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Abstract 

 

The structures of field sources described by the wave functions of a circular 

cylinder have been investigated. These sources exhibit the character of two-dimensional 

multipoles, consisting of a set of monopoles confined within a small planar region. 

Multiple possible configurations have been identified for each multipole source, differing 

in geometric arrangement, the number of monopoles and the accuracy with which they 

represent the original wave field. 

 

 

1. INTRODUCTION 

The work focuses on investigating the structures of sources of fields which are 

described by the wave functions of a circular cylinder [1] 

        

( ) ( ) ( )1
cosnH k n  , 

( ) ( ) ( )1
sinnH k n  . (1) 

Here k is a wave number, ( φ) are the polar coordinates of the observation point, 

( ) ( )1

nH k  is a Hankel function and n is a non-negative integer. As it is known, the 

functions (1) are the solutions of the two dimensional Helmholtz equation. They are used 

for studying the problems, related to the harmonic in time wave processes, when the area 

is bounded by the circular cylinder surface. It is supposed, that the time factor is e-iωt. 

The corresponding zero-order function H0
(1)(kρ) describes the field of the 

elementary two dimensional source (monopole), which is propagating as a travelling 

cylindrical wave, from the origin. Since the expression of this field depends only on the 

coordinate, then its amplitude radiation pattern will have the shape of a circle. The 

situation changes for the fields (1) at subsequent values of n. Since they also depend on 
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the angular coordinate φ, then their radiation patterns have more complicated shape 

(Figure 1), which indicates the multipole nature of the sources of such fields. The 

objective is to analyze the structures of these sources. 

 

 

 

 

Figure 1. Examples of radiation patterns for Hn
(1)(k)cos(nφ) 

This paper proposes two main approaches to solving the problem. The first one is 

based on the consideration the amplitude radiation patterns of fields (1) and the 

construction the linear differential operators. Their effect on the ( ) ( )1

0H k  yields to the 

original fields [2]. The second one is based on the application of the known addition 

theorem for the Bessel cylindrical functions. As a result of investigation, four types of 

multipoles were identified. They differ by the geometric construction, number of 

monopoles and also by the accuracy of the original field’s representation. 

 

2. PROBLEM STATEMENT 

Let us focus on the radiation patterns of the fields (1), at initial values of n 

=1,2,3,…(Figure 2). 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 2. Examplesof radiation patterns: (a) Hn
(1)(k)cos(nφ) and (b) Hn

(1)(k)sin(nφ) 

 



JAE, VOL. 26,  NO. 2, 2024 JOURNAL OF APPLIED ELECTROMAGNETISM 

 

15 
 

It can be seen, that each of them consist of 2n lobes, the directions of which can be 

determined by the unit vectors 

            
 , , ,cos ,sinn j n j n j  = ,  , , ,cos ,sinn j n j n j    = , (2) 

Where 

            ( ), 1n j j
n


 = − , 

,

1

2
n j j

n


  

= − 
 

, 1,..., 2j n= .     (3) 

2. 1. First Kind Operators 

Let consider the linear differential operators with the form 

                             

( )
( )

1
1

1 ,

1 2ˆ 1

n n nn
j

n n n
j n j

L
nk 

−
+

=

− 
= −


 , 

( )
( )

1
1

1 ,

1 2ˆ 1

n n nn
j

n n n
j n j

L
nk 

−
+


=

− 
= −


 .    (4) 

Here, under the summation sign, there are derivative operators of n-th order along the 

directions of the vectors (2), i.e. 

     
, ,

,

cos sin

nn

n j n jn

n j x y
 



   
= + 

   
, 

, ,

,

cos sin

nn

n j n jn

n j x y
 



 



   
= + 

   
. 

