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Abstract  

 

In the present study, a new methodology for solving an eigenvalue problem and 

the two-dimensional E-polarized electromagnetic wave diffraction by the arbitrary 

shaped perfect electric conducting (PEC) scatterers is proposed. The approach is based 

on the Gaussian basis function and the Regularized Hankel’s function. The study 

provides the theoretical background of the newly proposed approach in detail. By 

expanding the current density on the surface with the summation of Gaussian functions 

and approximating the Hankel function with regularization leads to having a simpler, 

compact, and novel approach to investigate the behavior of the electromagnetic field in 

the vicinity of the obstacles. Also, the numerical results including the comparison with the 

other methods are provided. The outcomes reveal that the proposed method can be 

employed for such a class of diffraction problems to solve the problem, numerically. 

 

 

1. INTRODUCTION AND PROBLEM FORMULATION 

The numerical and semi-numerical methods in Electromagnetic diffraction 

problems are rapidly evolving branches after high-performance computers become cheap 

and easily accessible. There exist many methods which give approximate solutions to the 

scattering problems with acceptable and manageable accuracy like the Method of 

Moments, Finite-difference time-domain method, Finite element method, the Method of 

Auxiliary Sources (MAS), and Orthogonal Polynomials, etc. [1-9]. The Method of 

Moments gives the possibility to reduce the scattering problem to an integral equation or 
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coupled set of an integral equation which finally are expressed as the matrix equation. 

The method of Moments has a singularity problem when the boundary conditions are 

required on the surface. To avoid the singularity, Method of Moments uses the 

regularization technic or tries to find an analytical solution for the self-terms in the matrix 

equation [1-4]. On the other hand, the method of auxiliary sources for example 

considering the analytical nature of the field at the boundary and by the analytical 

continuation of the scattered field, the sources are shifted inside or outside of the 

corresponding surface [5-7]. Then, the singularity problem is resolved. However, the 

method of auxiliary sources has the problem when the geometry of the scatterer contains 

the edge or corners, in that case, the scattered field is not analytical on the surface and 

auxiliary sources cannot be shifted inside [10-12]. That is why in previous works, the 

corresponding authors made small changes in the original geometries and have smooth 

surfaces to obtain results with high accuracy. The change at the corners leads to having a 

deviation between the solution of the geometry with a smooth surface and the original 

one. The same procedure was followed for finding eigenvalues and eigenfields of the 

corresponding geometries. In the present study, these two issues are overcome by 

introducing the Regularized Hankel function [11,12]. 

The solution of a fairly wide class of physical problems is reduced to the solution 

of singular integral equations. As a rule, the kernel of the integral equation has a 

singularity since at zero value of the argument the value of the kernel becomes infinite. 

This is purely mathematical infinity, and special mathematical methods have been created 

to solve this problem (regularization method, etc.). But in physics, as you know, there are 

no quantities with infinite values. And for all other values of the argument, the value of 

the kernel has a clear physical meaning. The question arises whether it is possible to 

initially create such a function, which will have a completely adequate physical meaning, 

including zero values as the argument. In the presented article, such a problem is posed 

relative to Green's function for a two-dimensional problem. 

In this study, the goal is to introduce a new methodology that will give the 

possibility to solve the two-dimensional diffraction, eigenvalue, and eigenfield problem 

for arbitrary shape scatterers. The main idea in this approach is that the Hankel function 

