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ON THE SOLUTION OF CONSTRAINED SYLVESTER-OBSERVER 

EQUATION 

 

Konstadinos H. Kiritsis * 

 

* Hellenic Air Force Academy, Department of Aeronautical Sciences, Division of 

Automatic Control, Dekelia Air Base, PC 13671 Acharnes, Attikis,Tatoi, Greece 

E-mail: konstantinos.kyritsis@hafa.haf.gr 

Abstract  

 

In this paper explicit necessary and sufficient conditions for the constrained 

Sylvester-observer equation are established, in order to have a solution over the field of 

real numbers. Furthermore, a procedure is given for the computation of the solution. Our 

approach is based on properties of real and polynomial matrices. Applications of the 

main results of this paper to linear control theory are discussed. 

 

Keywords: Constrained Sylvester-observer equation, state estimation, reduced order 

observer. 

 

1. INTRODUCTION 

Let R be the field of real numbers. Furthermore, let A and C be given matrices 

over R of size (n x n) and (p x n) respectively. The problem studied in this paper can be 

stated as follows: Do there exist, matrices F, T and G over R of dimensions (n-p) x (n-p), 

(n-p) x n and ((n-p) x p) respectively with F and T being Hurwitz stable (i.e., all its 

eigenvalues have negative real parts), and of full row rank respectively such that 

                                                         TA – FT = GC                                                         (1) 

                                                              det[
𝐂
𝐓

] ≠ 0                                                            (2) 

If so, give conditions for the existence of matrices T, F and G which satisfy (1) and 

constraint (2). The equation (1) with constraint (2) is usually called, in bibliography, 

“constrained Sylvester-observer equation”. This term comes from the fact that equation 

(1) with constraint (2) arises in the design of reduced order observer for linear time-

invariant systems (see Refs. [1] and [2]).  Equation (1) with constraint (2) has been 

studied in the last years from both theoretical and computational point of view. In [3] (see 



“ON THE SOLUTION OF…”  K. H. KIRITSIS 

  

2 

 

also [4]) it is proven that if the pair (A, C) is observable, then there exist real matrices  T, 

F and G with T, F being of full row rank and Hurwitz stable respectively which satisfy  

(1) and constraint (2). A criterion for choosing the matrix F which ensures that the 

solution matrix T of (1) is of full row rank has been presented in [5]. Furthermore an 

algorithm is described for the computation of solution. Elegant numerical methods have 

been developed for the solution of the Sylvester-observer equation in [4, 6-11]. All these 

methods implicitly construct a full row rank solution of (1) assuming that such a solution 

exists [5]. 

   As far as we know there are no published explicit necessary and sufficient 

conditions for the solvability of constrained Sylvester-observer equation. This motivates 

the present study.  In this paper, by using basic concepts and basic results from linear 

systems and control theory as well as of the theory of matrices, explicit necessary and 

sufficient conditions for the solvability of constrained Sylvester-observer equation over 

the field of real numbers are established. In particular, it is proved that constrained 

Sylvester-observer equation has a solution over the field of real numbers if and only if the 

pair (A, C) is detectable. Furthermore, a procedure is given for the computation of the 

solution. 

 

2. BASIC CONCEPTS AND PRELIMINARY RESULTS 

This section contains lemmas, which are needed to prove the main results of this 

paper and some basic concepts from linear systems and control theory as well as of the 

theory of matrices that are used throughout the paper. Let R[s] be the ring of polynomials 

with coefficients in R. Further let C be the field of complex numbers, also let C+ be the 

set of all complex numbers λ with Re(λ)≥ 0. A matrix whose elements are polynomials 

over R[s] is termed polynomial matrix. A matrix U(s) over R[s] of dimensions (k x k) is 

said to be unimodular if and only if its inverse exists and is also polynomial matrix. Every 

polynomial matrix W(s) of size (p x m) with rank[W(s)]=r, can be expressed as [12] 

                      U1(s) W(s) U2(s)= M(s)                                               (3)                                                                                      

The polynomial matrices U1(s) and U2(s) are unimodular and the matrix M(s) is 

given by 

                                                    𝐌(𝑠) =  [
𝐌𝑟(𝑠) 𝟎

𝟎 𝟎
]                                                  (4) 
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The non-singular polynomial matrix 𝐌𝑟(𝑠) of size (r x r) in (4) is given by 

                                                     𝐌𝑟(𝑠)= diag [a1(s), a2(s), …., ar(s)]                           (5)                                                                                  

The nonzero polynomials ai(s) for i=1,2,..., r are termed invariant polynomials of 

W(s) and have the following property 

                                         ai(s) divides ai+1(s), for i=1,2,..., r-1                                       (6) 

The relationship (3) is called Smith-McMillan form of W(s) over R[s]. Since the 

matrices U1(s) and U2(s) are unimodular and the polynomial matrix 𝐌𝑟(𝑠)  is non-

singular, from (3) and (4) it follows that  

                                           rank[W(s)] = rank[𝐌𝑟(𝑠)] =  r                                              (7)                                                                                            

Let A(s) and B(s) be matrices over R[s] of appropriate dimensions, if there is a 

matrix Q(s) over R[s] of appropriate size such that 

                                                               A(s) = B(s)Q(s)                                                  (8)                                                                                                                        

Then the matrix Q(s) is called a right divisor of the matrix A(s) and the matrix A(s) is 

called a left multiple of the matrix Q(s) [13]. 

Let A(s) and B(s) be matrices over R[s] of appropriate dimensions, if there are 

matrices D(s), A1(s) and B1(s) over R[s] of appropriate dimensions, such that  

                                         A(s) = A1(s)D(s),   B(s) = B1(s)D(s)                                         (9)                                                                                  

Then the polynomial matrix D(s) is called common right divisor of polynomial matrices 

A(s) and B(s) [13]. A greatest common right divisor D(s)                                                                                                           

of two polynomial matrices A(s) and B(s) is a common right divisor which is a left 

multiple of every common right divisor of the matrices A(s) and B(s), [13]. 

 Let A and C be matrices over R of size size (n x n) and (p x n) respectively and C 

not zero. Then there always exists a unimodular matrix U(s) over R[s] such that [13]   

                                                [
𝐂

𝐈𝑠 − 𝐀
] = 𝐔(𝑠) [

𝐕(𝑠)
𝟎

]                                                   (10) 

 The non-singular polynomial matrix V(s) of size (n x n) is a greatest common 

right divisor of the polynomial matrices C and [𝐈𝑠 − 𝐀] [13]. Since the polynomial matrix 

U(s) is unimodular from (10) it follows that 

                                                rank[
𝐂

𝐈𝑠 − 𝐀
] = rank[

𝐕(𝑠)
𝟎

] = rank[V(s)] = n                  (11)                                                                

Definition 1: The nonzero polynomial c(s) over R[s] is said to be strictly Hurwitz 

if and only if c(s)≠ 0, ∀𝑠 ∈C+.  
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Definition 2: Let V(s) be a non-singular matrix over R[s], of size (m x m).  Also 

let ci(s) for i=1,2, …,m  be the invariant polynomials of polynomial matrix V(s). The 

polynomial matrix V(s) is said to be strictly Hurwitz if and only if the polynomials ci(s) 

are strictly Hurwitz for every i=1,2,…,m, or alternatively, if and only if det[V(s)] is a 

strictly Hurwitz polynomial. 

Definition 3: Let A and C be matrices over R of size (n x n) and (p x n), 

respectively. Then the pair (Α, C) is said to be detectable if and only if there exists a 

matrix K over R of size (n x p) such the matrix [A+KC] is Hurwitz stable [14]. 

Definition 4: Let A and C be matrices over R of size (n x n) and (p x n), 

respectively and C not zero. Then an eigenvalue λ of the matrix A is said to be observable, 

if and only if the following condition holds [15]: 

 𝑟𝑎𝑛𝑘 [
𝑪

𝑰𝜆 − 𝑨
] = 𝑛  

Let A be a real matrix of size (n x n). The spectrum of the matrix A, is the set of 

all its eigenvalues and is denoted by σ(A). An eigenvalue λ of A is called a stable 

eigenvalue if and only if Re(λ)< 0. Otherwise, the eigenvalue λ of the matrix A is said to 

be unstable.  