Applying Newton's binomial formula and introducing the notation 

( ) ( ) ( )
1

, , ,

1

1 cos sin
n

n q qj

n q n j n j

j

B  
−+

=

= − , ( ) ( ) ( )
1*

, , ,

1

1 cos sin
n

n q qj

n q n j n j

j

B  
−+  

=

= − , 

operators (4) can be represented as 

( ) 1

,

0

1 2ˆ
n n nn

q

n n n qn n q q
q

L C B
nk x y

−

−
=

− 
=

 
 , 

( ) 1

* *

,

0

1 2ˆ
n n nn

q

n n n qn n q q
q

L C B
nk x y

−

−
=

− 
=

 
 . 

Calculating the 
,n qB  and *

,n qB  coefficients, for the different values of n, it can be noted that 

they can be determined as 

( ) ( ) ( )
2

, 1 1 1 2
q q n

n qB n
    = − + −

 
, ( ) ( ) ( )

2*

, 1 1 1 2
q q n

n qB n
    = − − −

 
, 

where 2q    is the integer part of the number 2q . Then, taking into account that in the 

expressions of the operators ˆ
nL  and *̂

nL  the terms only with even and odd values of q 

respectively must remain, then finally, we obtain 

         

( )
( )

2

2

2 2
0

1ˆ 1

n n n

n nn n
L C

k x y

 

 


  

−
=

− 
= −

 
 , 

( )
( )

( )1 2
1* 2 1

2 1 2 1
1

1ˆ 1

n n n

n nn n
L C

k x y

 

 


+  
+ −

− + −
=

− 
= −

 
 .     (5) 

Let us now consider a homogeneous polynomial of degree n, from variables x, y, 
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( ) ,

0

,
n

n

n nf x y A x y 




−

=

=  , 

where
,nA 

 are the known coefficients. We will say that the linear differential operator ˆ
nF  

is the eigen-operator for this polynomial, if it is the result of the following transformation: 

1
x

k x


→ −


, 

1
y

k y


→ −


. 

So, it will have the form 

( )
,

0

1ˆ
n nn

n nn n
F A

k x y
  


−

=

− 
=

 
 . (6) 

Let us show, that ˆ
nL  and *̂

nL  are the eigen-operators for the cylindrical harmonics 

( )cosn n   and ( )sinn n   [3]. For this, we will use well-known expression for the 

power of a complex number: 

( ) ( ) ( )
( )1 22

12 2 2 2 1 2 1 2 1

0 1

1 1

nn
nn in n n

n ne x iy C x y i C x y
       

 


+     

+ − − − + −

= =

=  = −  −  , 

from where follows the next homogeneous polynomials 

( ) ( )
2

2 2 2

0

cos 1
n

n n

nn C x y
   



 
  

−

=

= − , ( ) ( )
( )1 2

1 2 1 2 1 2 1

1

sin 1

n

n n

nn C x y
   



 
+  

+ − − + −

=

= − . 

The eigen-operators of these polynomials, according to the definition (6) will 

coincide with ˆ
nL
 
and *̂

nL . For the eigen-operator of polynomial ( )
n

x iy  we have the 

expression 

             

( ) *
1 ˆ ˆ

nn

n nn
i L iL

k x y

−   
 =  

  
. (7) 

The operators ˆ
nL  and *̂

nL  give ability to connect the original n-order fields (1) with 

the zero-order field ( ) ( )1

0H k . Namely, we will show that for any n≥1, 

( ) ( ) ( ) ( ) ( )1 1

0
ˆ cosn nL H k H k n  = , ( ) ( ) ( ) ( ) ( )1 1*

0
ˆ sinn nL H k H k n  = .    (8) 

For this, we combine functions (1) as 

      
( ) ( ) ( )1

, in

n nS H w e   = ,    (9) 
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where w k=  and consider the partial derivatives of function ( ),nS    by x and y. After 

some transformations we will have 

( ) ( ) ( ) ( ) ( )
1

1,1
cos sin

n n in

n

S dH w n
i H w e

k x dw w


 

 



 

=  
   

, 

( ) ( ) ( ) ( ) ( )
1

1,1
sin cos

n n in

n

S dH w n
i H w e

k y dw w


 

 



 

=  
   

, 

from where we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1, ,1 1 i nn n n

n

S S dH w n
i H w e

k x k y dw w

    

 +
  

 = − 
    

, 

or taking into account known recurrent formula [4] 

       

( ) ( ) ( ) ( ) ( ) ( )
1

1 1

1

n

n n

dH w n
H w H w

dw w
+− = − , (10) 

we finally obtain: 

     
( ) ( )1

1
, ,n ni S S

k x y
    

+

  
−  = 

  
. (11) 

As a special case, when n =0, we have 

( ) ( )0 1

1
, ,i S S

k x y
      

−  = 
  

. 

