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Abstract  

 

In the present study, a new methodology for solving an eigenvalue problem and 

the two-dimensional E-polarized electromagnetic wave diffraction by the arbitrary 

shaped perfect electric conducting (PEC) scatterers is proposed. The approach is based 

on the Gaussian basis function and the Regularized Hankel’s function. The study 

provides the theoretical background of the newly proposed approach in detail. By 

expanding the current density on the surface with the summation of Gaussian functions 

and approximating the Hankel function with regularization leads to having a simpler, 

compact, and novel approach to investigate the behavior of the electromagnetic field in 

the vicinity of the obstacles. Also, the numerical results including the comparison with the 

other methods are provided. The outcomes reveal that the proposed method can be 

employed for such a class of diffraction problems to solve the problem, numerically. 

 

 

1. INTRODUCTION AND PROBLEM FORMULATION 

The numerical and semi-numerical methods in Electromagnetic diffraction 

problems are rapidly evolving branches after high-performance computers become cheap 

and easily accessible. There exist many methods which give approximate solutions to the 

scattering problems with acceptable and manageable accuracy like the Method of 

Moments, Finite-difference time-domain method, Finite element method, the Method of 

Auxiliary Sources (MAS), and Orthogonal Polynomials, etc. [1-9]. The Method of 

Moments gives the possibility to reduce the scattering problem to an integral equation or 
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coupled set of an integral equation which finally are expressed as the matrix equation. 

The method of Moments has a singularity problem when the boundary conditions are 

required on the surface. To avoid the singularity, Method of Moments uses the 

regularization technic or tries to find an analytical solution for the self-terms in the matrix 

equation [1-4]. On the other hand, the method of auxiliary sources for example 

considering the analytical nature of the field at the boundary and by the analytical 

continuation of the scattered field, the sources are shifted inside or outside of the 

corresponding surface [5-7]. Then, the singularity problem is resolved. However, the 

method of auxiliary sources has the problem when the geometry of the scatterer contains 

the edge or corners, in that case, the scattered field is not analytical on the surface and 

auxiliary sources cannot be shifted inside [10-12]. That is why in previous works, the 

corresponding authors made small changes in the original geometries and have smooth 

surfaces to obtain results with high accuracy. The change at the corners leads to having a 

deviation between the solution of the geometry with a smooth surface and the original 

one. The same procedure was followed for finding eigenvalues and eigenfields of the 

corresponding geometries. In the present study, these two issues are overcome by 

introducing the Regularized Hankel function [11,12]. 

The solution of a fairly wide class of physical problems is reduced to the solution 

of singular integral equations. As a rule, the kernel of the integral equation has a 

singularity since at zero value of the argument the value of the kernel becomes infinite. 

This is purely mathematical infinity, and special mathematical methods have been created 

to solve this problem (regularization method, etc.). But in physics, as you know, there are 

no quantities with infinite values. And for all other values of the argument, the value of 

the kernel has a clear physical meaning. The question arises whether it is possible to 

initially create such a function, which will have a completely adequate physical meaning, 

including zero values as the argument. In the presented article, such a problem is posed 

relative to Green's function for a two-dimensional problem. 

In this study, the goal is to introduce a new methodology that will give the 

possibility to solve the two-dimensional diffraction, eigenvalue, and eigenfield problem 

for arbitrary shape scatterers. The main idea in this approach is that the Hankel function 

(corresponding to Green’s function in two-dimensional space), which represents the 
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electric field created by the current density due to the Dirac function is replaced by the 

regularized Hankel function, which corresponds to the Gaussian current density. The 

regularized function at the far-field is the same as the Hankel function but at a small 

distance is a different function that does not have a singularity in the center. This gives 

the ability to put the sources directly on the surface and require the boundary condition in 

the same points. As a result, we avoid the singularity problem by regularizing the 

corresponding function. Therefore, the diffraction problem by arbitrary shape scatterers 

both smooth and the ones with corners or edges can be solved. Previously, such problems 

with corners cannot be solved with MAS.  Mathematically, it has been shown that a 

function can be expressed approximately in terms of the linear combinations of 

translations of Gaussian function [13,14]. This fact triggers us to develop a new and 

approximate solution for two-dimensional E- polarized electromagnetic diffraction 

problems. Here, the Method of Moments is employed with expanding the current density 

on the scatterer surface as a summation of the Gaussian function. As a result, an integral 

equation is obtained to be solved for matrix coefficients evaluation. Here, to avoid 

repetitive calculation of the same integral, the corresponding integral is calculated only 

once, then it is directly employed during the computation by using the regularization. 

Here, the regularized Hankel’s function is proposed. The function is represented by 

analytical expressions with similar behavior for different arguments. This gives the 

ability to solve the problem faster.  

In the following chapter, the formulation of the problem is presented. The 

theoretical background would be given in detail. Then, the numerical results obtained by 

the proposed method are provided. Later, the comparison with the other methods is 

presented. In the end, the conclusion is drawn.  

 

2. FORMULATION OF THE PROBLEM 

In this section, a mathematical background is provided in detail. Due to proposing 

a new approach, the mathematical derivations would be given from the starting point. 

Here, we consider the two-dimensional electromagnetic diffraction problem by the PEC 

object with an arbitrary shape. The investigation covers open, closed, and semi-closed 

surfaces such as strip, cylinder, and semi-closed circular strip, respectively. All objects 
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are located in a vacuum. As an excitation source, we can use a plane wave or the cylinder 

source (both in E-polarized case) with time dependency 𝑒−𝑖𝜔𝑡  where 𝑖 = √−1  is the 

angular frequency and t is time. The electromagnetic field radiated by the sources excites 

current on the scatterer’s surface [1,3]. In the present study, all objects have an infinite 

length in z-direction. Therefore, the electric field has only one component perpendicular 

to the XoY plane and is oriented along Z-axis [2,3]. To find the scattered electric field 

(E_sc), the induced current on the scatterer is convolved with the corresponding Green’s 

function given in (3). Then, the scattered field is found by (1) [9]: 

 

𝐸𝑠𝑐(𝑥, 𝑦) = 𝑖𝜔𝐴 =
𝜔𝜇

4
∫ ∫ 𝐽(𝑥′, 𝑦′)𝐻0

(1)(𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)𝑑𝑥′𝑑𝑦′
∞

−∞

∞

−∞
 , (1) 

where 𝐻0
(1) − is Hankel’s function of zero-order and the first kind and corresponds to the 

Green’s function of the equation, (𝑥′, 𝑦′)  stands for the source point, 𝑘 = 2𝜋/𝜆  is 

wavenumber and 𝜇 stands for the magnetic permeability. To solve (1), there are many 

methods are developed [1-4]. Here, the Method of Moments (MoM) approach is 

employed [1,2]. To solve the integral equation given in (1), the current density is 

expressed as a summation of the basis functions 𝑓𝑖(𝑥
′, 𝑦′) with corresponding constant 

weights given as 𝑎𝑖. Here, 𝑁 is the number of source points [13,14]. 

