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Abstract 

 

The inverse scattering problem is to recover input parameters (material 

parameters, size of the object, initial data of the field, etc.) from the scattering field data. 

In the present paper we describe the procedure to recover permittivity of the dielectric 

cylinder. A limited number of measurements of scattered field intensity along the line on 

the shadow side of the cylinder are used. Numerical results were calculated for several 

values of dielectric permittivity. The results demonstrate the possibility of reconstruction 

of permittivity for the dielectric cylinder. 

 

 

1. INTRODUCTION 

The wave scattering process is one of the key research methods in physics. The 

study of the amplitude and phase of scattered waves, and their dynamics in space and 

time allows to fully describing the process under study. At that, forward and inverse 

problems are distinguished in the theoretical description of scattering processes. In the 

first case, the scattered field is sought based on the initial data. If the inverse problem, 

then scattered field is assumed to be given, and the problem of determining the initial 

values of the field, or other initial parameters, is formulated. Definitely, the solution of 

the inverse problem provides fundamentally different data and possibilities compared to 

the forward one. The rigorous mathematical foundations for the theory of the inverse 

problem were developed in the second half of the last century. The main results could be 
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found in the monograph [1]. However, much less progress has been achieved so far for 

inverse time-harmonic electromagnetic wave scattering problems. The reasons are due to 

the complexity of the combined system of equations for the electric and the magnetic 

fields, necessity to impose additional assumptions on the incident illumination and the 

nature of the scatterer, the difficulties originating from the much more complicated 

regularity theory of solutions to Maxwell’s equations as compared to solutions of elliptic 

partial differential equations. Nevertheless, the development of computational 

technologies, along with the relevance and importance of the problem of electromagnetic 

wave backscattering, has stimulated significant progress in the problem over the past two 

decades. It worth to note the methods using study of inverse wave scattering is non-

intrusive to the object under study. To implement it we only need to collect scattered 

fields outside the object non-destructively. Therefore, it has a wide range of applications 

in various fields, such as: radar and sonar imaging [2,3], geophysics [4], and medicine 

imaging [5], remote sensing [6], biomedical imaging and diagnosis [7].   

Iterative methods are usually width used to solve inverse scattering problems 

(ISP). Iterative procedure employing an equivalent Neumann series solution in each 

iteration step has been presented in [8] for solving the two-dimensional inverse scattering 

problem. Iterative algorithm for the reconstruction of the three-dimensional complex-

valued refractive index of an object proposed in [9]. The ISP is reformulated as an 

optimization problem that is iteratively solved thanks to a conjugate gradient method in 

Ref. [10]. Another popular method is linear sampling method (LSM) which consists of 

solving the far-field integral equation for the unknown angle function of far field pattern 

[11,12]. Domain derivatives employed in [13] to solve inverse electromagnetic scattering 

problems for perfect conducting or for penetrable obstacles. A variational approach 

developed to the interior transmission problem appeared in the study of the ISP proposed 

[14]. Reconstruction of the refractive index from experimental backscattering data using 

a globally convergent inverse method has been realized in [15]. Also, it worth to note that 

the so called photonic nanojet discovered in this century [16]is an example of the success 

revisit of even well-known effects using modern computing technologies. In [17,18] it is 

shown that the solution of ISP for objects capable of generating nanojets leads to new 

implemented practical applications.  
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While (semi) analytical methods can provide a qualitative analysis of the final 

results, numerical methods appear to be more reliable, offer wider possibilities, and, in 

addition, allow controlling the accuracy of the results. Therefore, the choice of the 

solution method moved from semi-analytical methods to numerical ones, along the 

development of computational technologies. The method we present is a symbiosis of 

both approaches: approximately representing the original equation in operator form, we 

expressed the scattered field in terms of the initial data of the problem. Thus, having the 

scattered field data, we are able to determine any parameter from the group of initial data. 

As a demonstration of the possibilities of implementing the method, we analyze the 

dependences of the scattered field (determined along some line) for different values of the 

cylinder size and permittivity. The advantage of the presented approach is a convenient 

and physically meaningful functional relationship between the final and initial data; 

compactness of setting the initial data - they are set along the line opposite to the 

scattering object, but not around it; controlled accuracy of the results. 

 

2. SCATTERING OF ELECTROMAGNETIC WAVE BY DIELECTRIC OBJECT: 

SOLUTION FOR INVERSE SCATTERING PROBLEM 

The electromagnetic field which has nonzero Ez, Hx, Hy components is referred to 

as TM polarized field. For that case the Maxwell’s equations are transformed to 

Helmholtz equation for electric field: 

0),(),( 22 =+ yxEkyxE zz                             (1) 

where k=2/,  - wavelength,  - dielectric permittivity, which equal an unity and c out 

and inside of the cylinder respectively. Introducing free space Green function 
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Here ),( yxr =


, H0
 (2) is the Hankel function of zero order. The next step is use of 

approach developed in [20]. We divide the cross section of the dielectric cylinder into N 

cells so that the dielectric constant and the electric field intensity can be assumed constant 
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over each cell. Then an integral equation (1) for the electric field will be transformed to 

the next one: 


=

−−=
ncell

N

n

nn

inc

mm dydxkHE
ik

EE '')()1(
4

)2(

0

1

2

           (3) 

where En and n – represent electric field intensity and the dielectric constant at the center 

of cell n, 
22 )'()'( mm yyxx −+−= . Replacing a cell by a circle with the same square 

we can get an exact solution for the integral over Hankel function: 
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where  and  are polar coordinates based on a coordinate origin at the centre of cell n, a 

is the radius of a circular cell, J1 represents the Bessel function of the first order. 