(corresponding to Green’s function in two-dimensional space), which represents the 
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electric field created by the current density due to the Dirac function is replaced by the 

regularized Hankel function, which corresponds to the Gaussian current density. The 

regularized function at the far-field is the same as the Hankel function but at a small 

distance is a different function that does not have a singularity in the center. This gives 

the ability to put the sources directly on the surface and require the boundary condition in 

the same points. As a result, we avoid the singularity problem by regularizing the 

corresponding function. Therefore, the diffraction problem by arbitrary shape scatterers 

both smooth and the ones with corners or edges can be solved. Previously, such problems 

with corners cannot be solved with MAS.  Mathematically, it has been shown that a 

function can be expressed approximately in terms of the linear combinations of 

translations of Gaussian function [13,14]. This fact triggers us to develop a new and 

approximate solution for two-dimensional E- polarized electromagnetic diffraction 

problems. Here, the Method of Moments is employed with expanding the current density 

on the scatterer surface as a summation of the Gaussian function. As a result, an integral 

equation is obtained to be solved for matrix coefficients evaluation. Here, to avoid 

repetitive calculation of the same integral, the corresponding integral is calculated only 

once, then it is directly employed during the computation by using the regularization. 

Here, the regularized Hankel’s function is proposed. The function is represented by 

analytical expressions with similar behavior for different arguments. This gives the 

ability to solve the problem faster.  

In the following chapter, the formulation of the problem is presented. The 

theoretical background would be given in detail. Then, the numerical results obtained by 

the proposed method are provided. Later, the comparison with the other methods is 

presented. In the end, the conclusion is drawn.  

 

2. FORMULATION OF THE PROBLEM 

In this section, a mathematical background is provided in detail. Due to proposing 

a new approach, the mathematical derivations would be given from the starting point. 

Here, we consider the two-dimensional electromagnetic diffraction problem by the PEC 

object with an arbitrary shape. The investigation covers open, closed, and semi-closed 

surfaces such as strip, cylinder, and semi-closed circular strip, respectively. All objects 
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are located in a vacuum. As an excitation source, we can use a plane wave or the cylinder 

source (both in E-polarized case) with time dependency 𝑒−𝑖𝜔𝑡  where 𝑖 = √−1  is the 

angular frequency and t is time. The electromagnetic field radiated by the sources excites 

current on the scatterer’s surface [1,3]. In the present study, all objects have an infinite 

length in z-direction. Therefore, the electric field has only one component perpendicular 

to the XoY plane and is oriented along Z-axis [2,3]. To find the scattered electric field 

(E_sc), the induced current on the scatterer is convolved with the corresponding Green’s 

function given in (3). Then, the scattered field is found by (1) [9]: 

 

𝐸𝑠𝑐(𝑥, 𝑦) = 𝑖𝜔𝐴 =
𝜔𝜇

4
∫ ∫ 𝐽(𝑥′, 𝑦′)𝐻0

(1)(𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)𝑑𝑥′𝑑𝑦′
∞

−∞

∞

−∞
 , (1) 

where 𝐻0
(1) − is Hankel’s function of zero-order and the first kind and corresponds to the 

Green’s function of the equation, (𝑥′, 𝑦′)  stands for the source point, 𝑘 = 2𝜋/𝜆  is 

wavenumber and 𝜇 stands for the magnetic permeability. To solve (1), there are many 

methods are developed [1-4]. Here, the Method of Moments (MoM) approach is 

employed [1,2]. To solve the integral equation given in (1), the current density is 

expressed as a summation of the basis functions 𝑓𝑖(𝑥
′, 𝑦′) with corresponding constant 

weights given as 𝑎𝑖. Here, 𝑁 is the number of source points [13,14]. 

 

𝐽(𝑥′, 𝑦′) = ∑ 𝑎𝑖
𝑁
𝑖=1 𝑓𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑥

′, 𝑦′) (2) 

 

where,  𝑓𝑖(𝑥𝑖, 𝑦𝑖 , 𝑥
′, 𝑦′) = √2(𝛼𝑘)2𝑒−(𝛼𝑑𝑘)

2
 and 𝑑 = √(𝑥′ − 𝑥𝑖)2 + (𝑦′ − 𝑦𝑖)2. 