 

𝐽(𝑥′, 𝑦′) = ∑ 𝑎𝑖
𝑁
𝑖=1 𝑓𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑥

′, 𝑦′) (2) 

 

where,  𝑓𝑖(𝑥𝑖, 𝑦𝑖 , 𝑥
′, 𝑦′) = √2(𝛼𝑘)2𝑒−(𝛼𝑑𝑘)

2
 and 𝑑 = √(𝑥′ − 𝑥𝑖)2 + (𝑦′ − 𝑦𝑖)2. 

Here, 𝑑 is the distance between the source point (𝑥′, 𝑦′) and the basis function’s center 

location (𝑥𝑖, 𝑦𝑖 ). Note that, all Gaussian functions have the same variance and only 

translation of them is used in the study. The novelty of the study is to employ the 

Gaussian function as a basis while expressing the current density induced on the scatterer 

as given in (6) [13,14]. In fact, (𝑥𝑖, 𝑦𝑖) are N discrete points on the scatterer’s surface and 

𝛼 should be calibrated while comparing the results with strict analytical solutions or the 

numerical solutions with high accuracy. Keep in mind that, with such an approach, 

Gaussian function decays fast and is negligible beyond the square area |𝑥′ − 𝑥𝑖| >
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𝜆, |𝑦′ − 𝑦𝑖| > 𝜆. Therefore, we can assign a zero value to the basis function outside this 

square area. 

𝑓𝑖(𝑥
′, 𝑦′) = {

√2(𝛼𝑘)2𝑒−(𝛼𝑑𝑘)
2
, |𝑥′ − 𝑥𝑖| ≤ 𝜆, |𝑦′ − 𝑦𝑖| ≤ 𝜆

0,                               |𝑥′ − 𝑥𝑖| > 𝜆, |𝑦′ − 𝑦𝑖| > 𝜆
 

 

(3) 

 

where 𝛼 is the free parameter to be optimized and 𝜆 is the free-space wavelength of the 

incident wave. The details would be given in the numerical part of the present study. 

Then, if we put the expression (2) into (1), the induced current and corresponding electric 

fields will be the smooth functions on the surface as : 

 

𝐸𝑠𝑐(𝑥, 𝑦)

=
𝜔𝜇

4
√2(𝛼𝑘)2∑𝑎𝑖 ∫ ∫ 𝑒−(𝛼𝑘√(𝑥

′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)2𝐻0
(1)(𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)𝑑𝑥′𝑑𝑦′

𝑥𝑖+0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖+0.5𝜆

𝑦𝑖−0.5𝜆

𝑁

𝑖=1

 

(4) 

To apply the boundary condition, the total field (𝐸(𝑥, 𝑦)) should be obtained 

mathematically. The corresponding field is the sum of the scattered field and the incident 

field as 𝐸(𝑥, 𝑦) = 𝐸𝑖𝑛𝑐(𝑥, 𝑦) + 𝐸𝑠𝑐(𝑥, 𝑦)). On the surface of the scatterer, the boundary 

of the tangential component of the total electric field should be zero. Because the electric 

field has only one component and this component is tangential to the scatterer. Therefore, 

the boundary condition becomes 𝐸(𝑥, 𝑦)|𝜏 = [𝐸𝑖𝑛𝑐(𝑥, 𝑦) + 𝐸𝑠𝑐(𝑥, 𝑦)]|𝜏 = 0 . The 

corresponding equation is provided in (5). 

 

𝐸𝑖𝑛𝑐(𝑥, 𝑦)|𝜏 = −𝐸𝑠𝑐(𝑥, 𝑦)|𝜏 (5) 

 

where 𝜏 is the tangential vector on the surface which is directed in the z-direction due to 

having an E-polarized incident wave. Then, the integral equation is obtained after (5) is 

satisfied: 

𝐸𝑖𝑛𝑐(𝑥, 𝑦)

= −
𝜔𝜇

4
√2(𝛼𝑘)2∑𝑎𝑖 ∫ ∫ 𝑒−

(𝛼𝑘√(𝑥′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)
2

𝐻0
(1) (𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2) 𝑑𝑥′𝑑𝑦′

𝑥𝑖−0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖−0.5𝜆

𝑦𝑖−0.5𝜆

𝑁

𝑖=1

 

(6) 
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Here, with the point matching technics including N points (𝑗 = 1,2, …𝑁) on the surface 

of the scatterer, 𝑁 equations are obtained by boundary condition as given in (7). 

 

𝐸𝑖𝑛𝑐(𝑥𝑗 , 𝑦𝑗)

= −
𝜔𝜇

4
√2(𝛼𝑘)2∑𝑎𝑖 ∫ ∫ 𝑒−(𝛼𝑘√(𝑥

′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)2𝐻0
(1)(𝑘√(𝑥𝑗 − 𝑥

′)2 + (𝑦𝑗 − 𝑦
′)2)𝑑𝑥′𝑑𝑦′

𝑥𝑖+0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖+0.5𝜆

𝑦𝑖−0.5𝜆

𝑁

𝑖=1

 

(7) 

We can express the corresponding equations as a matrix equation below: 

 

𝑍𝑖𝑗 ∗ 𝑎𝑖 = 𝐵𝑗 (8) 

where 

𝐵𝑗 = 𝐸𝑖𝑛𝑐(𝑥𝑗 , 𝑦𝑗), 

𝑍𝑖𝑗 = −
𝜔𝜇

4
√2(𝛼𝑘)2 ∫ ∫ 𝑒−

(𝛼𝑘√(𝑥′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)
2

𝐻0
(1) (𝑘√(𝑥𝑗 − 𝑥

′)
2
+ (𝑦𝑗 − 𝑦

′)
2
)𝑑𝑥′𝑑𝑦′.

𝑥𝑖+0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖+0.5𝜆

𝑦𝑖−0.5𝜆

 

Here, (𝑥𝑖, 𝑦𝑖) are the points where the source is located and double integral is taken 

around this point. 

After finding unknowns by inversion, the current density can be obtained by (2). 

Similarly, the scattered Electric field can be found with (4). It is clear that for each 

(𝑥𝑖, 𝑦𝑖) in the double integral above, the value of the integral would be the same since 

𝑒−(𝛼𝑘√(𝑥
′−𝑥𝑖)

2+(𝑦′−𝑦𝑖)
2)2 is constant because the integration is taken around (𝑥𝑖, 𝑦𝑖) . 