Similarly, when n =1, 

( ) ( )1 2

1
, ,i S S

k x y
      

−  = 
  

, 

or 

( )
( ) ( )

2 2

0 22

1
, ,i S S

k x y
    

−   
 = 

  
. 

If we continue this process, in general we can write 

( )
( ) ( )0

1
, ,

n n

nn
i S S

k x y
    

−   
 = 

  
, 

or considering that ( ) ( ) ( )1

0 0,S H w  = , using (7) and (9), 

( ) ( ) ( ) ( ) ( )1 1*

0
ˆ ˆ in

n n nL iL H k H k e    = . 
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The last expression is equivalent to two expressions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1*

0 0
ˆ ˆ cos sinn n n nL H k iL H k H k n iH k n     + = + , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1*

0 0
ˆ ˆ cos sinn n n nL H k iL H k H k n iH k n     − = − , 

from which equalities (8) follow. In expanded form we can write 

     

( )
( )

( ) ( ) ( ) ( ) ( )
11

1 10

1 ,

1 2
1 cos

n n nn
j

nn n
j n j

H k
H k n

nk


 



−
+

=

− 
− =


 , (12) 

      

( )
( )

( ) ( ) ( ) ( ) ( )
11

1 10

1 ,

1 2
1 sin

n n nn
j

nn n
j n j

H k
H k n

nk


 



−
+


=

− 
− =


 . (13) 

2. 2. Second Kind Operators 

Let us now consider operators of the form 

     

( )

( )
( )

( )2 2
1 0

1 0 ,0

2 1 ! 1ˆ 1
!

mn m mn n
j

n n m
j m n j

n
M

mk





−
+

= =

− − 
= −


  , (14) 

     

( )

( )
( )

( )2 2
1 0

1 0 ,0

2 1 ! 1ˆ 1
!

mn m mn n
j

n n m
j m n j

n
M

mk





−
+


= =

− − 
= −


  , (15) 

where 0 is some coefficient. Applying Newton's binomial formula, after a series of 

transformations, these operators can be written as 

( )

( )

1

0
, ,

0 00

2 1 !ˆ
!

n m mn m
q

n m n m qn m q q
m q

n
M C B

m x yk





−

−
= =

− 
=

 
  , 

( )

( )

1

0
, ,

0 00

2 1 !ˆ
!

n m mn m
q

n m n m qn m q q
m q

n
M C B

m x yk





−

 

−
= =

− 
=

 
  , 

where the following notations are introduced 

( ) ( ) ( ) ( ) ( )
1

, , , ,

1

1
1 1 1 cos sin

2

n
m q qm n j

n m q n j n j

j

B  
−+

=

 = − + − −
  , 

( ) ( ) ( ) ( ) ( )
1

, , , ,

1

1
1 1 1 cos sin

2

n
m q qm n j

n m q n j n j

j

B  
−+  

=

 = − + − −
  . 