Lemma 1: Let A and C be matrices over R of size (n x n) and (p x n), 

respectively and C not zero. Further, let σ(A) be the spectrum of the matrix A. The pair 

(A, C) is detectable, if and only if one of the following equivalent conditions holds [16]: 

     (a) 𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝑠 − 𝐀
] = 𝑛 , ∀𝑠 ∈ C+   

     (b) 𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝜆 − 𝐀
] = 𝑛 , ∀𝜆 ∈ σ(A) with Re(λ)≥0. 

From condition (b) of Lemma 1 it follows that the pair (A, C) is detectable if and only if 

all unstable eigenvalues of the matrix A are observable, [16]. The following lemma is 

taken from [17]. 

Lemma 2: Let V(s) be a non-singular polynomial matrix over R[s], of size (m x 

m). Also let ci(s) for i=1,2,…,m be the invariant polynomials of the polynomial matrix 

V(s).The polynomial matrix V(s) is strictly Hurwitz if and only if the following condition 

holds 

(a) rank[V(s)]=m  , ∀𝑠 ∈ C+ 
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Proof: Let V(s) be a strictly Hurwitz polynomial matrix of size (m x m) with 

invariant polynomials ci(s) for i=1,2,…,m.  From Definition 2 it follows that the 

polynomials ci(s) are strictly Hurwitz for every i=1,2,…,m and therefore from Definition 

1 it follows that 

                                          ci(s) )≠ 0 , ∀𝑠 ∈ C+ ,  ∀ i=1,2, …,m                                      (12)                                                                                   

We define the polynomial matrix 

                                            𝐕m(𝑠)= diag [c1(s), c2(s), ….cm(s)]                                      (13)                                                                              

From (12) and (13) it follows that 

                                 𝑟𝑎𝑛𝑘[𝐕m(𝑠)] = rank{diag [c1(s),c2(s),….,cm(s)]}=m, ∀𝑠 ∈C+           (14) 

The Smith-McMillan form of polynomial matrix V(s) over R[s] is given by              

                                               K(s) V(s) L(s) = 𝐕m(𝑠)                                                    (15)                                                                                                  

where K(s) and L(s) are unimodular matrices. Since the matrices K(s) and L(s) are 

unimodular, from (7), (14) and (15) we have that 

                                      rank[V(s)]=m  , ∀s ∈ C+                                                             (16)                                                                                                   

This is condition (a) of the Lemma. To prove sufficiency, we assume that condition (a) 

holds. Using (7) from (13) and (15) we have that 

                  rank[𝐕(𝑠)] = 𝑟𝑎𝑛𝑘[𝐕m(𝑠)] =rank{diag[c1(s),c2(s),….,cm(s)]} = m              (17) 

Since by assumption condition (a) holds we have that 

                                               rank[V(s)]=m  , ∀𝑠 ∈ C+                                                  (18)                                                                                            

Relationships (17) and (18) imply 

                            𝑟𝑎𝑛𝑘[𝐕m(𝑠)] = rank{diag [c1(s),c2(s),….,cm(s)]}=m, ∀𝑠 ∈C+               (19) 

From (19) it follows that 

                                             ci(s) )≠ 0 , ∀𝑠 ∈ C+ ,  ∀ i=1,2,…,m                                    (20)                                                                               

Relationship (20) and Definition 1 imply that polynomials ci(s) are strictly Hurwitz for 

every i=1,2,…,m, and therefore according to Definition 2 the non-singular polynomial 

matrix V(s) over R[s], is strictly Hurwitz. This completes the proof.  

  The following lemma is taken from [17]. 

Lemma 3: Let A and C be matrices over R matrices of size (n x n), (p x n), 

respectively and C not zero. Further let V(s) be a greatest common right divisor of 

polynomial matrices [Is − A] and C of size (n x n). The pair (A, C) is detectable if and 

only if the following condition holds: 
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(a) The polynomial matrix V(s) is strictly Hurwitz. 

   Proof: Let the pair (A, C) is detectable. Then from condition (a) of Lemma 1 it 

follows that 

                                              𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝑠 − 𝐀
] = 𝑛 , ∀𝑠 ∈ C+                                            (21) 

Since the polynomial matrix V(s) is the greatest common right divisor of polynomial 

matrices [Is −A] and C, from (10) it follows that there exists a unimodular matrix U(s) 

such that 

                                                         [
𝐂

𝐈𝑠 − 𝐀
] = 𝐔(𝑠) [

𝐕(𝑠)
𝟎

]                                           (22)                                                                     

Since the polynomial matrix U(s) is unimodular from (11) and (22) it follows that 

                                         rank[
𝐂

𝐈𝑠 − 𝐀
] = rank[

𝐕(𝑠)
𝟎

] = rank[V(s)]                               (23)                                                                           

From relationships (21) and (23) we have that 

                                               rank[V(s)]=n  , ∀s ∈ C+                                                      (24)                                                                                                       

Relationship (24) and condition (a) of Lemma 2 imply that the polynomial matrix V(s) is 

strictly Hurwitz. This is condition (a) of the Lemma. To prove sufficiency, we assume 

that the polynomial matrix V(s) is strictly Hurwitz. Then from Lemma 2 it follows that 

                                                        rank[V(s)]=n  , ∀s ∈ C+                                             (25)                                           

Since the polynomial matrix V(s) is the greatest common right divisor of polynomial 

matrices [Is −A] and C, from (23) and (25) it follows that 

                                                       𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝑠 − 𝐀
] = 𝑛 , ∀𝑠 ∈C+                                    (26) 

Condition (a) of Lemma 1 and (26) imply that the pair (A, C) is detectable. This 

completes the proof. 

Let A and C be matrices over R matrices of size (n x n), (p x n), respectively with 

rank[C]=p. Then there exists a non-singular matrix L over R of size (n x n) such that 

                                                                CL = 𝐂1                                                           (27) 

                                                          𝐋−1AL = 𝐀1                                                           (28) 

The matrices 𝐂1 and  𝐀1 are given by 

                                                               𝐂1 = [𝐈𝑝 , 0]                                                              (29) 

                                                             𝐀1 = [
𝐀11 𝐀12

𝐀21 𝐀22
]                                                      (30) 
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where 𝐈𝑝 is the identity matrix of size (p x p), and 𝐀11, 𝐀12, 𝐀21 and 𝐀22 are matrices 

over R of dimensions (p x p), (p x (n –p)),  ((n-p) x p) and ((n-p) x (n-p)) respectively.  

Lemma 4: Let A and C be matrices over R matrices of size (n x n), (p x n) 

respectively with rank[C]=p. The pair (A, C) is detectable if and only if the following 

condition holds: 

   (a) The pair (𝐀22, 𝐀12) is detectable. 

Proof: Let the pair (A, C) is detectable. Then from condition (a) of Lemma 1 it 

follows that 

                                                   𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝑠 − 𝐀
] = 𝑛 , ∀𝑠 ∈ C+                                       (31) 

From (27), (28), (29) and (30) we have that 

                           C= [𝐈𝑝, 0] 𝐋−1 = 𝐂1𝐋−1,  A =𝐋𝐀1𝐋−1 = L  [
𝐀11 𝐀12

𝐀21 𝐀22
] 𝐋−1                (32) 

Using (32) and after simple algebraic manipulations the (31) can be expressed as follows                          

𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝑠 − 𝐀
] = 𝑟𝑎𝑛𝑘[𝑑𝑖𝑎𝑔[𝐈𝑝, 𝐋] [

𝐂1

𝐈𝑠 − 𝐀1
] 𝐋−1] = 

                    =  𝑟𝑎𝑛𝑘[𝑑𝑖𝑎𝑔[𝐈p, 𝐋] [

𝐈𝑝 𝟎

𝐈𝑝𝑠 − 𝐀11 −𝐀12

−𝐀21 𝐈𝑛−𝑝𝑠 − 𝐀22 
] 𝐋−1]= 𝑛 , ∀𝑠 ∈ C+        (33)                     

Since the matrices, 𝑑𝑖𝑎𝑔[𝐈𝑝, 𝐋] and 𝐋−1are non-singular, from (33) it follows that 

                                  𝑟𝑎𝑛𝑘 [

𝐈𝑝 𝟎

𝐈𝑝𝑠 − 𝐀11 −𝐀12

−𝐀21 𝐈𝑛−𝑝𝑠 − 𝐀22 
] = 𝑛 , ∀𝑠 ∈ C+                         (34)                                                     