Let’s introduce notations for the left parts of (3) and (4): EL, HL,c and Ec, Hc,c if r


are inside or out of the cylinder cross section C.  Thus from (3) we have 2 equations: 
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where 
i

cE  and 
i

LE  means the incident field determined for the points lying along line 

placed on some fixed distance L from the cylinder and inside the cylinder respectively. It 

should be mentioned that all quantities in (5-6) denoted by E are the vectors, while rest 

are the matrices. Solving (5) for Ec and then using it in (5) we get 
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Hence, we find for the dielectric constant: 
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There are no restrictions on the position where scattering field should be measured. 

Those, they can be chosen arbitrarily: along a certain closed line around the cylinder, a 

semicircle at a distance, etc. As mentioned above, we considered the location of these 

values along a line on the side of the cylinder opposite to the incident wave direction. 
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3. RESULTS AND DISCUSSIONS 

 

The sketch of the considered scattering process is shown in Figure 1. A plane 

wave irradiates a dielectric cylinder. The incident direction is chosen as the x-axis. The 

scattered field is fixed along the line of length L on the opposite side. Equation (8) can be 

used to calculate the dielectric constant for the known cylinder size, incident waveform, 

and scattered field data. However, possible random measurement errors can lead to 

inadequate calculation of the n by (8). In order to find the more suitable value of 

dielectric constant we initiate the fitting process of the n to the values of the scattered 

field. For this purpose, we will use formulas (5-6). First, we calculate internal field Ec 

from (5). As it is seen the internal field is completely determined by given geometry and 

material of the scattering body, ibid. cylinder for our case. Then we substitute Ec into (6) 

to calculate the scattered field intensity 
2

)( iLi rES


= (i=1..N) for the N points lying 

along line placed on some fixed distance L from the object (Fig.1). Thus, having 

calculated values of Si for a number of dielectric constant values, we compare them with 

the actually measured Si
m. To minimize random measurements errors, it is better to 

compare the standard deviation for the normalized values of Sni and Sni
m taking the 

relations of Si and Si
m to their maximum for each value of dielectric constant. As a result, 

the problem of determining the n is reduced to finding the minimum among j calculated 

for the given values of j: 
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Figure 1. Top view of the dielectric cylinder illuminated by a plane wave. 
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where j – fixed value of dielectric constant, and  - unknown. Comparing these values j  

we select the optimal value of  from the condition of the minimum deviation j. 

One of the important calculation parameters is the choice of the number of 

scattering field data N. Generally, the described procedure works for any N, but it is 

obvious that for a sufficiently small N the final result will lead to an inadequate value of . 

Let us estimate the approximate value for N. Let us choose the length L=10  (>5rc) and 

the step between the points x=0.1 . Since L=Nx, it means N = 100. It is easy to see 

that as the radius increases, the minimum acceptable number of points increases, which, 

accordingly, leads to an increase in the computation time. We used in all calculations 

L=16, x=0.01. 

In order to examine the outlined procedure, we calculated Sni for different values 

of dielectric constant  and for two values ( and 2) of cylinder radius (Figure 2). The 

correspondence of the line colors to the dielectric constants is the same for both cases and 

is indicated in the inset of Figure 2b. We can see a significant difference in the curves for 

different dielectric constants. That is, comparison to the real measured curve will lead to 

the optimal choice due to the use of the principle of minimum deviation, according to (9). 

The smaller the radius, the greater the change in the intensity of the scattered wave, 

which manifests itself in a greater number of inflections in Figure 2a. 

At that, for a smaller radius, a more unstable grouping of curve bendings is seen 

near to the scattering axis. At the same time, for a larger radius, one can even see a 

certain order for the change in the curves: an increase in their half-width as  increases 

for  <2, and reverse change for  > 2. This may be due to the displacement of the focus 

inside the cylinder as  > 2  [21]. 
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4. CONCLUSION 

The forward scattering problem is to compute scattered field for given size and 

material parameters of the scatterer. Respectively, the inverse scattering problem is to 

recover input data from the scattering field data. One of or a set of the following elements 

can be considered as the input data: material parameters, size, initial data of the field. In 

the present paper the possibility to recover permittivity from knowledge of the scattering 

field data have been considered. By replacing the original equation for the scattered field 

with an approximate one, it is possible to express the sought scattered field in terms of the 

incident one. Then, having data for both fields, it is possible to quickly and efficiently 
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Figure 2  Normalized field intensity along line L (see Fig.1) for dielectric cylinder of radius  

(a), and 2 (b).  Inset shows the values of dielectric permittivity for different color lines 

a  

b  
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determine the permittivity. The procedure has been demonstrated for dielectric cylinder. 

Potentially the proposed approach is suitable to determine size of the object as well. 
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