Calculating the values of the coefficients 
, ,n m qB  and *

, ,n m qB  for different n, we can notice 

that 

( ), , ,1
n

n m q mn n qB B= −  , ( )* *

, , ,1
n

n m q mn n qB B= − , 

where 
mn  is Kronecker delta. As a result, the operators ˆ

nM  and ˆ
nM   will be transformed 

to the form 
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( ) 1

,

0

1 2ˆ
n n nn

q

n n n qn n q q
q

M C B
nk x y

−

−
=

− 
=

 
 , 

( ) 1

*

,

0

1 2ˆ
n n nn

q

n n n qn n q q
q

M C B
nk x y

−



−
=

− 
=

 
 , 

i.e. they coincide with the first type operators ˆ
nL  and *̂

nL . Thus, similarly to expressions 

(12) and (13), we write 

                        

( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
12 2

1 10 0

1 0 ,0

2 1 ! 1
1 cos

!

mn m mn n
j

nn m
j m n j

n H k
H k n

mk

 
 



−
+

= =

− − 
− =


  ,         (16) 

                        

( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )
12 2

1 10 0

1 0 ,0

2 1 ! 1
1 sin

!

mn m mn n
j

nn m
j m n j

n H k
H k n

mk

 
 



−
+


= =

− − 
− =


  . (17) 

 

3. FIRST TYPE CIRCULAR MULTIPOLE 

Let us first consider expressions (12) and (13). Let us replace the directional 

derivatives in them by the corresponding central finite differences [5]. If the difference 

step is denoted by 0, then for the outer area (  (n)0) we will have the approximate 

equalities 

         
( )

( ) ( ) ( ) ( ) ( )
1

1 1 1

0 0 ,

1 00

2
1 cos

2

n n n
m n j m

n n j nn
j m

n
C H k m H k n

n k
    



−
+ + +

= =

  
− − −   

  
 ,  (18) 

         
( )

( ) ( ) ( ) ( ) ( )
1

1 1 1

0 0 ,

1 00

2
1 sin

2

n n n
m n j m

n n j nn
j m

n
C H k m H k n

n k
    



−
+ + + 

= =

  
− − −   

  
 , (19) 

where   is the radius vector of the observation point, with coordinates ( φ).The left 

parts of these expressions describe the multipole field, the monopoles of which are 

located in points with radius vectors ( ) 0 ,2 n jm n  −  or ( ) 0 ,2 n jm n   −  respectively and 

have the amplitudes ( )( ) ( )
11

02 1
n m n jn m

nn k C
− + + +− − . The radius of a given multipole is 

determined as (n/2)0, i.e. for the fixed value of 0, increases with increasing n. The total 

number of the monopoles depends on the parity of n. For odd n, it is n(n+1). For even n, 

some monopoles end up in the center, which corresponds to one monopole 1of total 

amplitude. The total number of monopoles, in this case, is n2+1. The structure of the 

resulting multipole, which we will call the first type circular multipole, is shown on the 

Figure 3. As we see, the monopoles are located on concentric circles, along the lobes of 

the corresponding field pattern. 
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(a)                                                                             (b) 

Figure 3. The first type of circular multipole, which describes the field: 

(a) Hn
(1)(k)cos(nφ)and (b) Hn

(1)(k)sin(nφ), when n=3 and n=4 

 

 

 

 
 

Figure 4. The dependence of the error on the value of k0 

To determine the accuracy of the representation of fields (1) by this multipole, the 

dependence of the average relative error [6] of expressions (18) and (19) on the value k0, 

has been studied. These expressions have the same errors, therefore, for definiteness, only 

expression (18) is considered. Graphs of the resulting error for the initial values of n, are 

shown on Figure 4. Despite the fact that the error for n = 1 is greater than for n = 2 and n 

= 3, it gradually increases with increasing n. In addition, the size of the multipole also 

increases. 

Thus, fields (1) can be approximately described by the first type circular multipole. 

At the same time, to ensure the same accuracy as n increases, the value of 0 

(determining the size of the multipole) should be reduced. 