Since the 𝑛 columns of the matrix in the left side of (34) are linearly independent over C, 

∀𝑠 ∈ C+, a subset of these columns consisting of the last (n-p) columns must be also 

linearly independent over C, ∀𝑠 ∈ C+; therefore 

        rank[

0
−𝐀12

𝐈𝑛−𝑝𝑠 − 𝐀22

]=rank[
−𝐀12

𝐈𝑛−𝑝𝑠 − 𝐀22
]=rank[

𝐀12

𝐈𝑛−𝑝𝑠 − 𝐀22
] = (𝑛 − 𝑝),∀𝑠 ∈C+  (35) 

Relationship (35) and condition (a) of Lemma 1 imply that the pair (𝐀22,  𝐀12) is 

detectable. This is condition (a). To prove sufficiency, we assume that the pair (𝐀22, 𝐀12) 

is detectable. Let Γ(s) be a greatest common right divisor of polynomial matrices 
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[𝐈𝑛−𝑝𝑠 − 𝐀22] and 𝐀12. Then from (10) it follows that there exists a unimodular matrix 

U(s) of size (n x n) such that  

                                                    [
−𝐀12

𝐈𝑛−𝑝𝑠 − 𝐀22
] = 𝐔(𝑠) [

𝚪(𝑠)
𝟎

]                                      (36) 

We define the following matrices 

                                                   [
𝐈𝑝𝑠 − 𝐀11

−𝐀21
] = 𝐔(𝑠) [

𝚬(𝑠)
𝚭(𝑠)

]                                          (37) 

                                                     Δ(s) = [
𝐈𝑝 𝟎

𝚬(𝑠) 𝐈𝑛−𝑝
]                                                  (38)                    

                                                          Η(s) = [𝚭(𝑠), 0 ]                                                   (39)                      

                                                    M(s) = diag[𝐈𝑝, 𝚪(𝑠)]                                                 (40) 

where Δ(s) is a unimodular matrix of size (n x n) and 𝚬(𝑠), 𝚭(𝑠), Η(s) and M(s) are 

polynomial matrices of size ((n-p) x p), ( p x p), (p x n)  and (n x n) respectively. Using 

(29), (30), (37), (38), (39) and (40) we have that 

[
𝐂1

𝐈𝑠 − 𝐀1
] = [

𝐈𝑝 𝟎

𝐈𝑝𝑠 − 𝐀11 −𝐀12

−𝐀21 𝐈𝑛−𝑝𝑠 − 𝐀22 
] = diag[𝐈𝑝, 𝐔(𝑠)] [

𝐈𝑝 𝟎

𝚬(𝑠) 𝚪(𝑠)
𝚭(𝑠) 𝟎 

] = 

= diag[𝐈𝑝, 𝐔(𝑠)] 𝑑𝑖𝑎𝑔[𝚫(𝑠), 𝐈𝑝] [

𝐈𝑝 𝟎

𝟎 𝐈𝑛−𝑝

𝚭(𝑠) 𝟎 

]diag[𝐈𝑝, 𝚪(𝑠)] = 

= diag[𝐈𝑝, 𝐔(𝑠)] 𝑑𝑖𝑎𝑔[𝚫(𝑠),  𝐈𝑝] [
𝐈n

𝚮(𝑠)
] diag[𝐈𝑝, 𝚪(𝑠)] = 

                                    = diag[𝐈𝑝, 𝐔(𝑠)] 𝑑𝑖𝑎𝑔[𝚫(𝑠), 𝐈𝑝][
𝐈𝑛 𝟎

𝚮(𝑠) 𝐈𝑝
] [

𝐈n

𝟎
] 𝐌(𝑠)              (41) 

Since the matrices diag[ 𝐈𝑝 , 𝐔(𝑠) ], 𝑑𝑖𝑎𝑔[𝚫(𝑠), 𝐈𝑝 ]  and [
𝐈𝑛 𝟎

𝚮(𝑠) 𝐈𝑝
]  are all 

unimodular, their product  

diag[𝐈𝑝, 𝐔(𝑠)] 𝑑𝑖𝑎𝑔[𝚫(𝑠), 𝐈𝑝][
𝐈𝑛 𝟎

𝚮(𝑠) 𝐈𝑝
] 

is also a unimodular matrix and therefore from (10) it follows that the matrix M(s) in (41) 

is a greatest common right divisor of the polynomial matrices 𝐂1,  [𝐈𝑠 − 𝐀1]. Detectability 

of the pair (𝐀22, 𝐀12) and Lemma 3 imply that the matrix Γ(s) in (36) is strictly Hurwitz. 

From (40) we have that 

                                                     det[M(s)] = det[Γ(s)]                                                 (42) 
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Since the matrix Γ(s) is strictly Hurwitz, from Definition 2 it follows that the 

det[Γ(s)] is strictly Hurwitz polynomial and therefore from (42) and  Definition 2 it 

follows that the matrix M(s) is strictly Hurwitz. Since M(s) is strictly Hurwitz, from 

Lemma 3 it follows that the pair (𝐀1, 𝐂1 ) is detectable. Since the pair  (𝐀1, 𝐂1 ) is 

detectable and the detectability is invariant under similarity transformation [16], from (32) 

it follows that the pair (A, C) is also detectable. This completes the proof. 

Lemma 5. Let A and C be matrices over R of size (n x n) and (p x n), respectively. 

Then the pair (A, C) is observable if and only if for every monic polynomial 𝑐(𝑠) over 

R[s] of degree n  there exists a matrix K over R of size( n x p), such that the matrix 

[A+KC] has characteristic polynomial 𝑐(𝑠) [12]. 

The standard decomposition of unobservable systems given in the following 

Lemma was first published by Kalman in [18] and can also be found in any standard 

book of linear systems theory. 

Lemma 6: Let A and C be matrices over R of size (n x n) and (p x n), respectively.  

Further, let the pair (A, C) is unobservable and C not zero. Then there exists a non-

singular matrix T of size (n x n) such that  

𝐓−1AT = [
𝐀11 𝟎
𝐀21 𝐀22

], 

CT= [ 𝐂1, 0]   

The pair (𝐀11,  𝐂1) is observable and the eigenvalues of the matrix 𝐀22  are the 

unobservable eigenvalues of the pair (A, C). 

Lemma 7: Let A and C be matrices over R of size (n x n), (p x n), respectively 

and C not zero. Further let  

A= 𝐓 [
𝐀11 𝟎
𝐀21 𝐀22

] 𝐓−1,   C = [ 𝐂1, 0] 𝐓−1  

with (𝐀11, 𝐂1) observable. If the pair (A, C) is detectable then the matrix 𝐀22 is Hurwitz 

stable [16]. 

The following lemma and its proof are based on the results of [12]. 

Lemma 8: Let A and C be matrices over R of size (n x n), (p x n), respectively 

and C not zero. Further, let the pair (A, C) be detectable. Then there exists a matrix K 

over R of size (n x p) such that the matrix [A+KC] is Hurwitz stable.  
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Proof: Let the pair (A, C) is detectable. Detectability of the pair (A, C) implies 

that the pair (A, C) is either observable or unobservable with stable unobservable 

eigenvalues. If the pair (A, C) is observable, then from  Lemma 5 it follows that there 

exists a matrix K of appropriate size over R such that 

det[I𝑠 −A  −KC] = c(s) 

where c(s) be an arbitrary monic, strictly Hurwitz polynomial over R[s] of degree n. 

Since c(s) is a strictly Hurwitz polynomial over R[s] from Definition 3 it follows that 

matrix [A + KC] is Hurwitz stable. Since the notion of observability is a dual of 

controllability (i.e., observability of the pair (A, C) implies controllability of the pair(𝐀𝑇, 

𝐂𝑇)) [12], the matrix K can be calculated using known methods for the solution of pole 

assignment problem by state feedback [12].   