Here, 𝑑 is the distance between the source point (𝑥′, 𝑦′) and the basis function’s center 

location (𝑥𝑖, 𝑦𝑖 ). Note that, all Gaussian functions have the same variance and only 

translation of them is used in the study. The novelty of the study is to employ the 

Gaussian function as a basis while expressing the current density induced on the scatterer 

as given in (6) [13,14]. In fact, (𝑥𝑖, 𝑦𝑖) are N discrete points on the scatterer’s surface and 

𝛼 should be calibrated while comparing the results with strict analytical solutions or the 

numerical solutions with high accuracy. Keep in mind that, with such an approach, 

Gaussian function decays fast and is negligible beyond the square area |𝑥′ − 𝑥𝑖| >

𝜆, |𝑦′ − 𝑦𝑖| > 𝜆. Therefore, we can assign a zero value to the basis function outside this 

square area. 
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𝑓𝑖(𝑥
′, 𝑦′) = {

√2(𝛼𝑘)2𝑒−(𝛼𝑑𝑘)
2
, |𝑥′ − 𝑥𝑖| ≤ 𝜆, |𝑦′ − 𝑦𝑖| ≤ 𝜆

0,                               |𝑥′ − 𝑥𝑖| > 𝜆, |𝑦′ − 𝑦𝑖| > 𝜆
 

 

(3) 

 

where 𝛼 is the free parameter to be optimized and 𝜆 is the free-space wavelength of the 

incident wave. The details would be given in the numerical part of the present study. 

Then, if we put the expression (2) into (1), the induced current and corresponding electric 

fields will be the smooth functions on the surface as : 

 

𝐸𝑠𝑐(𝑥, 𝑦)

=
𝜔𝜇

4
√2(𝛼𝑘)2∑𝑎𝑖 ∫ ∫ 𝑒−(𝛼𝑘√(𝑥

′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)2𝐻0
(1)(𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)𝑑𝑥′𝑑𝑦′

𝑥𝑖+0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖+0.5𝜆

𝑦𝑖−0.5𝜆

𝑁

𝑖=1

 

(4) 

To apply the boundary condition, the total field (𝐸(𝑥, 𝑦)) should be obtained 

mathematically. The corresponding field is the sum of the scattered field and the incident 

field as 𝐸(𝑥, 𝑦) = 𝐸𝑖𝑛𝑐(𝑥, 𝑦) + 𝐸𝑠𝑐(𝑥, 𝑦)). On the surface of the scatterer, the boundary 

of the tangential component of the total electric field should be zero. Because the electric 

field has only one component and this component is tangential to the scatterer. Therefore, 

the boundary condition becomes 𝐸(𝑥, 𝑦)|𝜏 = [𝐸𝑖𝑛𝑐(𝑥, 𝑦) + 𝐸𝑠𝑐(𝑥, 𝑦)]|𝜏 = 0 . The 

corresponding equation is provided in (5). 

 

𝐸𝑖𝑛𝑐(𝑥, 𝑦)|𝜏 = −𝐸𝑠𝑐(𝑥, 𝑦)|𝜏 (5) 

 

where 𝜏 is the tangential vector on the surface which is directed in the z-direction due to 

having an E-polarized incident wave. Then, the integral equation is obtained after (5) is 

satisfied: 

𝐸𝑖𝑛𝑐(𝑥, 𝑦)

= −
𝜔𝜇

4
√2(𝛼𝑘)2∑𝑎𝑖 ∫ ∫ 𝑒−

(𝛼𝑘√(𝑥′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)
2

𝐻0
(1) (𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2) 𝑑𝑥′𝑑𝑦′

𝑥𝑖−0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖−0.5𝜆

𝑦𝑖−0.5𝜆

𝑁

𝑖=1

 

(6) 

Here, with the point matching technics including N points (𝑗 = 1,2, …𝑁) on the surface 

of the scatterer, 𝑁 equations are obtained by boundary condition as given in (7). 
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𝐸𝑖𝑛𝑐(𝑥𝑗 , 𝑦𝑗)