 

4. SECOND TYPE CIRCULAR MULTIPOLE 

The other multipole type can be obtained from the expressions (16) and (17), if we 

notice that the inner sums of their left parts represent the first n+1 terms of the Taylor 

series of functions ( ) ( )1

0 0 ,n jH k   −  and ( ) ( )1

0 0 ,n jH k    − . After appropriate 

substitution, for the area   0, approximately we will have 

                      
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

2 2
1 1 1

0 0 ,

10

2 1 !
1 cos

n n
j

n j nn
j

n
H k H k n

k
    



−
+

=

−
− −  , (20) 
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( )

( )
( ) ( ) ( ) ( ) ( ) ( )

2 2
1 1 1

0 0 ,

10

2 1 !
1 sin

n n
j

n j nn
j

n
H k H k n

k
    



−
+ 

=

−
− −  . (21) 

Analyzing these approximate equalities, we come to the conclusion that 2n 

monopoles, with radius vectors 
0 ,n j 

 
and 0 ,n j   , radiate the total field of the form 

( ) ( ) ( )1
cosnH k n   and ( ) ( ) ( )1

sinnH k n   respectively. These monopoles are located on a 

circle with a radius 0 and their amplitudes are ( ) ( ) ( )
12

02 1 ! 1
n jn n k

− +− − − . The multiplier 

( )
1

1
j+

−  shows that each subsequent monopole oscillates in the opposite phase to the 

previous one. 

The structure of the multipole that emerges, referred to as the second type circular 

multipole, is illustrated in Figure 5. It can be seen that the number of monopoles 

coincides with the number of original field pattern lobes. 

 

 

 

 

 

                                       (a)                                                                                 (b) 

Figure 5. The second type of circular multipole, which describes the field: 

(a) Hn
(1)(k)cos(nφ) and (b) Hn

(1)(k)sin(nφ), when n=3and n=4 

 

Figure 6 presents the dependence of the average relative error of expression (20) 

on the value k0, for several initial values of n. It can be seen that the greatest error is 

observed in case when n = 1, and for subsequent values of n, unlike the previous case 

(Figure 4), the error, on the contrary, decreases. So, starting from n = 3, in the given 

scales of the figure, the corresponding error graphs actually essentially merge with the 

horizontal axis. This indicates that the second type multipole represents the original fields 

with greater accuracy. Moreover, the number of monopoles reduces, making it more 

efficient than the first type multipole. 

 

 

 



“STUDY OF FIELD SOURCE …”  I. DARSAVELIDZE 

 

22 

 

 

 

 

 
 

Figure 6. The dependence of the error on the value of k0               
 

5. APPLICATION OF THE ADDITION THEOREM 

 Let us present the mathematical expression of the well-known addition theorem 

[1, 8] for cylindrical functions, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

0 0 0 0 0 0 0

1

2 cosm m

m

H k J k H k J k H k m       


=

− = + −   .   (22) 

Here 
0  is a radius vector of point with coordinates ( φ0), located on a circle l0, radius 

0 and centered at the origin. It is assumed that the observation point ( φ) is located in 

outer area (  0). In outer area the considered row converges uniformly. Next, two 

more types of multipoles, that describe the fields (1) are obtained, based on the 

application of expression (22). 

 

5.1. Third Type of Circular Multipole 

Let's multiply both sides of (22) by ( )0cos n  ( ( )0sin n ) and integrate along the 

circle l0. After a series of calculations, we obtain the expressions 

           

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1

0 0 0 0 0 02 cos cosn n

l

J k H k n dl H k n      
−

− =    ,      (23) 

           

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1

0 0 0 0 0 02 sin sinn n

l

J k H k n dl H k n      
−

− =    .      (24) 

Let us replace the integrals in (23) and (24) with the corresponding integral sums. 

If N is a sufficiently large number, then as a result we obtain approximate equalities 

           
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

0 0 0 , ,

1

cos cos
N

n N j N j n

j

NJ k H k n H k n      
−

=

−     , (25) 

          
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

0 0 0 , ,

1

sin sin
N

n N j N j n

j

NJ k H k n H k n      
−  

=

−     , (26) 

where 
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 , , ,cos ,sinN j N j N j  = ,  , , ,cos ,sinN j N j N j    = , 

( ),

2
1N j j

N


 = − , 

,

2 1

2
N j j

N


  

= − 
 

, 1,...,j N= . 

Consequently, a set of N monopoles on a circle of radius 0, having amplitudes  

( )
1

0nNJ k
−

   , emit a total field of type (1) in the outer region ( >0). The difference 

between the resulting third type of multipole and the second is the number N of its 

monopoles, which in this case is not limited. It's interesting to compare their accuracy. 