If the pair (A, C) is unobservable with stable unobservable eigenvalues, then from 

Lemma 6 and Lemma 7 it follows that there exists a matrix T such that 

A=𝐓 [
𝐀11 𝟎
𝐀21 𝐀22

] 𝐓−1,   C = [ 𝐂1, 0] 𝐓−1  

The pair (𝐀11, 𝐂1) is observable and the matrix 𝐀22 is Hurwitz stable. Hurwitz stability 

of the matrix 𝐀22 and Definition 3 imply that the polynomial 𝜒(𝑠) given by 

𝑑𝑒𝑡[ 𝐈𝑠 −  𝐀22] =𝜒(𝑠) 

is a strictly Hurwitz polynomial. Observability of the pair (𝐀11, 𝐂1)  and Lemma 5 imply 

the existence of a matrix 𝐊1 over R of appropriate dimensions such that 

𝑑𝑒𝑡[𝐈𝑠 − 𝐀11−𝐊1𝐂1] = φ(s) 

where φ(s) is an arbitrary monic, strictly Hurwitz polynomial over R[s] of appropriate 

degree. Since the notion of observability is a dual of controllability (i.e., observability of 

the pair (𝐀11, 𝐂1) implies controllability of the pair(𝐀11
𝑇 , 𝐂1

𝑇) ), the matrix 𝐊1 can be 

calculated using known methods for the solution of pole assignment problem by state 

feedback [12].  Putting 

K = 𝐓 [
𝐊1

𝟎
] 

we obtain 

A +KC = 𝐓 [
𝐀11 𝟎
𝐀21 𝐀22

] 𝐓−1 + 𝐓 [
𝐊1

𝟎
][ 𝐂1, 0] 𝐓−1 = 
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= 𝐓  [
𝐀11 + 𝐊1𝐂1 𝟎

𝐀21 𝐀22
]  𝐓−1  

From the last relationships it follows that 

𝑑𝑒𝑡[Is−A−KC] = 𝜑(𝑠)χ(s) 

Since the polynomials 𝜒(𝑠) and 𝜑(s) are strictly Hurwitz, the polynomial 𝜑(𝑠)χ(s) is also 

a strictly Hurwitz polynomial and therefore, from Definition 3, it follows that matrix 

[A+KC] is Hurwitz stable. This completes the proof. 

 

3. MAIN RESULTS 

The theorem that follows is the main result of this paper and gives the necessary 

and sufficient conditions for the constrained Sylvester-observer equation in order, to have 

a solution over the field of real numbers. Without any loss of generality in what follows 

we assume that rank[C] = p. 

Theorem 1. There exists matrices F, T and G with F, T being Hurwitz stable and 

of full row rank respectively which satisfy equation (1) and constraint (2), if and only if 

the following condition holds: 

   (a) The pair (A, C) is detectable. 

Proof: Let there exists matrices F, T and G with F, T being Hurwitz stable and of 

full row rank respectively which satisfy equation (1) and constraint (2). Also let L a non-

singular matrix over R of size (n x n) as in (27), (28), (29) and (30). From (27), (28), (29) 

and (30) we have that 

                                                      C= [𝐈p , 0] 𝐋−1                                                           (43) 

                                                  A = L [
𝐀11 𝐀12

𝐀21 𝐀22
] 𝐋−1                                                  (44) 

Let 

                                                            T = [𝐓1,  𝐓2] 𝐋−1                                                  (45) 

where 𝐓1 and  𝐓2 are real matrices of size  ((n-p) x p)  and ((n-p) x (n-p)) respectively. 

Using (43) and (45) the matrix [
𝐂
𝐓

] can be expressed as follows                                         

                                                      [
𝐂
𝐓

] = [
𝐈p 𝟎

𝐓1 𝐓2
] 𝐋−1                                                  (46) 
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Since according to (2) the matrix [
𝐂
𝐓

] is non-singular, from (46) it follows that the matrix 

𝐓2 is non-singular; therefore  

                                                        det[𝐓2] ≠ 0                                                             (47) 

Substituting (43), (44) and (45) to (1) we obtain: 

                      [𝐓1,  𝐓2] 𝐋−1 L [
𝐀11 𝐀12

𝐀21 𝐀22
] 𝐋−1 − F[𝐓1,  𝐓2] 𝐋−1 = G[𝐈p , 0] 𝐋−1            (48) 

Relationship (48) can be rewritten as follows 

                                      [𝐓1, 𝐓2] [
𝐀11 𝐀12

𝐀21 𝐀22
] − F[𝐓1, 𝐓2] = G[𝐈p , 0]                                (49) 

From (49) it follows that 

                                          G = 𝐓1𝐀11 + 𝐓2𝐀21 − F𝐓1                                                   (50) 

                                                      F𝐓2 = 𝐓2𝐀22 + 𝐓1𝐀12                                               (51) 

Condition (47) implies that the matrix 𝐓2  is invertible. Using this fact (51) can be 

rewritten as follows 

                                                                   𝐓2
−1F𝐓2 = 𝐀22 + 𝐓2

−1𝐓1𝐀12                                (52) 

Since by assumption the matrix F is Hurwitz stable, the matrix 𝐓2
−1F𝐓2 must be also 

Hurwitz stable. Hurwitz stability of 𝐓2
−1 F 𝐓2  implies Hurwitz stability of [ 𝐀22 + 

+𝐓2
−1𝐓1𝐀12]. Definition 3 and Hurwitz stability of the matrix [𝐀22 +𝐓2

−1𝐓1𝐀12] imply 

detectability of the pair (𝐀22, 𝐀12). Detectability of the pair (𝐀22, 𝐀12) and Lemma 4 

imply detectability of the pair (A, C).This is condition (a) of the Theorem. To prove 

sufficiency, we assume that condition (a) holds. Detectability of the pair (A, C) and 

Lemma 4 imply detectability of the pair (𝐀22, 𝐀12). Since the the pair (𝐀22, 𝐀12) is 

detectable, from Lemma 8 it follows that there exists a real matrix  K of appropriate 

dimensions such that the matrix [𝐀22 + 𝐊𝐀12] is Hurwitz stable, that is 

                                       𝑑𝑒𝑡[ 𝐈𝑛−𝑝𝑠 −  𝐀22 − K𝐀12] = 𝑐(𝑠)                                        (53) 

where c(s) is a strictly Hurwitz polynomial over R[s] of degree (n-p).The matrix K can be 

calculated as in the proof of Lemma 8. Let 

                                                 T = [𝐓1,  𝐓2] 𝐋−1= [K, 𝐈n−p] 𝐋−1                                    (54) 

                                                            F = [𝐀22  + K𝐀12]                                               (55) 

                                                   G = K𝐀11 + 𝐀21– [𝐀22  + K𝐀12]K                             (56) 

Using (54), (55), (56), (43) and (44) we have that 
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TA – FT = [K,  𝐈𝑛−𝑝] 𝐋−1A   –  [𝐀22  + K𝐀12] [K, 𝐈𝑛−𝑝] 𝐋−1 = 

= {[K, 𝐈𝑛−𝑝] 𝐋−1L [
𝐀11 𝐀12

𝐀21 𝐀22
] 𝐋−1–  [𝐀22  + K𝐀12] [K, 𝐈𝑛−𝑝] }𝐋−1 = 

= {[K, 𝐈𝑛−𝑝]  [
𝐀11 𝐀12

𝐀21 𝐀22
] –  [𝐀22  + K𝐀12] [K, 𝐈𝑛−𝑝] }𝐋−1 = 

= {[(K𝐀11 + 𝐀21),   (𝐀22  + K𝐀12)] – [(𝐀22  + K𝐀12)K,  (𝐀22  + K𝐀12)]} 𝐋−1 = 

= {[(K𝐀11 + 𝐀21) – (𝐀22 + K𝐀12)K] , 0]}𝐋−1 = 

                               = {[(K𝐀11 + 𝐀21)– (𝐀22 + K𝐀12)K][𝐈𝑝 , 0]} 𝐋−1 = GC                 (57) 

Using (43) and (54) we have that 

                                                           [
𝐂
𝐓

] = [
𝐈p 𝟎

𝐊 𝐈𝑛−𝑝
] 𝐋−1                                           (58) 

From (54) it follows that the matrix T is of full row rank and from (53) and (55) we have 

that the matrix F is Hurwitz stable. Relationships (57) and (58) imply that the matrices T, 

F and G given by (54), (55) and (56) satisfy equation (1) and constraint (2). This 

completes the proof. 

The sufficiency part of the proof of Theorem 1 provides a construction of the 

matrices T, F and G which satisfy equation (1) and constrained (2). The major steps of 

this construction are given below. 