= −
𝜔𝜇

4
√2(𝛼𝑘)2∑𝑎𝑖 ∫ ∫ 𝑒−(𝛼𝑘√(𝑥

′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)2𝐻0
(1)(𝑘√(𝑥𝑗 − 𝑥

′)2 + (𝑦𝑗 − 𝑦
′)2)𝑑𝑥′𝑑𝑦′

𝑥𝑖+0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖+0.5𝜆

𝑦𝑖−0.5𝜆

𝑁

𝑖=1

 

(7) 

We can express the corresponding equations as a matrix equation below: 

 

𝑍𝑖𝑗 ∗ 𝑎𝑖 = 𝐵𝑗 (8) 

where 

𝐵𝑗 = 𝐸𝑖𝑛𝑐(𝑥𝑗 , 𝑦𝑗), 

𝑍𝑖𝑗 = −
𝜔𝜇

4
√2(𝛼𝑘)2 ∫ ∫ 𝑒−

(𝛼𝑘√(𝑥′−𝑥𝑖)
2+(𝑦′−𝑦𝑖)

2)
2

𝐻0
(1) (𝑘√(𝑥𝑗 − 𝑥

′)
2
+ (𝑦𝑗 − 𝑦

′)
2
)𝑑𝑥′𝑑𝑦′.

𝑥𝑖+0.5𝜆

𝑥𝑖−0.5𝜆

𝑦𝑖+0.5𝜆

𝑦𝑖−0.5𝜆

 

Here, (𝑥𝑖, 𝑦𝑖) are the points where the source is located and double integral is taken 

around this point. 

After finding unknowns by inversion, the current density can be obtained by (2). 

Similarly, the scattered Electric field can be found with (4). It is clear that for each 

(𝑥𝑖, 𝑦𝑖) in the double integral above, the value of the integral would be the same since 

𝑒−(𝛼𝑘√(𝑥
′−𝑥𝑖)

2+(𝑦′−𝑦𝑖)
2)2 is constant because the integration is taken around (𝑥𝑖, 𝑦𝑖) . 

Therefore, we can simplify the integral by taking the integration range around the center 

of the reference frame and the integral denote as regularized Hankel function as (9). 

𝑅𝐻(𝑥, 𝑦) = ∫ ∫ 𝑒−
(𝛼𝑘√(𝑥′)2+(𝑦′)2)

2

𝐻0
(1)(𝑘√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)𝑑𝑥′𝑑𝑦′

0.5𝜆

−0.5𝜆

0.5𝜆

−0.5𝜆
 (9) 

Here, 𝑅𝐻  stands for the abbreviation of the regularized Hankel’s Function. While 

ordinary Hankel’s function gives the electric field of the current density represented by 

Dirac’s delta function, the regularized one represents the electric field of the current 

density represented by the Gaussian function. It should be noted that Dirac’s function is 

the limit case of the Gaussian function. Finally, the scattered field can be expressed as: 

 

                                                              𝐸𝑠𝑐(𝑥, 𝑦) =
𝜔

4
∑ 𝑎𝑖𝑅𝐻(𝑘𝜌)
𝑁
𝑖=1  (10) 

where 𝜌 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2. 
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To simplify more, (11) is provided. 

𝑅𝐻(𝑘𝜌) = ∫ ∫ 𝑒−
(𝛼√(𝑘𝑥′)2+(𝑘𝑦′)2)

2

𝐻0
(1)(𝑘𝜌)𝑑(𝑘𝑥′)

0.5𝜆

−0.5𝜆

0.5𝜆

−0.5𝜆

𝑑(𝑘𝑦′) 
  

 (11) 

To have the faster numerical realization of this method it is better to avoid the 

calculation of (11), repetitively. This integral has a singular kernel but the value of the 

integral should be finite because it describes the electric field created with smooth 