Therefore, we can simplify the integral by taking the integration range around the center 

of the reference frame and the integral denote as regularized Hankel function as (9). 

𝑅𝐻(𝑥, 𝑦) = ∫ ∫ 𝑒−
(𝛼𝑘√(𝑥′)2+(𝑦′)2)

2

𝐻0
(1)(𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)𝑑𝑥′𝑑𝑦′

0.5𝜆

−0.5𝜆

0.5𝜆

−0.5𝜆
 (9) 

Here, 𝑅𝐻  stands for the abbreviation of the regularized Hankel’s Function. While 

ordinary Hankel’s function gives the electric field of the current density represented by 

Dirac’s delta function, the regularized one represents the electric field of the current 

density represented by the Gaussian function. It should be noted that Dirac’s function is 

the limit case of the Gaussian function. Finally, the scattered field can be expressed as: 
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                                                              𝐸𝑠𝑐(𝑥, 𝑦) =
𝜔

4
∑ 𝑎𝑖𝑅𝐻(𝑘𝜌)
𝑁
𝑖=1  (10) 

where 𝜌 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2. 

To simplify more, (11) is provided. 

𝑅𝐻(𝑘𝜌) = ∫ ∫ 𝑒−
(𝛼√(𝑘𝑥′)2+(𝑘𝑦′)2)

2

𝐻0
(1)(𝑘𝜌)𝑑(𝑘𝑥′)

0.5𝜆

−0.5𝜆

0.5𝜆

−0.5𝜆

𝑑(𝑘𝑦′) 
  

 (11) 

To have the faster numerical realization of this method it is better to avoid the 

calculation of (11), repetitively. This integral has a singular kernel but the value of the 

integral should be finite because it describes the electric field created with smooth 

Gaussian current. We can evaluate the integral (11) numerically by using the 

regularization in the kernel. If we plot this integral for different argument (𝑘𝜌), we will 

get a function which at a big distance behaves like a Hankel’s function, and the smaller 

distance it is a smooth function with no singularity in the center (Fig. 1).  That’s why we 

call it the regularized Hankel’s function. Because we know the shape of the regularized 

Hankel’s function we can approximate it with some analytical functions. Here, (12) 

stands for the approximation of (18) with less than 1% error: 

𝑅𝐻̃(𝑘𝜌) =

{
 
 

 
 𝐽0(𝑘𝜌) + 𝑖𝑚(𝐴

𝐻0
(1)(𝑘𝜌)

log(0.015𝑘𝜌)
− 0.23𝑖) 𝑖, 𝑖𝑓 𝑘𝜌 ∈ (0,2), 𝐴 = 4.74𝑒𝑖𝜋

180
190

𝐽0(𝑘𝜌) − 1.74𝑖, 𝑘𝜌 = 0

𝐻0
(1)(𝑘𝜌), 𝑘𝜌 ∈ (2,∞)

 

 

 

 (12) 

 

where  𝐽0 is the Bessel function with zeroth order. 

For 𝑘𝜌 = 0, the function has uncertainty, type 
∞

∞
. It can be resolved. Figure 1(a) 

shows the plot on which we have both function 𝑅𝐻 (red) and 𝑅𝐻̃ (blue) for different 𝑘𝜌. 

Figure 1(b) shows the amplitude of the imaginary part of Hankel's function (red) and the 

imaginary part of the 𝑅𝐻̃ function (Blue). As we see at the point 𝑘𝜌 = 2. 𝑅𝐻̃ the function 

goes smoothly to the ordinary Hankel’s Function. RH does not have a singularity in the 

point 𝑘𝜌 = 0. 
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Figure 1. The absolute value of Hankel function and 𝑅𝐻̃ for different 𝑘𝜌 

 

Because the regularized Hankel’s function does not have a singularity in the 

center while requiring the boundary condition on the scatterer’s surface, we don’t need 

the regularization technic for the self-terms (when we require boundary condition in the 

point where the source is located). Therefore, we can put the sources directly on the 

scatterer’s surface. Also, this method works fine with the surface which has sharp corners 

and edges which is not possible for MAS. 

 

3. RESULTS OF NUMERICAL EXPERIMENTS 

In this part, numerical outcomes such as total radar cross-sections, near-field 

distribution are provided for different scattering and eigenvalue problem geometries. The 

program package is created and for different geometries, the diffraction and the 

eigenvalue problems can be obtained with the corresponding program. The α- parameter 

given in (2) is chosen to be 10 because this value gives the best match between analytical 

or another numerical approach for different shapes of the scatterer and different 

frequencies. The closed cavity resonators such as square, H-shaped and asteroid 

geometries have non-zero Eigen fields at the resonant frequencies [15-17]. To obtain 

resonance characteristics, an integration over a circular small contour inside the cavities 

is taken as given in (13). The idea of finding the eigenvalues by solving the scattering 

problem is proposed in [16,17]. 

 𝑅(𝑘) = ∫ |𝐸𝑠𝑐|
2𝑑𝜙

2𝜋

0
 (13) 

 

First, let’s consider the square. It should be noted that, for square cavities, an 

analytical solution exists [15]. Fig. 2(a) shows the geometry of the square with the 

dimension 1X1. Fig. 2(b) shows the frequency characteristics of the corresponding 
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geometry regarding the wavenumber. Here, the excitation is done by a line source located 

at (x_inc,y_inc )=(100,0). The sharp resonances corresponding to the eigenvalues of the 

square are observed. 

 
 

 

 

(a) (b) 

Figure 2. The geometry of the problem and frequency characteristics of the geometry (b). 

       

At Table 1, the comparison between the analytical and proposed methods for the 

eigenvalue of the square scatterer is provided. As it is seen, the deviation is less than 0.5% 

for the first three resonances. 

Table 1. Resonance values for the square geometry 

Resonances The Analytical Outcomes for 

Eigenvalues 

Outcomes for Eigenvalues by the 

proposed approach 

First 4.4733 4.4407 

Second 7.0234 7.048 

Third 9.95 9.9336 

 

Fig. 3(a) shows the near-total field distribution on the first resonance k=4.47 of 

the square. An electromagnetic wave goes around the square and casts a shadow behind. 

Inside the square, we see the eigenvalues field. Fig. 3(b) shows the field distribution at 

the no resonant frequency k=3 where the field inside is practically zero. 

  
(a) (b) 

Figure 3. Total Electric field distributions for square geometry (𝑘 = 4.47 for (a) and 𝑘 = 3 for (b)). 
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Let us consider now the H-shaped waveguide, find its resonances, and draw 

corresponding Eigen fields. Fig. 4(a) shows the geometry of the object. Fig. 4(b) shows 

the TRCS in the vicinity of the first two resonances. 