CONSTRUCTION 

Given: A and C with rank[C] = p. 

Find: T, F and G 

Step 1: Check condition (a) of Theorem 1. If this condition is satisfied go to Step 2. If 

condition (a) is not satisfied, the solution of equation (1) with constrained (2) is 

impossible.  

Step 2: Find a non-singular matrix L over R of dimensions (n x n) such that 

CL =   [𝐈p , 0] 

Step 3: Calculate the following real matrix 

𝐋−1AL = [
𝐀11 𝐀12

𝐀21 𝐀22
],     

Step 4: Detectability of the pair (A, C) and Lemma 4 imply detectability of the pair (𝐀22, 

𝐀12). Since the the pair (𝐀22, 𝐀12) is detectable from Lemma 8 it follows that there exists 
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a real matrix  K of appropriate size such that the matrix 

[𝐀22 + 𝐊𝐀12] 

is Hurwitz stable. The matrix K can be calculated as in the proof of Lemma 8. 

Step 5: Put 

T = [K, 𝐈n−p] 𝐋−1 

F = [𝐀22  + K𝐀12] 

G = K𝐀11 + 𝐀21– [𝐀22  + K𝐀12]K 

 

4. APPLICATION TO CONTROL THEORY 

Consider a linear time-invariant system described by the following state-space 

equations 

                                                              𝐱̇(𝑡)=Ax(t)+Bu(t)                                            (59a) 

                                                               y(t)=Cx(t)                                                       (59b) 

where A, B and C are real matrices of size (n x n), (n x m) and (p x n)  respectively, x(t) is 

the state vector of dimensions (n x 1), u(t) is the vector of inputs of dimensions (m x1) 

and y(t) the vector of outputs of dimensions (p x1). Consider also a linear time-invariant 

system described by the following state-space equations [1] 

                                                            𝐳̇(𝑡)  = Fz(t) + Gy(t) + Pu(t)                               (60)       

where F, G and P are real matrices of size ((n-p) x (n-p)),  ((n-p) x p) and ((n-p) x m) 

respectively and z(t) is the state vector of dimensions ((n-p) x 1). 

Theorem 2. The system (60) is an observer of order (n-p) of the system described 

by equations (59a) and (59b) if the following condition holds: 

    (a) The pair (A, C) is detectable. 

Proof: Detectability of the pair (A, C) and Theorem 1 imply the existence of a 

Hurwitz stable matrix F, of full row rank matrix T and the matrix G of dimensions ((n-p) 

x (n-p)), ((n-p) x n) and ((n-p) x p) respectively such that 

                                                        TA – FT = GC                                                      (61)                                                        

                                                            det[
𝐂
𝐓

] ≠ 0                                                           (62)                                                          

Let the state estimation error be defined as follows [1] 
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                                                       e(t) = z(t) – Tx(t)                                                     (63) 

Then by taking the derivative of (63) and using (59a) and (60) we have that 

                          𝐞̇(𝑡) = 𝐳̇(𝑡) – T𝐱̇(𝑡) = Fz(t) + Gy(t) + Pu(t) – T[Ax(t) + Bu(t)]        (64) 

Substituting (59b) while adding and subtracting FTx(t) in  (64) [1], we have that 

                       𝐞̇(𝑡) = Fe(t) – [TA – FT – GC]x(t) +  [P – TB]u(t)                              (65)                                                      

Let 

                                                       P = TB                                                                     (66)                                                                                                                         

Using (66) and (61), from (65) we have that  

                                                   𝐞̇(𝑡) = Fe(t)                                                                 (67)                                               

Since the matrix F is Hurwitz stable, from (67) we have that 

                                                                  𝑙𝑖𝑚
                                                                                           𝑡→+∞

𝐞(𝑡) = 0                                                        (68) 

for any x(0), z(0),  e(0) and u(t). Hence, from (63) and (68) it follows that z(t) is an 

estimate of Tx(t) and therefore the system (60) is an observer of order (n-p) of the system 

described by equations (59a) and (59b) [1]. The observer matrices F, G and P can be 

calculated by solving equation (61) and using relationship (66). Taking into account eqns. 

(62), (63), (68) and (59b), one can always find an estimate 𝐱̂(t) of x(t) of the system 

described by equations (59a) and (59b) as follows [1] 

                                                             𝐱̂(𝑡) = [
𝐂
𝐓

]
−1

[
𝐲(𝑡)
𝐳(𝑡)

]                                                  (69)                                  

This completes the proof. 

 

5. CONCLUSIONS 

In this paper explicit necessary and sufficient conditions for the constrained 

Sylvester-observer equation in order, to have a real solution, are established. The proof of 

the main results of this paper is constructive and furnishes a procedure for the 

computation of solution. The results of this paper are useful in studying the problems of 

linear control theory that can be converted to the solution of constrained Sylvester-

observer equation. A typical example is the problem of the existence and construction of 

reduced order observer for the state estimation of continuous-time linear time invariant 

systems.  
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Abstract 

 

This paper is devoted to the design of full order proportional-integral observer for 

the state estimation of discrete-time linear time-invariant systems. In particular, explicit 

necessary and sufficient conditions are established for the existence of proportional-

integral observer for the state estimation of discrete-time linear time-invariant systems 

and a simple procedure is given for the construction of the observer. Our approach is 

based on properties of real and polynomial matrices. 

 

Keywords: Proportional-integral observer, necessary and sufficient conditions, 

discrete-time linear time-invariant systems. 

 

1. INTRODUCTION 

In 1971 Luenberger proposed the full order observer for the state estimation of 

linear time-invariant systems [1]. In [2] Wojciechowski added an additional term to 

Luenberger's full order observer for the state estimation of single-input single-output 

linear time-invariant systems. This term is proportional to the integral of the output 

estimation error. The resulting new observer was called proportional-integral observer 

and has a long and rich history. The main results of [2] were generalized to linear 

multivariable time-varying systems in [3], in particular in [3] implicit necessary and 

sufficient conditions for the existence of proportional-integral observer for the state 

estimation of linear multivariable time-varying systems have been established. In [4] a 

reduced order proportional-integral observer for the state estimation of linear 

multivariable time-varying systems was first considered. In [5] the robustness property of 

feedback control systems using a proportional-integral observer was studied.  In [6] 
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necessary and sufficient conditions have been derived under which the proportional-

integral observer achieves Exact Loop Transfer Recovery for continuous-time linear 

time-invariant systems. Similar results have been obtained in [7] for discrete-time linear 

time-invariant systems. In [8] it was proved that the proportional-integral observer can 

estimate the state not only of linear time-invariant systems but also of systems with 

arbitrary external input which appear as unknown input, nonlinearity or unmodeled 

dynamics. 

   In [9] it was shown that, for some classes of systems the proportional-integral 

observer has the ability to completely decouple the modeling uncertainties while keeping 

satisfactory convergence properties. Furthermore a comparison of classical proportional 

observer to proportional-integral observer was given using a simulation example. A 

parametric eigenstructure assignment design approach for proportional-integral observers 

for the state estimation of continuous-and discrete-time linear time-invariant systems was 

proposed in [10] and [11] respectively. In [12] a proportional-integral observer based 

sliding mode controller was proposed for nonlinear hydraulic differential cylinder 

systems affected by uncertainties. In [13] an optimization method based on a genetic 

algorithm for the computation of gains of proportional-integral observer for the 

estimation of state variables of an induction motor is presented. Proportional-integral 

observer-based approaches for fault detection were developed in [14-16] and references 

given therein. The proportional-integral observer literature is extremely rich; for more 

complete references, we refer the reader to [17], [18] and [19]. To the best of our 

knowledge the problem of design of full order proportional-integral observer for the state 

estimation of discrete-time linear time-invariant systems, is still an open problem. This 

motivates the present study. Associated with the design of full order proportional-integral 

observer for the state estimation of discrete-time linear time-invariant systems are two 

fundamental questions, i.e. the question of solvability and the question of computability. 

A major effort in solvability is to determine necessary and sufficient conditions for the 

existence of a full order proportional-integral observer. The main concern associated with 

computability, on the other hand, is to develop a procedure for the construction of the 

proportional-integral observer.  
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   In this paper, these questions have been completely answered. In particular, by 

using basic concepts and basic results from linear systems and control theory as well as of 

the theory of matrices are established explicit necessary and sufficient conditions for the 

existence of a full order proportional-integral observer for the state estimation of discrete-

time linear time-invariant systems and a simple procedure is given for the construction of 

the proportional-integral observer. 