For this purpose, let us denote the left and right parts of expressions (25) and (26), 

respectively, as ( ),

III

N nL  , ( )nR 
 
and ( ),

III

N nL  , ( )*

nR  . Then we can briefly write 

( ) ( ),

III

N n nL R  , ( ) ( )*

,

III

N n nL R   . 

Let's consider a special case when N= 2n. Note that then 

, ,N j n j = , , ,N j n j  = , 
, ,N j n j = , , ,N j n j  = , ( ) ( ) ( )

1

, ,cos sin 1
j

N j N jn n 
+= = − . 

In addition, if we assume that the value of k0 (the perimeter of the multipole in units of 

wavelength) is so small that inequality 00 1k n  +  holds, then we can use the well-

known asymptotic expression [7] 

( ) 0
0

1

! 2

n

n

k
J k

n




 
  

 
. 

As a result, the left sides ( ),

III

N nL 
 
and ( ),

III

N nL  , for N= 2n, will be transformed to 

the form 

( )
( )

( )
( ) ( ) ( )

1 2
1 1

, 0 0 ,2
10

2 1 !
1

n n
jIII

N n n jnN n
j

n
L H k

k
   



−
+

=
=

−
= − − , 

( )
( )

( )
( ) ( ) ( )

1
1 1

, 0 0 ,2
10

2 1 !
1

n N
jIII

N n n jnN n
j

n
L H k

k
   



−
+ 

=
=

−
= − − . 

Comparing them with the left sides ( )II

nL   and ( )II

nL   of expressions (20) and 

(21) we notice that 

( ) ( ), 2
2III II

N n nN n
L L 

=
= , ( ) ( ), 2

2III II

N n nN n
L L  

=
= . 

But on the other hand, according to (20) and (21), we have 

( ) ( )II

n nL R  , ( ) ( )*II

n nL R   , 
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from which 

( ) ( ), 2
2III

N n nN n
L R 

=
 , ( ) ( )*

, 2
2III

N n nN n
L R 

=
 . 

Thus, for N= 2n, approximate equalities (25) and (26) are violated. For the relative 

error at the considered point of the plane, we will have 

( )
( ) ( )

( )

( ) ( )

( )

, 2
2

100% 100% 100%

III

N n n n nN n

n n

L R R R

R R

   
 

 
=

− −
=  = , 

( )
( ) ( )

( )

( ) ( )

( )

* * *
,* 2

* *

2
100% 100% 100%

III

N n n n nN n

n n

L R R R

R R

   
 

 



=
− −

=  = . 

Consequently, to ensure sufficient accuracy of the representation of fields (1) by 

this type of circular multipole, the number N of its monopoles must satisfy condition

2N n . This makes it non-optimal, in comparison with the circular multipole of the 

second type. 

 

5.2. The Linear Multipole 

Let us consider the addition theorem (22) again. Through numerical calculations 

one can be convinced that if the value of k0 satisfies the condition 

                                                                  0 4k n  , (27) 

then with sufficient accuracy we can limit ourselves to the first n terms of the series. Let 

us assume thatφ0= 0 and condition (27) is satisfied. Then we can write 

                 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

0 0 0 0 0 0

1

2 cos
n

m m

m

H k J k H k J k H k m      
=

−  +  , ( )0  . (28) 

Let us now consider n+1 points on the abscissa axis, with radius vectors 

                                                             
( ) , 2 ,0,0n nn d = − , 0,..., n =  (29) 

Notice, that if n is odd number, then for the given points, the condition 
, 0n   , 

0,..., n =  will take a place. If n is even number, then 
, 2 0n n = . We choose the distance 

dn between neighboring points in such a way that kdn= 1/2. In this case, for all values of 

the vectors 
,n  , the inequality 

, 4nk n   will take place. Let's say n is an odd number. 