Gaussian current. We can evaluate the integral (11) numerically by using the 

regularization in the kernel. If we plot this integral for different argument (𝑘𝜌), we will 

get a function which at a big distance behaves like a Hankel’s function, and the smaller 

distance it is a smooth function with no singularity in the center (Fig. 1).  That’s why we 

call it the regularized Hankel’s function. Because we know the shape of the regularized 

Hankel’s function we can approximate it with some analytical functions. Here, (12) 

stands for the approximation of (18) with less than 1% error: 

𝑅�̃�(𝑘𝜌) =

{
 
 

 
 𝐽0(𝑘𝜌) + 𝑖𝑚(𝐴

𝐻0
(1)(𝑘𝜌)

log(0.015𝑘𝜌)
− 0.23𝑖) 𝑖, 𝑖𝑓 𝑘𝜌 ∈ (0,2), 𝐴 = 4.74𝑒𝑖𝜋

180
190

𝐽0(𝑘𝜌) − 1.74𝑖, 𝑘𝜌 = 0

𝐻0
(1)(𝑘𝜌), 𝑘𝜌 ∈ (2,∞)

 

 

 

 (12) 

 

where  𝐽0 is the Bessel function with zeroth order. 

For 𝑘𝜌 = 0, the function has uncertainty, type 
∞

∞
. It can be resolved. Figure 1(a) 

shows the plot on which we have both function 𝑅𝐻 (red) and 𝑅�̃� (blue) for different 𝑘𝜌. 

Figure 1(b) shows the amplitude of the imaginary part of Hankel's function (red) and the 

imaginary part of the 𝑅�̃� function (Blue). As we see at the point 𝑘𝜌 = 2. 𝑅�̃� the function 

goes smoothly to the ordinary Hankel’s Function. RH does not have a singularity in the 

point 𝑘𝜌 = 0. 
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Figure 1. The absolute value of Hankel function and 𝑅�̃� for different 𝑘𝜌 

 

Because the regularized Hankel’s function does not have a singularity in the 

center while requiring the boundary condition on the scatterer’s surface, we don’t need 

the regularization technic for the self-terms (when we require boundary condition in the 

point where the source is located). Therefore, we can put the sources directly on the 

scatterer’s surface. Also, this method works fine with the surface which has sharp corners 

and edges which is not possible for MAS. 

 

3. RESULTS OF NUMERICAL EXPERIMENTS 

In this part, numerical outcomes such as total radar cross-sections, near-field 

distribution are provided for different scattering and eigenvalue problem geometries. The 

program package is created and for different geometries, the diffraction and the 

eigenvalue problems can be obtained with the corresponding program. The α- parameter 

given in (2) is chosen to be 10 because this value gives the best match between analytical 

or another numerical approach for different shapes of the scatterer and different 

frequencies. The closed cavity resonators such as square, H-shaped and asteroid 

geometries have non-zero Eigen fields at the resonant frequencies [15-17]. To obtain 

resonance characteristics, an integration over a circular small contour inside the cavities 

is taken as given in (13). The idea of finding the eigenvalues by solving the scattering 

problem is proposed in [16,17]. 

 𝑅(𝑘) = ∫ |𝐸𝑠𝑐|
2𝑑𝜙

2𝜋

0
 (13) 

 

First, let’s consider the square. It should be noted that, for square cavities, an 

analytical solution exists [15]. Fig. 2(a) shows the geometry of the square with the 

dimension 1X1. Fig. 2(b) shows the frequency characteristics of the corresponding 

geometry regarding the wavenumber. Here, the excitation is done by a line source located 

at (x_inc,y_inc )=(100,0). The sharp resonances corresponding to the eigenvalues of the 

square are observed. 
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(a) (b) 

Figure 2. The geometry of the problem and frequency characteristics of the geometry (b). 

       

At Table 1, the comparison between the analytical and proposed methods for the 

eigenvalue of the square scatterer is provided. As it is seen, the deviation is less than 0.5% 

for the first three resonances. 