  
 

 (a) 

(𝑎 = 0.4, 𝑏 = 0.8, 𝑑 = 0.5, 𝑓 = 1.4) 
(b) 

Figure 4. The geometry of the scatterer (a) and the frequency characteristics of the geometry (b). 

 

Fig. 5(a) shows the resonant field distribution at k=6.956 and Fig 5(b) shows the 

resonant field distribution at k=7.013. 

  

(a) (b) 

Figure 5. Total Electric field distributions for H-shaped geometry (𝑘 = 6.956 for (a) and 𝑘 = 7.013 for (b)). 

 

Fig. 6(a) shows the geometry of the next object which we call ‘Asteroid’. Fig. 6(b) 

shows the TRCS in the vicinity of the first resonance. 

 

 
              (a) (b) 

  

Figure 6. The geometry of the scatterer (a) and the frequency characteristics of the geometry (b). 
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(a) (b) 

Figure 7. Total Electric field distributions for asteroid geometry (𝑘 = 5.273 for (a) and 𝑘 = 4 for (b)). 

 

 

Fig. 8 shows the total near field distribution at nonresonant frequencies for moon 

shape, flat-concave lens shape, wedge shape, strip, double side concave lens shape, and 

the ellipse shape scatterers. Here, 𝑟𝑖 , 𝜃𝑖
𝑎𝑝

, 𝑑𝑖  stand for the radius of the circular 

geometries, the aperture angle, and length of the strip on the plane, respectively (𝑖 = 1,2). 

For the incident line, the source location is denoted with (𝑥𝑖𝑛𝑐, 𝑦𝑖𝑛𝑐). For the wedge 

geometry given in Fig 8(c), 𝜃 corresponds to the angle between two strips. 
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-1.5               0               1.5 -1.5               0               1.5 

 1.5 

 

0 

 
-

1.5 

 1.5 

 

0 

 
-

1.5 

  -1.5                 0                    1.5   -1.5                  0                     

1.5 

 1.5 

 
 

0 

 
-

1.5 

 1.5 

 
 

0 

 
-

1.5 



“A NEW NUMERICAL APPROACH …”  V. TABATADZE, K. KARACUHA, O. F. ALPEREN, R. ZARIDZE

   

  

12 

 

 
 

 
 

(c)  

𝑘 = 4, 𝑑1 = 2, 𝑑2 = 2√2, 
𝜃 = 45°𝑥𝑖𝑛𝑐 = −10, 𝑦𝑖𝑛𝑐 = 0 

(d) 

d- is the size of the strip 

𝑘 = 4, 𝑑 = 2, 𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 100 

 

 
  

(e) 

𝑘 = 4, 𝑟1 = 1.5, 𝑟2 = 1.5, 

𝜃1
𝑎𝑝
=
4𝜋

3
, 𝜃2
𝑎𝑝
=
4𝜋

3
𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 20 

(f) 

𝑘 = 4, 𝑟1 = 2, 𝑟2 = 1, 
𝜃1
𝑎𝑝
=,𝜃2

𝑎𝑝
= 𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 100 

Figure 8. Total Electric field distributions for (a) moon shape, (b) Plano-convex lens, (c) wedge, (d) strip, (e) 

convex lens, (f) ellipse. 

 

4. COMPARISON WITH THE OTHER METHODS 

Fig. 9 shows the comparison results of the frequency characteristics obtained with 

the proposed method (red) and the method of orthogonal polynomials (blue) [9]. The 

comparison is obtained for the diffraction by the PEC circular arc with the radius 1 and 

the aperture angle of 60 degrees. The source is located in the center. As it is noticed the 

first resonance coincides regarding the wavenumber and amplitude. The second resonant 

frequency value is also matched. However, the deviation of amplitude is observed. This 

can be explained by the fact that as the excitation, in the proposed approach, the 

regularized Hankel is employed. In contrast, the ordinary Hankel function is used for the 

other approach. 
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Figure 9. Normalized frequency characteristics of the circular arc by the proposed method (red) and the 

orthogonal polynomials approach (blue).  

 

Fig. 10 shows both comparisons of the current density and the near field 

distribution due to the  PEC strip with the size 2 at 𝑘 = 4. Here, the source is located at 

𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 10. The red graph is obtained with MoM using pulse basis function and 

the blue one is obtained with the present method. The deviation in the current density is 

observed since the regularized Hankel function is employed in the proposed approach. 

Fig. 10(b) and (c) provide the total near electric field distributions obtained by the 

proposed and MoM (pulse function, point matching) approaches, respectively. 

 

 
  

 

 

(a)  

 

 

(b) 

 

 

 

(c) 

 

Figure 10.  Comparison of two methodologies (MoM and proposed approach) (a) Absolute Value of the 

Current Densities and Electric Field Distributions by the proposed approach (b) and MoM (c). 

 

5. CONVERGENCE 

We also investigated the convergence of our result for the diffraction by the 

circular PEC arc with radius 1 and the aperture size of 60 degrees. We estimated the 
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satisfaction of the boundary condition in the point of the arc contour in comparison with 

the incident field amplitude. Fig. 11 shows the corresponding graph. As we see, by 

increasing the number of discretization points the graphs approach the zero value. In 

terms of the incident field amplitude, the boundary condition in the point on the arc is 

99.95 % is satisfied when 𝑁 = 500. Also, for the higher frequency, the same procedure is 

followed and the error in the boundary condition is found 0.09 % for 𝑁 = 500. It should 

be denoted that, less than 1 percent error can be obtained after 𝑁 > 30.  

 

  
(a) (b) 

Figure 11. The error in boundary condition satisfaction (%) versus the collocation points (𝑁) (a) 𝑘 = 4 (b) 

𝑘 = 8. 

 

 

4. CONCLUSION 

In this article, a new methodology for the two-dimensional diffraction problem of 

the E-polarized electromagnetic wave by the arbitrarily-shaped perfect electric 

conducting scatterer is presented. Gaussian basis function is introduced for the current 

density representation and the Regularized Hankel’s function is defined which gives the 

ability to put the secondary sources directly on the scatterer. The present study has the 

advantage in comparison with other methods such as MoM and MAS since the boundary 

condition is satisfied in the same points where the secondary sources are located. As a 

result, the singularity problem is avoided. Such an approach gives the ability to solve the 

diffraction problem by an arbitrary shape scatterer consisting of both smooth parts as well 

as the corners and edges. The comparison with other methods reveals that the gives 

highly accurate results are obtained by the proposed method. Furthermore, the 

introduction of the Gaussian function as the basis function gives the ability to extend the 

proposed approach for two-dimensional H-polarization and also three-dimensional cases. 
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Abstract 

 

Numerical experiments have been used to study the properties of reactive fields 

that form the centers of radiation of the traveling wave field outside the region where real 

sources are located. It is shown that such reactive fields have a complex vortex character 

and a high amplitude compared to the traveling wave field. By analytical continuation of 

the far field in the opposite direction, using the functions of converging waves, it is shown 

that an external observer can see only the center of the field radiation, but not the 

reactive field that creates it or real sources. Several examples of the formation of the 

center of radiation of the traveling wave field outside the region of location of real 

sources are considered. 