Then, by virtue of (27) and (28), we write 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

0 , 0 , 0 , ,

1

2 cos
n

n n m n m n

m

H k J k H k J k H k m         
=

−  +  , 



JAE, VOL. 26,  NO. 2, 2024 JOURNAL OF APPLIED ELECTROMAGNETISM 

 

25 
 

where 
,n   is an angle between 

,n   and   vectors. If n is an even number, then the angle 

,n   loses its meaning at 2n = . Therefore, in this case we write 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

0 , 0 , 0 , ,
2 2 2

1

2 cos
n

n n m n n m
n n n

m

H k J k H k J k m H k   
  

      
  

=

−  +  , 

( ) ( ) ( ) ( )1 1

0 , 0
2

n
n

H k H k


  
=

− = . 

Let's introduce unknown quantities 
,nA 

 and compose a sum of the form 

                                                        ( ) ( ) ( )1

, 0 ,

0

1
n

n nA H k


 



 
=

− − . (30) 

Based on the previous expressions, we can write 

                        
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

, 0 , 0, 0 ,

0 1

1 2 cos
n n

n n n m n m

m

A H k S H k S H k m


 



    
= =

− −  +  . (31) 

The quantities 
0,nS

 
and 

,m nS , for odd n, are determined as 

  
( ) ( )0, , 0 ,

0

1
n

n n nS A J k


 




=

= − , ( ) ( ) ( ), , , ,

0

1 cos
n

m n n m n nS A J k m


  



 
=

= − . 

For even n, we respectively have 

( ) ( ) ( )2

0, , 2 , 0 ,
0

2

1 1
n

n

n n n n n

n

S A A J k


 





=



= − + − , ( ) ( ) ( ), , , ,
0

2

1 cos
n

m n n m n n

n

S A J k m


  




 
=



= − . 

Taking into account the obvious equalities 

, ,n n n   −= , ( ) ( ),cos cosn nm m − = , ( ) ( ) ( ) ( ),cos cos 1 cos
m

nm m m   = − = −   , 

expressions for 
0,nS  and 

,m nS  can be written in a more convenient form. So, for odd n, 

( ) ( ) ( )
( )1 2

0, , , 0 ,

0

1
n

n n n n nS A A J k


  



−

−

=

= − − , 

( ) ( ) ( )
( )1 2

, , , ,

0

1 1
n

m

m n n n n m nS A A J k


  



−

−

=

 = − − −
   

and for even n, respectively 

( ) ( ) ( ) ( )
( )2 1

2

0, , 2 , , 0 ,

0

1 1
n

n

n n n n n n nS A A A J k


  



−

−

=

= − + − + , 

( ) ( ) ( )
( )2 1

, , , ,

0

1 1
n

m

m n n n n m nS A A J k


  



−

−

=

 = − − +
  . 
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We now require that the quantities 
0,nS  and 

,m nS  satisfy the conditions 

       0, 0nS = , 
,

1

2
m n mnS = . (32) 

In this case, from expression (31), taking into account (29), we obviously obtain 

                                

( ) ( ) ( ) ( ) ( )1 1

, 0

0

1 cos
2

n

n n n

n
A H k d x H k n






   
=

  
− − −   

  
 . (33) 

Note that if we consider n+1 points on the ordinate axis, with radius vectors 

                                               ( ) , 0, 2 ,0n nn d  = − , 0,..., n = , (34) 

then, similarly to (33), we obtain 

                               ( ) ( ) ( ) ( ) ( )1 1

, 0

0

1 sin
2

n

n n n

n
A H k d y H k n






   
=

  
− − −   

  
 . (35) 

Thus, the problem is reduced to determining the coefficients 
,nA 

, for which we 

use conditions (32). These conditions, in expanded form, taking into account the 

expressions for 
0,nS

 
and 

,m nS , will be written for odd n as 

( ) ( ) ( )
( )1 2

, , ,

0

1
1 1

2

n
m

n n n m n mnA A J k


  


 
−

−

=

 − − − =
  , 0,...,m n= , 

and for even n, respectively as 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 1
2

, 2 , , 0 ,

0

2 1

, , , ,

0

1 1 0

1
1 1

2

n
n

n n n n n n

n
m

n n n m n m n

A A A J k

A A J k



  





  




 

−

−

=

−

−

=


− + − + =



  − − + =
  





, 1,...,m n= . 