Table 1. Resonance values for the square geometry 

Resonances The Analytical Outcomes for 

Eigenvalues 

Outcomes for Eigenvalues by the 

proposed approach 

First 4.4733 4.4407 

Second 7.0234 7.048 

Third 9.95 9.9336 

 

Fig. 3(a) shows the near-total field distribution on the first resonance k=4.47 of 

the square. An electromagnetic wave goes around the square and casts a shadow behind. 

Inside the square, we see the eigenvalues field. Fig. 3(b) shows the field distribution at 

the no resonant frequency k=3 where the field inside is practically zero. 

  
(a) (b) 

Figure 3. Total Electric field distributions for square geometry (𝑘 = 4.47 for (a) and 𝑘 = 3 for (b)). 

Let us consider now the H-shaped waveguide, find its resonances, and draw 

corresponding Eigen fields. Fig. 4(a) shows the geometry of the object. Fig. 4(b) shows 

the TRCS in the vicinity of the first two resonances. 
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 (a) 

(𝑎 = 0.4, 𝑏 = 0.8, 𝑑 = 0.5, 𝑓 = 1.4) 
(b) 

Figure 4. The geometry of the scatterer (a) and the frequency characteristics of the geometry (b). 

 

Fig. 5(a) shows the resonant field distribution at k=6.956 and Fig 5(b) shows the 

resonant field distribution at k=7.013. 

  

(a) (b) 

Figure 5. Total Electric field distributions for H-shaped geometry (𝑘 = 6.956 for (a) and 𝑘 = 7.013 for (b)). 

 

Fig. 6(a) shows the geometry of the next object which we call ‘Asteroid’. Fig. 6(b) 

shows the TRCS in the vicinity of the first resonance. 

 

 
              (a) (b) 

  

Figure 6. The geometry of the scatterer (a) and the frequency characteristics of the geometry (b). 
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(a) (b) 

Figure 7. Total Electric field distributions for asteroid geometry (𝑘 = 5.273 for (a) and 𝑘 = 4 for (b)). 

 

 

Fig. 8 shows the total near field distribution at nonresonant frequencies for moon 

shape, flat-concave lens shape, wedge shape, strip, double side concave lens shape, and 

the ellipse shape scatterers. Here, 𝑟𝑖 , 𝜃𝑖
𝑎𝑝

, 𝑑𝑖  stand for the radius of the circular 

geometries, the aperture angle, and length of the strip on the plane, respectively (𝑖 = 1,2). 

For the incident line, the source location is denoted with (𝑥𝑖𝑛𝑐, 𝑦𝑖𝑛𝑐). For the wedge 

geometry given in Fig 8(c), 𝜃 corresponds to the angle between two strips. 

 

 

 
1.   

(a) 

𝑘 = 4, 𝑟1 = 1, 𝑟2 = 1.5, 

𝜃1
𝑎𝑝
=
3𝜋

2.5
, 𝜃2
𝑎𝑝
=
8𝜋

5
, 𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 20 

(b) 

𝑘 = 4, 𝑟 = 1.5, 𝑑 = 2.4, 

𝜃1
𝑎𝑝
=
4𝜋

3
, 𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 20 
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(c)  

𝑘 = 4, 𝑑1 = 2, 𝑑2 = 2√2, 
𝜃 = 45°𝑥𝑖𝑛𝑐 = −10, 𝑦𝑖𝑛𝑐 = 0 

(d) 

d- is the size of the strip 

𝑘 = 4, 𝑑 = 2, 𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 100 

 

 
  

(e) 

𝑘 = 4, 𝑟1 = 1.5, 𝑟2 = 1.5, 

𝜃1
𝑎𝑝
=
4𝜋

3
, 𝜃2
𝑎𝑝
=
4𝜋

3
𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 20 

(f) 

𝑘 = 4, 𝑟1 = 2, 𝑟2 = 1, 
𝜃1
𝑎𝑝
=,𝜃2

𝑎𝑝
= 𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 100 

Figure 8. Total Electric field distributions for (a) moon shape, (b) Plano-convex lens, (c) wedge, (d) strip, (e) 

convex lens, (f) ellipse. 

