 
exist in video 3 (baby deers) and here MT achieves 
100% accuracy but with 109% false positives due to 
slightly moving nearby objects with temperatures 
close to that of the animals (Fig. 2c). Accuracy falls 
considerably for the MT in video 4 with only 42,25% 
due to the extremely small objects to track (wild 
boars) and their large number (Fig. 2d). The per-
spective of capturing the video is panoramic taken 
high above the ground which leads to radial-like 
change of speed of the species even when they are 
moving at a constant rates. All these factors lead to 
that unsatisfactory result in this case. The accuracy 
is even smaller, just 16.31%, for video 5 which in-
cludes a family of wild boars – mother with babies 
which are significantly smaller in size and no detec-
tion occurs for them. Only the mature specimen has 
been spotted for around 1/3rd of the frames (Fig. 
2e). A single deer captured at a close distance in 
video 6 (Fig. 2f) yields 100% accurate detections of 
its body by the MT. Lots of segmented detections at 
the boundaries of limbs and head lead to 96.43% 
false positives. It raises concerns for cases where 
multiple parts of a single connected body are mov-
ing at different speeds and sometimes in different 
directions. A problem that need to be resolved fur-
ther by more advance analysis within the tracking 
algorithm. 
 

   
a    b 

  
c    d  

  
e    f 

Fig. 2. Animal detections by MT 

5. CONCLUSION 
In this study the performance of GoDec, 
LRGeomCG, ROSL, NeNMF and MT algorithms is 
evaluated applied to the wild animals detection and 
tracking. High accuracy for the tensor decomposi-
tion based implementations of 98.39% on average 
is achieved. Execution times allow real-time pro-
cessing when ported on the appropriate hardware 
and may be used in mobile environment. Further 
study is needed to enhance performance when 
dealing with smaller objects and in particular cases 
of camera perspectives, e.g. when filming from a 
drone. 
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