 

2. PROBLEM STATEMENT 

Consider a discrete-time linear time-invariant system described by the following 

state-space equations 

                                                   x(k+1) = Ax(k) + Bu(k)                                                    (1) 

                                                         y(k) = Cx(k)                                                                 (2) 

where A, B and C are real matrices of size (n  x n), (n  x m) and (p  x n ) respectively, x(k) 

is the state vector of size (n x 1), u(k) is the vector of inputs of size (m x 1) and y(k) is 

the vector of outputs of size (p x 1). In what follows without any loss of generality we 

assume that  

                                                         rank[C] = p                                                             (3) 

Let us consider a discrete-time linear time-invariant system described by the 

equations 

                                       𝐱̂(k +1) = (𝐀 − 𝐋𝐂) 𝐱̂(k) + Ly(k) + Bu(k) + Fv(k)              (4) 

                                                         v(k+1) = v(k) + [y(k) − C𝐱̂(k)]                                 (5)   

where 𝐱̂(k) is the state vector of dimensions(n x 1), v(k) is a vector of size (p x 1) and 𝐋 

and F are real matrices of size (n  x p) respectively. The discrete-time linear time-

invariant system described by the equations(4) and (5) is a proportional-integral observer 

of order n for the system described by the equations (1) and (2), if and only if for 

arbitrary initial conditions   𝐱̂(0), x(0) and any input u(k),  the following relationships 

hold [11] 

                                                   𝑙𝑖𝑚
                                                                        𝑘→+∞

𝐞(𝑘) = 0                                                                             (6)                                                                            

                                                  𝑙𝑖𝑚
                                                                      𝑘→+∞

𝐯(𝑘) = 0                                                                     (7)                                                                            
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where 𝐞(𝑘) = [𝐱̂(𝑘)  − 𝐱(𝑘)] is the state estimation error, 𝐱̂(𝑘) is an estimate of the state 

vector x(k) and v(k)  is a vector representing the integral of the weighted output 

estimation error [11]. The relationships (6) and (7) are simultaneously satisfied if and 

only if the matrix  

                                                         [
𝐀 − 𝐋𝐂 𝐅

−𝐂 𝐈𝑝
]                                                      (8)                                                                                                                                         

of size ((n+p) x (n+p)) is Schur stable, i.e. all its eigenvalues have magnitude less than 1  

[11]. Thus the problem of the design of the proportional-integral observer of order n can 

be stated as follows : Do there exist real matrices 𝐋 and F of appropriate dimensions such 

that the matrix given by (8) is Schur stable?  If so, give conditions for existence and a 

procedure for the calculation of the real matrices 𝐋 and F. 

 

3. BASIC CONCEPTS AND PRELIMINARY RESULTS 

This section contains lemmas, which are needed to prove the main results of this 

paper and some basic notions from linear systems and control theory as well as of the 

theory of matrices that are used throughout the paper. 

Let R be the field of real numbers. Also let R[𝑧] be the ring of polynomials with 

coefficients in R. Further, let C be the field of complex numbers, also let C+ be the set of 

all complex numbers 𝜆 with |𝜆| ≥1. The units of R[𝑧] are polynomials of zero degree, i.e. 

all nonzero finite real numbers. A polynomial over R[𝑧] is said to be non-unit if and only 

if it has nonzero degree. A matrix whose elements are polynomials over R[𝑧] is termed a 

polynomial matrix. A polynomial matrix U( 𝑧 ) over R[ 𝑧 ] of size (q x q) whose 

determinant is a unit of R[𝑧]  is termed unimodular matrix [20]. Every polynomial matrix 

M(𝑧) of size (m x p) with rank[M(𝑧)]=r, can be expressed as [20] 

                                             U1(𝑧) M(𝑧) U2(𝑧) = [
𝐌𝑟(𝑧) 𝟎

𝟎 𝟎
]                                         (9)                                                                                              

The polynomial matrices U1( 𝑧 ) and U2( 𝑧 ) are unimodular and the non-singular 

polynomial matrix 𝐌𝑟(𝑧) of size (r x r) in (9) is given by 

                                           𝐌𝑟(𝑧)= diag [a1(𝑧), a2(𝑧), …., ar(𝑧)]                                  (10) 

The nonzero polynomials ai(𝑧) for i=1,2,..., r are termed invariant polynomials of M(𝑧) 

and have the following property 
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                                                ai(𝑧) divides ai+1(𝑧),  for i=1,2,…,r-1                            (11)                                                                                                         

The relationship (9) with 𝐌𝑟(𝑧) given by (10) is called Smith-McMillan form of M(𝑧) 

over R[𝑧]. Since the matrices U1(𝑧) and U2(𝑧) are unimodular and the polynomial matrix 

𝐌𝑟(𝑧) given by (10) is non-singular, from (9) and (10) it follows that  

                                        rank[M(𝑧)] = rank[𝐌𝑟(𝑧)] =  r                                             (12)                                                                           

Definition 1: The nonzero polynomial c(𝑧) over R[𝑧] is said to be strictly Schur if 

and only if c(𝑧)≠ 0, ∀𝑧 ∈ C+.  

Definition 2: Μatrix A over R of size (n x n) is said to be Schur stable if and only 

if all eigenvalues of the matrix A have magnitude less than 1, or alternatively if and only 

if the characteristic polynomial of the matrix A is a strictly Schur polynomial. 

Definition 3: Let A and C be matrices over R of size (n x n) and (p x n), 

respectively. Then the pair (A, C) is said to be detectable if and only if there exists a 

matrix K over R of size (n x p) such that the matrix [A+KC] is Schur stable [21]. 

Definition 4: Let A and C be matrices over R of size (n x n) and (p x n), 

respectively and C not zero. Then an eigenvalue λ of the matrix A is said to be observable, 

if and only if the following condition holds [22]: 

𝑟𝑎𝑛𝑘 [
  𝑪

𝑰𝑛𝜆 − 𝑨
] = 𝑛  

Let A be a real matrix of size (n x n). The spectrum of the matrix A, is the set of all 

its eigenvalues and is denoted by σ(A). An eigenvalue 𝜆 of A is called a stable eigenvalue 

if and only if |𝜆| <1. Τhe eigenvalue 𝜆 of the matrix A is said to be unstable if and only if 

|𝜆| ≥1. 

Lemma 1: Let A and C be matrices over R of size (n x n) and (p x n), respectively 

and C not zero. Further let σ(A) be the spectrum of the matrix A. The pair (A, C) is 

detectable if and only if one of the following equivalent conditions holds [23] : 

   (a) 𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝑛𝑧 − 𝐀
] = 𝑛 , ∀𝑧 ∈ C+   

    (b) 𝑟𝑎𝑛𝑘 [
𝐂

𝐈𝑛𝜆 − 𝐀
] = 𝑛 , ∀𝜆 ∈ σ(A) with |𝜆| ≥1 
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From condition (b) of Lemma 1 it follows that the pair (A, C) is detectable if and only if 

all unstable eigenvalues of the matrix A are observable [23]. 

Lemma 2. Let A and C be matrices over R of size (n x n) and (p x n), respectively. 

Then the pair (A, C) is observable if and only if for every monic polynomial 𝑐(𝑧) over  

R[𝑧] of degree n  there exists a matrix K over R of size( n x p), such that the matrix 

[A+KC] has characteristic polynomial 𝑐(𝑧)  [20]. 

The standard decomposition of unobservable systems given in the following 

Lemma was first published by Kalman in [24] and can be also found in any standard text 

of linear systems theory. 

Lemma 3: Let A and C be matrices over R of size (n x n) and (p x n), respectively 

and C not zero. Further, let the pair (A, C) is unobservable. Then there exists a non-

singular matrix T of size (n x n) such that  

𝐓−1AT = [
𝐀11 𝟎
𝐀21 𝐀22

] 

CT= [𝐂1, 0]   

The pair (𝐀11,  𝐂1) is observable and the eigenvalues of the matrix 𝐀22  are the 

unobservable eigenvalues of the pair (A, C). 