 

 

1. INTRODUCTION 

The article is devoted to the observed in numerical experiments phenomenon of 

the emergence of a center of radiation (singularity) of the far field, when real sources are 

located in another area. We call the far-field singularities the regions of its analytical 

continuation, with dimensions of the order of the wavelength, which are the centers of 

equal phases and the centers of radiation of this field. In some cases this phenomenon 

takes place if the values of the amplitudes and phases of real sources are properly 

selected. Studies show that this produces high reactive fields with a special vortex 

structure, which form this singularity. The purpose of this work is to study the properties 

of such reactive fields using a number of examples. 

As is known, the reactive field is present in the near zone of any electromagnetic 

emitter (or scatterer) and has the character of a non-propagating standing wave. The size 

of the area occupied by it depends on the quality of the antenna matching with the 

external space. With good matching, these areas are minimal. The amplitude of the 
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reactive field, with increasing distance from the emitter, rapidly decreases (inversely 

proportional to the cube and the square of this distance), in far zone is equal to zero and 

therefore, information about it is not contained in the far zone. 

To be convinced of the statement above, lets discuss an approximate expression 

for the field of a radiator (scatterer) with a smooth surface, which can be represented as 

the sum of the fields of elementary radiators (for example, Hertz dipoles [1]) on this 

surface: 

( )( ) ( )3 2

0 0

1

exp 1 3
N

n n n n n n n n

n

E a ikR R ik R R R p p
=

  −  −
   

( )( ) ( )( )2

0 0

1

exp 1
N

n n n n n n

n

a k ikR R R p R
=

+   .   (1) 

Here nR  and 0nR , respectively, the distance and unit vector from the n - th dipole to a 

variable point in space, 
na  and 

np , accordingly, the complex amplitude and polarization 

vector of the n - th dipole, k  wavenumber, N is the total number of sources. We present 

the expression in this form in order to separate the reactive part of the field near zone 

and Fresnel zone (the first sum) from the part propagating into the far zone (the second 

sum). In the far zone (for all 
nR   the reactive field cannot participate and the 

approximate equality is written 

( )( ) ( )( )2

0 0

1

exp 1
N

n n n n n n
r

n

E a k ikR R R p R


=

   . 

It should be noted that in the problems of antenna synthesis (to which we have 

devoted works [2-7]), the far field is initially set in the form 

( )
( )

exp
,

r

ikR
E F

R
 


 , 

where R  is some averaged value of all nR , and ( ),F    the complex vector radiation 

pattern, i.e, the reactive field is not taken into account in advance. It is known that when 

solving synthesis problems, the aperture of the target antenna is selected in advance, and 

then currents are sought on this surface, providing the required diagram. In the case of 

selecting a different surface of the antenna, the currents providing the same diagram are 
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different. In this case, only the structure of the reactive field changes. Based on this, it 

can be argued that the same far field can be obtained by different distributions of sources 

(surfaces and currents) in the near zone. 

This statement does not contradict the uniqueness of the analytic continuation of 

the far field. It follows from the fact that in the near zone of the analytical continuation 

there is no information about the reactive field, since it does not initially participate in the 

far zone, from where this continuation is constructed. That is why, in [2-7], it was 

proposed to solve the problem of antenna synthesis by constructing an analytical 

continuation of a given far field into the near zone and finding its singularities. It was 

argued that by placing the sources at the found points of the far-field singularities, we 

will get the most optimal antenna, that is, with the smallest values of the reactive field. It 

was shown that for other distributions of sources that also provide a given far field, the 

dimensions of the reactive field and its amplitudes have higher values. 

The analytical properties of a traveling wave are well studied, as it is a carrier of 

information, it is precisely because of that, in most cases, studying it was of practical 

interest. Perhaps for this reason, the properties of the reactive fields themselves have not 

yet been deeply studied, despite the presence of a number of recent works in this 

direction (for example [8-10]). This work is devoted to the study of some properties of 

reactive fields, which are mathematically described by the first term of sum in (1). On the 

example of the addition theorem for cylindrical functions, as well as on a number of other 

examples, it is shown that high reactive fields are capable of creating singularities of the 

analytical field of a traveling wave outside the location of its real sources. The goal of 

this work is to study the properties of such reactive fields. For simplicity of calculations 

and visualization of field patterns, mainly two-dimensional cases are considered. The 

case of a three-dimensional field is considered at the end. Numerical calculations are 

carried out using the Method of Auxiliary Sources (MAS) [11-18]. It is assumed that the 

time factor has the form ( )exp i t− . 
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2. THEORETICAL PART  

As an initial example of the formation of a center of far-field radiation by sources 

outside the region of real sources, let’s discuss the addition theorem for cylindrical 

functions and describe its physical meaning. 

Consider the series 

 ( ) ( ) ( ) ( )1

0 expn n

n

J k H k in  
+

=−

− , (2) 

where 0 const = , 0    , 0 2   . According to the addition theorem, 

everywhere outside the circle of radius 0 , that is, for 
0   (Figure 1), this series 

converges and the equality 

 ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0 0expn n

n

J k H k in H k    
+

=−

− = − .  (3) 

In other words, outside the circle, this series has a well-defined physical meaning 

of the field of a point source of the type 
( )1

0H  centered at point 
1O . As for the inner region 

(
0  ), in it the series (2) diverges (studies have shown that only the imaginary part 

diverges) and it cannot be identified with the physical field. 

 

 

 

 

 

However, the situation will change if we restrict ourselves to a finite sum and 

consider the approximate equality 

 ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0 0exp
N

n n

n N

J k H k in H k    
+

=−

−  − .   (4) 

Calculations show that for a given value of 0k , it is possible to choose N that 

provides sufficient accuracy. Since the left side of (4) is a finite sum, and each of its 

terms satisfies the wave equation, it acquires a quite definite physical meaning of the 

Figure 1. The geometry of the summation 
theorem. 
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wave field inside the circle. Moreover, N is the number of real sources of the type of 

( ) ( )1

nH k  of this field. 