 

4. COMPARISON WITH THE OTHER METHODS 

Fig. 9 shows the comparison results of the frequency characteristics obtained with 

the proposed method (red) and the method of orthogonal polynomials (blue) [9]. The 

comparison is obtained for the diffraction by the PEC circular arc with the radius 1 and 

the aperture angle of 60 degrees. The source is located in the center. As it is noticed the 

first resonance coincides regarding the wavenumber and amplitude. The second resonant 

frequency value is also matched. However, the deviation of amplitude is observed. This 

can be explained by the fact that as the excitation, in the proposed approach, the 

regularized Hankel is employed. In contrast, the ordinary Hankel function is used for the 

other approach. 
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Figure 9. Normalized frequency characteristics of the circular arc by the proposed method (red) and the 

orthogonal polynomials approach (blue).  

 

Fig. 10 shows both comparisons of the current density and the near field 

distribution due to the  PEC strip with the size 2 at 𝑘 = 4. Here, the source is located at 

𝑥𝑖𝑛𝑐 = 0, 𝑦𝑖𝑛𝑐 = 10. The red graph is obtained with MoM using pulse basis function and 

the blue one is obtained with the present method. The deviation in the current density is 

observed since the regularized Hankel function is employed in the proposed approach. 

Fig. 10(b) and (c) provide the total near electric field distributions obtained by the 

proposed and MoM (pulse function, point matching) approaches, respectively. 

 

 
  

 

 

(a)  

 

 

(b) 

 

 

 

(c) 

 

Figure 10.  Comparison of two methodologies (MoM and proposed approach) (a) Absolute Value of the 

Current Densities and Electric Field Distributions by the proposed approach (b) and MoM (c). 

 

5. CONVERGENCE 

We also investigated the convergence of our result for the diffraction by the 

circular PEC arc with radius 1 and the aperture size of 60 degrees. We estimated the 
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satisfaction of the boundary condition in the point of the arc contour in comparison with 

the incident field amplitude. Fig. 11 shows the corresponding graph. As we see, by 

increasing the number of discretization points the graphs approach the zero value. In 

terms of the incident field amplitude, the boundary condition in the point on the arc is 

99.95 % is satisfied when 𝑁 = 500. Also, for the higher frequency, the same procedure is 

followed and the error in the boundary condition is found 0.09 % for 𝑁 = 500. It should 

be denoted that, less than 1 percent error can be obtained after 𝑁 > 30.  

 

  
(a) (b) 

Figure 11. The error in boundary condition satisfaction (%) versus the collocation points (𝑁) (a) 𝑘 = 4 (b) 

𝑘 = 8. 

 

 

4. CONCLUSION 

In this article, a new methodology for the two-dimensional diffraction problem of 

the E-polarized electromagnetic wave by the arbitrarily-shaped perfect electric 

conducting scatterer is presented. Gaussian basis function is introduced for the current 

density representation and the Regularized Hankel’s function is defined which gives the 

ability to put the secondary sources directly on the scatterer. The present study has the 

advantage in comparison with other methods such as MoM and MAS since the boundary 

condition is satisfied in the same points where the secondary sources are located. As a 

result, the singularity problem is avoided. Such an approach gives the ability to solve the 

diffraction problem by an arbitrary shape scatterer consisting of both smooth parts as well 

as the corners and edges. The comparison with other methods reveals that the gives 

highly accurate results are obtained by the proposed method. Furthermore, the 

introduction of the Gaussian function as the basis function gives the ability to extend the 

proposed approach for two-dimensional H-polarization and also three-dimensional cases. 
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