Lemma 4: Let A and C be matrices over R of size (n x n) and (p x n), respectively 

and C not zero. Further let  

A= 𝐓 [
𝐀11 𝟎
𝐀21 𝐀22

] 𝐓−1,   C = [𝐂1, 0] 𝐓−1  

with (𝐀11, 𝐂1) observable. If the pair (A, C) is detectable then the matrix 𝐀22 is Schur 

stable [23]. 

Lemma 5: Let A be a matrix over R of size (n x n). Then the matrix A is Schur 

stable if and only if the following condition holds: 

(a) rank[𝐈𝑛𝑧 − 𝐀 ] = n  , ∀z ∈ C+ 

   Proof: Let A be a strictly Schur matrix over R. From Definition 2 it follows that 

the characteristic polynomial c(𝑧) of the matrix A is a strictly Schur polynomial and 

therefore from Definition 1 it follows that 

                                                      c(𝑧) ≠ 0 , ∀𝑧 ∈ C+                                                    (13) 



JAE, VOL. 26,  NO. 1, 2024 JOURNAL OF APPLIED ELECTROMAGNETISM 

 

23 

 

The Smith-McMillan form of polynomial matrix [𝐈𝑛𝑧 − 𝐀 ] over R[𝑧] is given by 

                            K(𝑧) [𝐈𝑛𝑧 − 𝐀 ]L(𝑧) = [diag[c1(𝑧), c2(𝑧) ,…., cn(𝑧)]                         (14) 

where K(𝑧) and L(𝑧) are unimodular matrices over R[𝑧]. The polynomials ci(𝑧) for i=1, 

2,…,n are the invariant polynomials of the matrix A and therefore their product is the 

characteristic polynomial c(𝑧) of the matrix A [20], that is 

                                                                    𝑐(𝑧) = Π𝜄=1
𝑛 𝑐i(𝑧)                                                (15) 

From (13) and (15) it follows that 

                                                 ci(𝑧) ≠ 0 , ∀𝑧 ∈ C+ ,  ∀ i=1,2,…,n                                (16) 

from (16) it follows that 

                                  rank{diag[c1(𝑧), c2(𝑧), …., cn(𝑧)]} = n, ∀𝑧 ∈C+                           (17) 

Since K(𝑧) and L(𝑧) are unimodular matrices over R[𝑧], from (12) and (14) we obtain: 

                            rank[𝐈𝑛𝑧 − 𝐀] = rank{diag[c1(𝑧), c2(𝑧), …., cn(𝑧)]}                         (18) 

Relationships (17) and (18) imply that 

                                           rank[𝐈𝑛𝑧 − 𝐀 ] = n  , ∀z ∈ C+                                             (19) 

This is condition (a) of the Lemma. To prove sufficiency, we assume that condition (a) 

holds. Since by assumption condition (a) holds we have that 

                                           rank[𝐈𝑛𝑧 − 𝐀 ] = n  , ∀z ∈ C+                                             (20) 

From (18) and (20) we obtain : 

                                  rank{diag[c1(𝑧), c2(𝑧), …., cn(𝑧)]} = n, ∀𝑧 ∈C+                           (21) 

From (21) it follows that 

                                                 ci(𝑧) ≠ 0 , ∀𝑧 ∈ C+ ,  ∀ i=1,2,…,n                                 (22) 

From (22) it follows that 

                                                   Π𝜄=1
𝑛 𝑐i(𝑧) ≠ 0 , ∀𝑧 ∈ C+ ,  ∀ i=1,2,…,n                        (23)                 

Relationships (23) and (15) imply 

                                                      c(𝑧) ≠ 0 , ∀𝑧 ∈ C+                                                    (24) 

Relationship (24) and Definition 1 imply that c(𝑧) is a strictly Schur polynomial. Since by 

assumption c(𝑧) is the characteristic polynomial of the real matrix A,  from  Definition 2 

it follows that the matrix A is Schur stable. This completes the proof. 

The following Lemma is based on the results of [20]. 
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Lemma 6: Let A and C be matrices over R of size (n x n) and (p x n), respectively 

and C not zero. Further, let the pair (A, C) be detectable. Then there exists a matrix K over 

R of size (n x p) such that the matrix [A+KC] is Schur stable.  

Proof: Let the pair (A, C) be detectable. Delectability of the pair (A, C) implies that 

the pair (A, C) is either observable or unobservable with stable unobservable eigenvalues. 

If the pair (A, C) is observable, then from  Lemma 2 it follows that there exists a matrix K 

over R of appropriate dimensions such that 

                            det[𝐈𝑛 𝑧 −A  −KC] = 𝑑𝑒𝑡[𝐈𝑛𝑧 −A − KC] = c(𝑧)                                (25)                                                   

where 𝑐(𝑧) be an arbitrary monic, strictly Schur polynomial over R[𝑧] of degree n. Since 

the notion of observability is a dual of reachability (i.e. observability of the pair (A, C) 

implies reachability of the pair(𝐀𝑇 , 𝐂𝑇)) [20],  the matrix K can be calculated using 

known methods for the solution of pole assignment problem by state feedback [20]. 

Since 𝑐(𝑧) is the characteristic polynomial of the matrix [A+KC], from Definition 2 and 

(25) it follows that the matrix [A+KC] is Schur stable. If the pair (A, C) is unobservable 

with stable unobservable eigenvalues, then from Lemma 3 and Lemma 4  it follows that 

there exists a non-singular matrix T such that 

                                    A= 𝐓 [
𝐀11 𝟎
𝐀21 𝐀22

] 𝐓−1,   C = [ 𝐂1, 0] 𝐓−1                                      (26) 

The pair (𝐀11, 𝐂1) is observable and the matrix 𝐀22 is Schur stable. Schur stability of the 

matrix 𝐀22 and Definition 2 imply that the polynomial 𝜒(𝑧) given by 

                                                        𝑑𝑒𝑡[ 𝐈𝑧 −  𝐀22] =𝜒(𝑧)                                                  (27) 

is a strictly Schur polynomial. Observability of the pair (𝐀11, 𝐂1)  and Lemma 2 imply 

the existence of a matrix 𝐊1 over R of appropriate dimensions such that 

                                                        𝑑𝑒𝑡[ 𝐈𝑧 − 𝐀11−𝐊1𝐂1] =𝜑(𝑧)                                        (28)                                    

where φ(𝑧) is an arbitrary monic, strictly Schur polynomial over R[𝑧] of appropriate 

degree. Since the notion of observability is a dual of reachability (i.e. observability of the 

pair (𝐀11, 𝐂1) implies reachability of the pair(𝐀11
𝑇 , 𝐂1

𝑇) ), the matrix 𝐊1 can be calculated 

using known methods for the solution of pole assignment problem by state feedback [20]. Let  

                                                      K = 𝐓 [
𝐊1

𝟎
]                                                               (29) 

Using (26) and (29) we have that 
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                                        [A +KC] = = 𝐓  [
𝐀11 + 𝐊1𝐂1 𝟎

𝐀21 𝐀22
]  𝐓−1                            (30) 

while from (27), (28) and (30) we have that 

                                         𝑑𝑒𝑡[(𝐈𝑛𝑧 − 𝐀 − 𝐊𝐂 ] = 𝜑(𝑧)χ(𝑧)                                         (31) 

Since by (27) and (28) the polynomials 𝜒(𝑧) and 𝜑(𝑧) are strictly Schur, the 

polynomial  [𝜑(𝑧) χ( 𝑧 )] is also a strictly Schur polynomial. Since by (31) the 

polynomial [𝜑(𝑧)χ(𝑧)] is the characteristic polynomial of the matrix [𝐀 + 𝐊𝐂], from 

Definition 2 it follows that the matrix [𝐀 + 𝐊𝐂] is Schur stable. This completes the proof. 

 

4. MAIN RESULTS 

The theorem that follows is the main result of this paper and gives the necessary 

and sufficient conditions for the existence of a full order proportional-integral observer 

for the state estimation of discrete-time linear time-invariant systems. 

Theorem 1. The system described by equations (4) and (5) is a proportional-

integral observer of order n of the system described by equations (1) and (2), if and only 

if the following condition holds: 

(a) The pair (𝐀, C) is detectable. 