The field is emitted by these sources from the origin, but for an observer in the 

traveling wave zone, the radiation comes from point 
1O , where there is actually no real 

source. For this reason, we also call the point 
1O  an imaginary source. At the point 

1O  

there is a singularity of the analytic continuation of the external field. The observer 

cannot see real sources at the origin of coordinates, since they create only an internal 

reactive field, which does not propagate. Said above is confirmed by an example of 

constructing an analytical continuation of the far field into the near zone to singularities, 

at 0 4k =  (Figure 2), by the method proposed in [2 and 18]. Only the center of far-field 

radiation is visible, which, with an increase in N in the sum (4), gradually shifts from 

point O  to point 
1O . 

 

 

 

 

 

 

 

 

Figure 3a shows curves of equal field phases in the left-hand side of (4), for 

0 5k =  and 13N = . It can be seen that outside the circle it coincides with good accuracy 

with the field of a point source centered at point 1O . Analysis of the internal field shows 

that it has the character of a "breathing", non-propagating standing wave. During one 

period, the Poynting vector changes direction several times, which is typical for a reactive 

field. It should be noted that the change in the direction of this vector for different interior 

points does not occur simultaneously. As a result, in the region of the reactive field, 

regions appear in which countercurrents of energy arise. This explains the appearance of 

vortices of force lines of Poynting vectors in the inner region (Figure 3b). Adding even 

Figure 2. Displacement of the center of radiation of the analytical continuation of the far field, with 

increasing N. 

N=1 N=4 N=5 N=0 
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one next source significantly changes the nature of the redistribution of energies between 

them, and as a result, the values and general picture of the reactive field change 

significantly. In particular, new areas with vortices appear. This is the manifestation of 

the divergence of series (2) in the region of the reactive field. In this case, the accuracy of 

determining the far field increases. 

 

 

 

 

 

 

 

 

 

 

For a more detailed study of the energy picture of the field 

( ) ( ) ( ) ( ) ( )1

0 exp
N

n n

n N

E J k H k in z   
+

=−

= − , 

the dependences of the internal energy U  (in the region ( )D ) and the energy flux W  

through the external closed loop are studied, for some values 
0k  on the N  (Figure 4, 5a 

and 5b): 

 

( ) ( )( )
( )

2 2

0 0

1

2
D

U E H dxdy   = + , ( ) ( )( )
1

Re
2

L

W E H ndL =  . 

Here ( )H   is the magnetic component of the field, n  the outer normal to the 

contour L . With an increase in N , the energy flux approaches the corresponding value 

for the field of a point source. The internal energy of the reactive field, however, greatly 

increases. Attention should also be paid to the value of the order of 1015, while for the 

energy flow we have the order of 10-3. 

Figure 4. The inner area 

and outer contour. 
Figure 3. The field, when N =13 and k=: a) the 

equal phase curves, b) the Poynting vector field lines. 

b) а) 
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It is interesting that the series composed of the coefficients ( )0mJ k  of the 

addition theorem converges to one ([19] see 8.512 1), that is, to the amplitude of the 

imaginary source equal to unity: 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 2 0

1 1

2 1n n n n

n n n

J k J k J k J k J k J k     
  

−

=− = =

= + + = + =     . 

It should be noted that the consideration of sources of the high order type 
( )1

nH  is not 

the only one for obtaining the field of one source at point 
1O . Below, on several examples, 

it is shown that by various distributions of sources of type 
( )1

0H , it is also possible to 

obtain such a field. 

Let's rewrite (4) in an equivalent form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

0 0 0 0 0 0

1

2 cos
N

n n

n

J k H k J k H k n H k      
=

+  − . 

We have studied the diagrams and behavior of the fields of individual members, i.e. 

 ( ) ( ) ( )1

02 cosn nJ k H k n   . (5) 

Figure 6 shows the radiation patterns of these fields for 1,2,3,4n =  and 0 2k = . 

The number of petals in these diagrams is 2n. 

 

 

 

 

Figure 5. Dependences on N for: a) energy flow through the outer contour, b) internal energy. 

 

а) b) 
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It can be shown that each of these fields, for the corresponding n, can also be 

obtained by uniformly distributing 2n 
( )1

0H  type point sources along a circle of some 

radius n , determined from the condition 

( ) ( )1

02 1 !nn
n nk J k n − = − . 

Moreover, each source must radiate in antiphase with the neighboring one.  

For the case 0 2k = , we have the following first four values of 
nk  : 0.58, 0.84, 

1.02, 1.14 

 

 

 

 

 

  

 

 

 

 

Figure 7 shows the corresponding circles, with sources of the type 
( )1

0H  distributed 

along them. Figures 8a) and 8b) show a comparison of the source fields in figure 7, with 

the addition theorem field. It is seen that in the outer region these fields coincide with the 

field: ( ) ( )1

0 0H k  − , but their reactive fields are different. This confirms that the same 

far field can be obtained by different source distributions and only the structure of the 

reactive field depends on the nature of the distribution. 

Figure 8. Comparison of fields for N=4: a) the case of 

sources on circles, b) the case of the summation theorem. 

a) b) 

Figure 7. Sources distribution 

along the circle. 

Figure 6. Field radiation pattern when 
n=1,2,3,4. 
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Let us consider a more general case when the field ( ) ( )1

0 0H k  −  should be 

obtained by N number of sources of the type
( )1

0H  distributed on some contour l (Figure 

9a). The total field of such sources has the form 

 ( ) ( )1

0

1

N

n n

n

a H k  
=

− , 
n l  . (6) 

The coefficients 
na  have the meaning of the complex amplitudes (currents) of 

these sources and are determined from the condition of equality of fields (6) and 

( ) ( )1

0 0H k  − on the l : 

 ( ) ( ) ( ) ( )1 1

0 0 0

1

N

n m n m

n

a H k H k   
=

− = − , mr l , 1,2,...,m N= .  (7) 

Expression (7) is a system of linear algebraic equations for the coefficients 
na , the 

solution of which is carried out on a computer. 