These expressions represent a system of linear algebraic equations with respect to 

unknown coefficients 
,nA 

. The number of equations, as well as unknowns, is n+1. Note 

that through a series of transformations of these systems, this number can be reduced. 

Thus, for odd n, the first (n+1)/2 unknowns can be found by solving the system 

                          
( ) ( )

( )

( )

1 2

2 1 , , , 1 2
0

1
1

4

n

n n n
J k A



   


 
−

+ −
=

− = − , ( )0,..., 1 2n = −   (36) 

and the remaining ones, express through them, through equalities 

                                                   , ,n n nA A − = , ( )0,..., 1 2n = − . (37) 

Similarly, for even n, the first n/2 unknowns can be determined from the system 
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( ) ( )

( )2 1

2 , , , 2

0

1
1

4

n

n n nJ k A


   


 
−

=

− = , 1,..., 2n = , (38) 

then determine the coefficient 
, 2n nA  as 

                                               ( )
( ) ( )

( )2 1
2 1

, 2 0 , ,

0

2 1
n

n

n n n nA J k A


 



−

+ −

=

= −  (39) 

and the remaining n/2 unknowns, determine from the equalities 

                                              
, ,n n nA A − = , 0,..., 2 1n = − . (40) 

The left parts of expressions (33) and (35) describe multipoles consisting of n+1 

monopoles located, respectively, along the abscissa and ordinate axis, at points with 

radius vectors (29) and (34). Moreover, if the amplitudes 
,nA 

 of these monopoles satisfy 

conditions (36), (37) or (38)-(40), depending on the parity of n, then their total fields 

coincide with the original fields (1) with sufficient accuracy. This type of multipole can 

be called linear. 

The length of the considered multipole, for a given n, is determined as ln= ndn. 

Above we assumed that kdn=1/2. If we reduce the value of kdn (and therefore the length 

of the multipole), then the accuracy of expressions (33) and (35) will increase. It is 

interesting to compare the accuracy of the representation of fields (1) by a linear 

multipole and a circular multipole of the second type. Let us determine the radius 0 of 

the circular multipole as 0=n/(4k). Then its diameter will be equal to the length of the 

linear multipole (Figure 7). 

 

 

 

      

 

Figure 7. The second type of circular multipole and linear multipole 

 

 

 

 

 

Figure 8. Comparison of amplitude radiation patterns of linear and circular multipoles 
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Figure 8 presents a comparison of the radiation patterns of the fields from the two 

types of multipoles under consideration, with the corresponding patterns of the field 

( ) ( ) ( )1
cosnH k n  , for n = 5. These radiation patterns are constructed at three different 

distances from the center of the multipoles (ln, 1.5ln and 2ln). The patterns of linear and 

circular multipoles are marked with a thick and thin continuous line, respectively. The 

pattern of the field ( ) ( ) ( )1
cosnH k n   is marked with a dotted line. The thin continuous 

line is so close to the dashed line that at the given scales, they are indistinguishable. This 

demonstrates the high accuracy with which the second type circular multipoles describe 

fields (1). In contrast, the linear multipole exhibits comparatively lower accuracy, which, 

however, improves with increasing distance. 

                                                                

6. CONCLUSIONS 

The structures of field sources described by wave functions (1) of a circular 

cylinder have been examined. By analyzing the radiation patterns of field (1) and 

applying the addition theorem for cylindrical functions, four types of multipoles have 

been identified. These vary in their structure, the number of monopoles, and the precision 

with which they represent the original fields. From the findings, it is concluded that a 

second type circular multipole, consisting of 2n monopoles, achieves higher accuracy. 

However, a smaller linear multipole, comprising n+1 monopoles, may offer greater 

optimality. 
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