 Proof: Let the system described by equations (4) and (5) is a proportional-integral 

observer of order n of the system described by equations (1) and (2). Then the real matrix 

of size ((n+p) x (n+p)) given by (8) is Schur stable. Schur stability of the matrix given by 

(8) and Lemma 5 imply 

                            rank[
𝐈𝑛𝑧 − 𝐀 + 𝐋𝐂 −𝐅

𝐂 (𝑧 − 1)𝐈𝑝
] = (n + p) , ∀𝑧 ∈ C+                       (32) 

Since the (𝑛 + 𝑝) columns of the matrix on the left side of (32) are linearly independent 

over C, ∀𝑧 ∈ C+, a subset of these columns consisting of the first n columns must be also 

linearly independent over C, ∀z ∈ C+; therefore 

                     rank[
𝐈𝑛𝑧 − 𝐀 + 𝐋𝐂

𝐂
]=rank[

𝐂
𝐈𝑛𝑧 − 𝐀 + 𝐋𝐂

] = 𝑛  ,∀𝑧 ∈C+                         (33) 

From (33) and after simple algebraic manipulations we obtain:                        

      rank[
𝐂

𝐈𝑛𝑧 − 𝐀 + 𝐋𝐂
] = rank{[

   𝐈𝑝 𝟎

𝐋   𝐈𝑛
] [

𝐂
𝐈𝑛𝑧 − 𝐀

]} =𝑛   ,∀𝑧 ∈C+                        (34)                           

Since matrix  
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                                                          [
 𝐈𝑝 𝟎

𝐋   𝐈𝑛
]                                                             (35) 

is non-singular, from (34) it follows that 

                                             rank[
𝐂

𝐈𝑛𝑧 − 𝐀
] = 𝑛 ,∀𝑧 ∈C+                                              (36)                         

Relationship (36) and condition (a) of Lemma 1 imply that the pair (𝐀, C) is detectable. 

This is condition (a) of the Theorem. 

To prove sufficiency, we assume that condition (a) holds. Delectability of the pair 

(A, C) and Lemma 6 imply the existence a matrix 𝐊 over R of size (n x p) such that the 

matrix [A+KC] is Schur stable, that is  

                                                 det[𝐈𝑛𝑧 − 𝐀 − 𝐊𝐂] = c(𝑧)                                              (37) 

where c(𝑧) is a  strictly Schur polynomial over R[𝑧] of degree n. Matrix 𝐊 in (37) can be 

calculated as in the proof of Lemma 6. 

From (3) it follows that there exists a non-singular matrix T of size (n x n) such that 

                                                             𝐂 = [𝐈𝑝 , 0]T                                                       (38) 

Let 𝚽  be an arbitrary nonzero Schur stable matrix over R of size (p x p).  

Furthermore, let X be a matrix over R of size (n x p) given by 

                                                    X=𝐓−1 [
(−𝚽 + 𝐈𝑝)

  𝚲
]                                                  (39) 

where 𝚲 is an arbitrary matrix over R of size ((n-p) x  p). From (38) and (39) we have: 

                               −CX + 𝐈𝑝=  [−𝐈𝑝, 0]T𝐓−1 [
(−𝚽 + 𝐈𝑝)

    𝚲 
]  + 𝐈𝑝 = 𝚽                       (40) 

Now we form the matrix M over R of size ((n+p) x (n+p)) [25] 

M = [
𝐈𝑛 𝐗
𝟎 𝐈𝑝

] 

Matrix M over R is non-singular and its inverse is given by 

𝐌−1= [
𝐈𝑛 −𝐗
𝟎     𝐈𝑝

] 

Then, we obtain: 

       𝐌−1 [
𝐀 − 𝐋𝐂 𝐅

−𝐂  𝐈𝑝
] 𝐌 = [

𝐀 + (𝐗 − 𝐋)𝐂 (𝐀 − 𝐋𝐂)𝐗 + 𝐅 − 𝐗(−𝐂𝐗 + 𝐈𝑝)

−𝐂 −𝐂𝐗 + 𝐈𝑝
]         (41) 

Furthermore, we set: 
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                                                             L = X – K                                                                                             (42) 

                                                  𝐅 = −(𝐀 − 𝐋𝐂)𝐗 + 𝐗(−𝐂𝐗 + 𝐈𝑝)                                          (43) 

Now by substituting (40), (42) and (43) into (41) we have : 

                                      𝐌−1 [
𝐀 − 𝐋𝐂 𝐅

−𝐂  𝐈𝑝
]M = [

𝐀 + 𝐊𝐂 𝟎
−𝐂 𝚽

]                                             (44) 

Since by (37) matrix [A+KC] is Schur stable and the nonzero real matrix  𝚽  is by 

assumption Schur stable, from Lemma 5 it follows that 

                                           rank[𝐈𝑛𝑧 − 𝐀 − 𝐊𝐂] = n  , ∀𝑧 ∈ C+                                                (45)                    

                                          rank[𝐈𝑝𝑧 − 𝚽 ] = p  , ∀𝑧 ∈ C+                                                         (46) 

Relationships (45) and (46) imply 

                                rank[
𝐈𝑛𝑧 − 𝐀 − 𝐊𝐂 𝟎

𝐂 𝐈𝑝𝑧 − 𝚽] = (n + p) , ∀z ∈ C+                            (47)                               

Since by (44) matrices 

                                                [
𝐀 − 𝐋𝐂 𝐅

−𝐂  𝐈𝑝
] , [

𝐀 + 𝐊𝐂 𝟎
−𝐂 𝚽

]                                                  (48) 

of size ((n+p) x (n+p)) are similar, we have: 

                rank[
𝐈𝑛𝑧 − 𝐀 + 𝐋𝐂 −𝐅

𝐂 (𝑧 − 1)𝐈𝑝
] = 𝑟𝑎𝑛𝑘 [

𝐈𝑛𝑧 − 𝐀 − 𝐊𝐂 𝟎
𝐂 𝐈𝑝𝑧 − 𝚽]              (49)                     

From (47) and (49), we obtain: 

                              rank[
𝐈𝑛𝑧 − 𝐀 + 𝐋𝐂 −𝐅

𝐂 (𝑧 − 1)𝐈𝑝
] = (n + p) , ∀z ∈ C+                            (50)                               

Furthermore, from (50) and Lemma 5 it follows that matrix 

[
𝐀 − 𝐋𝐂 𝐅

−𝐂  𝐈𝑝
] 

with L and F given by (42), (43) respectively is Schur stable and therefore according to (8) 

the system described by equations (4) and (5) with L and F given by (42) and (43), 

respectively is a proportional-integral observer of order n of the system described by 

equations (1) and (2). This completes the proof.        

The sufficiency part of the proof of Theorem 1 provides a construction of the 

matrices L and F of proportional-integral observer of order n for the system described by 

equations (1) and (2). The major steps of this construction are given below. 
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CONSTRUCTION 

Given : A, B and C  

Find : L and F  

Step 1: Check condition (a) of Theorem 1. If this condition is satisfied go to Step 2. If 

condition (a) of Theorem 1 is not satisfied, the construction of a proportional-integral 

observer of order n is impossible. 

Step 2: Delectability of the pair (A, C) and Lemma 6 imply the existence of a matrix K 

over R of size (n x p) such that the matrix [A+KC] is Hurwitz stable. The matrix K can be 

calculated as in the proof of Lemma 6. 

 Step 3: Find a non-singular matrix T of size (n x n) such that 

𝐂 = [𝐈p , 0]T 

Step 4: Let 𝚽 be an arbitrary nonzero Schur stable matrix over R of size (p x p). Further, 

let Λ be an arbitrary matrix over R of size ((n-p) x p), where we set: 

𝐗 = 𝐓−1 [
(−𝚽 + 𝐈𝑝)

  𝚲
]             

L = X – K                                                    

 𝐅 = −(𝐀 − 𝐋𝐂)𝐗 + 𝐗(−𝐂𝐗 + 𝐈𝑝) 

                                                                                            

5. CONCLUSIONS 

In this paper, by using basic concepts and basic results from linear systems and 

control theory as well as of the theory of matrices, the problem of the design of a full 

order proportional-integral observer for the state estimation of discrete-time linear time-

invariant systems is studied and completely solved. The proof of the main results of this 

paper is constructive and furnishes a simple procedure for the construction of full order 

proportional-integral observer. 
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