 

 

 

 

 

 

 

 

 

 

In the three-dimensional case, the problem is reduced to obtaining the Hertz 

dipole field centered at the point 1O  

( ) ( ) ( )
1

0 0 0, 4 expE r r ikR
−

=  

 ( ) ( ) ( ) ( ) 3 2 2

0 0 0 01 3R ik R R R p p k R R R p  −  − −  
 

 (8) 

Figure 9. Obtaining the imaginary source using MAS: a) two-dimensional case, b) three-dimensional case. 

a) b) 
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a set of N auxiliary sources on some smooth surface S (Figure 9b). Here 0R r r= −  and 

0R R R= . The auxiliary source consists of two mutually perpendicularly oriented Hertz 

dipoles with unknown complex amplitudes 
na  and 

nb , polarized along the tangent 

vectors 
n  and n  to the surface S. The total field of auxiliary sources is written as: 

( ) ( ) ( )( ) ( )1 3 2

0 0 0

1

4 exp 1 3
N

n n n n n n n

n

E r ikR R ik R R R p p
−

=

 = −  −
   

 ( ) ( ) ( )12

0 0 0

1

4 exp
N

n n n n n

n

k ikR R R R p
−

=

−     ,        (9) 

where: n n n n np a b = + , n nR r r= − , 0n n nR R R= , 
nr S . The unknown coefficients 

na  

and 
nb  are determined from the condition of equality of fields (8) and (9) along two 

mutually perpendicular tangent vectors m  and m  on the surface: 

( ) ( )0 0,m m m mE r E r r  =  , ( ) ( )0 0,m m m mE r E r r  =  , 

where mr S
 
and m = 1,2, ..., N. It is convenient to construct the surface S  in the zone of 

the traveling wave, which will make it possible to disregard the reactive part of the fields 

(8) and (9). Below, we describe the results of some numerical experiments on obtaining 

imaginary radiation centers outside the region where real sources are located. It is 

assumed that the radiation of each such source does not affect the other sources, that is, 

they are "Untied". In practice, obtaining such untied sources is quite difficult, but in some 

cases it is possible. Therefore, we assume that the results described below can be 

implemented in practice. 

 

3. NUMERICAL RESULTS 

3.1. The case of distribution of sources on a circle 

Consider 
( )1

0H  type 15 auxiliary sources distributed along a circle centered at the 

origin and radius R , with 2kR = . By the method described above, the values of their 

complex amplitudes were found, which ensure the formation of the field of a point source 

of unit amplitude, centered at point 1O . 
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Figure 10a) shows the nature of the curves of equal phases of the field near the 

auxiliary contour. Inside the circle 0 4k = , which is the "boundary", the field has a 

reactive character, with high amplitudes, in comparison with the external field. This is 

confirmed by animation and analysis of the internal field. In this case, a phase shift 

between the electric and magnetic components is observed, close to 2 . The radius of 

the circle R  on which the condition (7) of equality of fields is required is defined as 

10kR = .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10b) shows an enlarged fragment supplemented by the Poynting vector 

field lines. The presence of vortices of these lines is also seen here. The figure 11a) and 

11b) show the absolute values and phases of the amplitudes of the auxiliary sources. 

According to figure 11a), the source close to point 1O  (numbered 8) has the maximum 

amplitude. 

 

 

 

 

 

Figure 10. Obtaining the imaginary source by 15 sources on the circle: a) the inner and outer fields, b) the 

Poynting vector lines in the inner area. 

а)  b)  
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It should be noted that each subsequent source is almost in antiphase with the 

previous source, which together ensures the formation of a high amplitude reactive field. 

In addition, the phases of sources with even (as well as odd) numbers differ from each 

other by a very insignificant value. It is this phase shift that ensures the transition of a 

small part of the reactive field energy into the energy of a traveling wave with the center 

1O . With a decrease in the radius of the auxiliary surface, the amplitudes of the auxiliary 

sources and the reactive field increase. The study showed that when the radius is halved, 

the amplitudes of the reactive field increase by two orders of magnitude. Hence, we can 

conclude that the further away the center of radiation created by the reactive field is, the 

higher is its amplitude. 

 

3.2. The case of distribution of sources along a segment 

Figure 12a) and 12b) show the case when 14 auxiliary sources are distributed 

along a horizontal segment of length 2R , with 8kR = . Due to the symmetry of the field 

in the upper and lower half-planes, the condition of equality of the fields is required only 

on the upper semicircle of the radius 15kR = . Comparing with the previous case, only the 

form of the internal reactive field has changed, and the external field again has a radiation 

Figure 11. The character of the sources complex amplitudes: a) distribution of absolute values, b) 

distribution of phases. 

a) 

b)  
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center 
1O . In this case, 

0 10k = . The animation of the internal field also showed the 

presence of an imaginary source field in it, that is, it "seeps" through the reactive field. If 

we subtract from the obtained field the field of a point source centered at 
1O , then the 

remaining part has a "breathing", non-propagating character, i.e., it is only a standing 

reactive field [20]. 

 

 

 

 

 

 

 

 

 

Analysis of the complex amplitudes of the auxiliary sources shows that they take 

on large values in comparison with the amplitude of the point source, the field of which 

they form in the far zone. As in the addition theorem, the sum of these amplitudes is 

equal to unit, i.e., the balance of the total current is observed. The figure13a) and 13b) 

show the corresponding absolute values of the amplitudes of the sources and their phases. 

It can be seen that the sources located in the middle of the segment have the maximum 

amplitude. 

In this case, neighboring sources are also almost in antiphase. You can notice the 

presence of a phase shift between even numbered sources (as well as odd ones). This 

phase shift is of little value, however, as in the previous case, it is this shift that ensures 

the transfer of a small part of the internal energy to the external region in the form of a 

field of a point source. 

 

Figure 12. Obtaining the imaginary source by 14 sources on the line: a) the inner and outer fields, b) the 

Poynting vector lines in the inner area. 

a)  b) 
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3.3.  Obtaining two imaginary centers of field radiation 

The following is the case when 15 auxiliary sources on a circle of radius 2kR = , 

describe the external field of two sources at points ( ),O x y    and ( ),O x y     (Figure 14). 

In this case 4kx kx = = , 2ky ky = − = − . The figure 15 shows the same external field 

described by 20 auxiliary sources on a curve of a more complex shape (Cassini oval).  

 

 

 

 

 

 

 

 

 

 

From these results, it can be concluded that the described method can be used to 

obtain the field not only of a point source, but also of two or more sources, i.e., fields of a 

more complex type. 

For simplicity of visualization and calculations, two-dimensional cases have been 

considered so far. However, the ideas of the work remain valid in the three-dimensional 

case, considered below. 

 

3.4.  Three-dimensional case 

225 Hertz dipoles are uniformly distributed on a sphere of radius 2kR = . The 

values of their complex amplitudes are found, which ensure the formation of a Hertz 

dipole field of unit amplitude, with a polarization vector along the OZ axis and with a 

pole at the point ( )1 0 , 0,0O r  where 0 4kr = . The radius of the sphere, on which the 

condition of equality of fields is required, is defined as 10kR = . The figure16 shows the 

Figure 14. Obtaining two 

imaginary sources field by 

sources on the circle. 

Figure 15. Obtaining two imaginary 

sources field by sources on the 

Cassini oval. 

Figure 14. Obtaining two imaginary sources 

field by sources on the circle. 

Figure 15. Obtaining two imaginary sources 

field by sources on the Cassini oval. 
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distribution of the Ez component of the field, with a clearly visible region of the reactive 

part. 

 

 

 

 

 

 

 

 

 

 

Next, we consider the same case of a spherical auxiliary surface, with the same 

radius and with the same number of auxiliary sources. In this case, such values of their 

complex amplitudes have been found that ensure the formation of the field of two Hertz 

dipoles located at points ( ), ,0O x y    and ( ), ,0O x y   , polarized along the OZ axis. The 

coordinates of these points are defined as 4kx kx = = , 2ky ky = − = − . The figure 17 

shows the distribution of the Ez component of the field. 

 

6. CONCLUSION 

In this paper it is shown that the location of the singularities of the analytical wave 

field and its real sources do not always coincide. This shift is due to the presence of 

reactive fields of real sources that form a singularity in another region. It is shown that 

such reactive fields have a high energy and amplitude compared to the field of a traveling 

wave, but due to their rapid decrease, they do not participate in the far zone. By 

constructing an analytical continuation of the far field, it is shown that an external 

observer can see only the singularity created by the reactive field, but not the field itself 

or its sources. The presence of vortices of the Poynting vectors force lines of the reactive 

field is explained by the existence of areas with counter energy flows. Two-dimensional 

and three-dimensional cases are considered. 

Figure 16. Obtaining the imaginary source field by 

auxiliary sources on the sphere. 

Figure 17. Obtaining two imaginary sources field 

by auxiliary sources on the sphere. 



“INVESTIGATION OF SOME PROPERTIES …”  I. DARSAVELIDZE, R. ZARIDZE, J. MANJGALADZE  

 

38 

 

ACKNOWLEDGEMENTS 

This work was carried out with the financial support of the Georgian National Fund 

named after Sh. Rustaveli (Grant YS-19-570). 

 

 

REFERENCES 

[1] J. A. Stratton, "Electromagnetic Theory", Moscow, 1948. 

[2] R. S. Zaridze, V. A. Tabatadze, I. M. Petoev-Darsavelidze, and G. V. Popov, 

"Determination of the Location of Field Singularities Using the Method of 

Auxiliary Sources", Journal of Communications Technology and Electronics, 2019, 

Vol. 64, No. 11, pp. 1170–1178. 

[3] Petoev-Darsavelidze, V. Tabatadze, R. Zaridze, M. Prishvin, "Investigation of the   

Reactive Field's Some Properties", XXIVth International Seminar/Workshop on 

Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory 

(DIPED-2019), Lviv, Ukraine, September 12-14, 2019, pp. 13-19 

[4] N. Vadachkoria, V. Tabatadze, R. Zaridze, I. Petoev "Active Sources Localization 

by Measured Field", DIPED 2016, Tbilisi, Georgia, September 26-29, 2016, pp. 

133 – 137. 

[5] V. Tabatadze, R. Zaridze, B. Poniava, T. Tchabukiani, "Application of the MAS in  

the 3D Antenna Synthesis Problems", DIPED-2015, Lvov, 2015, pp. 85-89. 

[6] R. Zaridze, V. Tabatadze, I. Petoev, T. Tchabukiani, “Optimal Antenna Synthesis 

Problem Solution Using the Method of Auxiliary Sources", International 

Conference on Microwaves, Communications, Antennas and Electronic Systems.  

[7] R. S. Zaridze, I.M. Petoev, V.A. Tabatadze, B.V. Poniava, ''The Method of 

Auxiliary Sources for antenna synthesis problems". Proceedings of XVIII-th 

International Seminar/Workshop on Direct and Inverse Problems of 

Electromagnetic and Acoustic Wave Theory (DIPED-2013), September 23-26, 

2013, Lviv, Ukraine. pp. 13-19. 

[8] D. Ding, J. Xia, L. Yang, X. Ding, "Multiobjective Optimization Design for 

Electrically Large Coverage", IEEE AP Magazine, Vol. 60, No. 1, 2018. pp. 27-37. 



JAE, VOL. 24,  NO. 1, 2022 JOURNAL OF APPLIED ELECTROMAGNETISM 

 

39 

 

[9] A. Michel, P. Nepa, X. Qing, Z. Ning Chen, "Considering High-Performance Near-

Field Radar Antennas", IEEE AP Magazine, Vol. 60, No. 1, 2018. pp. 14-26. 

[10] Sh. Arakelyan, H. Lee, A. Babajanyan, S. Kim, G. Berthiau, B. Friedman, K. Lee, 

"Antenna Investigation by a Thermoelastic Optical Indicator Microscope", IEEE 

AP Magazine, Vol. 61, No. 2, 2019. pp. 27-31. 

[11] Купрадзе В.Д. // Успехи мат. наук. 1967. T. 22. № 2. с. 59. 

[12] Vekua I.N. // Rep. Acad. Sci. USSR. 1953 V. 90. № 5. p. 715. 

[13] Zaridze R., Bit-Babik G., Tavzarashvili K., et al. //IEEE Trans. 2002. V.AP 50. № 

1. P. 50. 

[14] Tabatadze V., Bijamov Jr.A., Kakulia D., et al. // Int. J. Infrared and Millimeter 

Waves. 2008. V. 29. № 12. p. 1172. 

[15] Rolland A., Kakulia D., Petoev I., et al. // Proc. 11th Int. Conf. on Mathematical 

Methods in Electromagnetic Theory (MMET 2008), Odessa 29 Jun.–02 July. 2008. 

N.Y.: IEEE, 2008, p. 208. 

[16] Tabatadze V., Petoev I., Zaridze R. // Proc. 13th Int. Conf. on Mathematical 

Methods in Electromagnetic Theory (MMET 2010). Kyiv. 6–8 Sep. 2010. N.Y.: 

IEEE, 2010. 

[17] Petoev I., Tabatadze V., Zaridze R. // Proc. 5th Eur. Conf. on Antennas and 

        Propagation (EUCAP), 2011, Rome, Italy. p. 1157.  

[18] Zaridze R., Bit-Babik G., Karkashadze D., et al. The Method of Auxiliary Sources 

(MAS). Solution of Propagation, Diffraction and Inverse Problems Using MAS. 

Athens: Institute of Communication and Computers Systems, 1998. 

[19] I. S. Gradshteyn, I. M. Ryshik, "Table of Integrals, Series, and Products", Moscow, 

1963. 

[20] http://lae.tsu.ge/ 

  

 

 

 

 


